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Abstract Hoare logic is a logic used as a way of specify-

ing semantics of programming languages, which has been

extended to be a separation logic to reason about mutable

heap structure. In a model M of Hoare logic, each program

α induces an M-computable function f M
α on the universe of

M; and the M-recursive functions are defined on M. It will

be proved that the class of all the M-computable functions

f M
α induced by programs is equal to the class of all the M-

recursive functions. Moreover, each M-recursive function is

ΣNM

1 -definable in M, where the universal quantifier is a num-

ber quantifier ranging over the standard part of a nonstandard

model M.

Keywords Hoare logic, recursive function, computable

function, nonstandard model of Peano arithmetic

1 Introduction

Hoare [1] introduced an axiomatic method of proving the

correctness of programs, Hoare logic, which has been used

as a way of specifying semantics of programming languages

[2–5]. Separation logic is a spatial logic for reasoning about

mutable heap structure [6–8], which is an extension of Hoare

logic to describe the applications of programs on the heap

structures and the reasoning about memory update. It would

be interesting to reconsider Hoare logic and the computabil-

ity induced by the accessibility relations in a model of
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Hoare logic, because the models of Hoare logic, taken as a
modal logic, are defined on the assignments of models of the
first-order languages based on which Hoare logic is defined,
which induces the special form of the completeness theorem
different from that of the first-order logic.

Hoare logic H is complete if for every interpretation I, set
of assertions A, and specification φ, the following holds: if
A |=I

H φ, then A �H φ, where A |=I
H φ means that I |=H A

implies I |=H φ [2].

Cook’s completeness theorem of Hoare logic [9] says that
for any model M of Hoare logic, if M is expressive for pro-
grams then M |= φ1[α]φ2 implies HL(M) � φ1[α]φ2, where

HL(M) is the Hoare logic with axioms Th(M). Bergstra and
Tucker [3] proved that for any theory T of Peano arithmetic,
HL(T ), Hoare logic with axioms T is logically complete if
and only if T is complete, that is, for any sentence φ of Peano

arithmetic, either φ ∈ T or ¬φ ∈ T.

The theorems on the completeness of Hoare logic show the
difference of Hoare logic from the traditional logics: there
is no uniform completeness theorem for Hoare logic, even
though it was proved recently [5] that the propositional Hoare
logic is complete.

The class of all program-computable functions on natu-
ral numbers is equal to the class of all recursive functions
[10]. In Hoare logic, the programs are abstracted to modali-
ties [α],which are interpreted as the accessibility relations on
any models M of Peano arithmetic [2,4,11]. Given a model

M of Hoare logic, each program α induces a function f M
α on

the universe of M (such a function is called M-computable in

the following).
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In a model M of Hoare logic, as in the classical recur-
sion theory, we can define another class of functions, the
M-recursive functions, which are defined by the elementary
functions and via the composition, the recursion and the μ-
operator, where the recursion is up to numbers in the stan-
dard part NM of M, and the μ-operator is restricted on NM,

where the standard part of M is denoted by NM, which is iso-
morphic to the standard model N of Peano arithmetic. It will
be proved that for any model M of Hoare logic, the class of
all M-computable functions is equal to the class of all M-
recursive functions.

A basic property of recursive functions is the Σ1-
definability. For the standard model N of Peano arithmetic,
for any recursive function f : N → N, dom( f ) (the do-
main of f ) is Σ0

1 in N, and hence arithmetical in N. For the
nonstandard model M of Peano arithmetic, there is an M-
recursive (computable) function f M

α for some programα such
that dom( f M

α ) is not arithmetical. If for any model M of Peano
arithmetic and any program α, f M

α is Σ0
1 in M (at least defin-

able in M) then Hoare’s logic would be reduced to a first-

order theory, and hence, Hoare’s logic is complete, where

φ[α]ψ is reduced to φ∧θ → ψ,where θ is the formula defining

α in M. We shall use a new quantifier ∀m, where m ranges

in the standard part of a nonstandard model, and prove that

with such a quantifier, NM is arithmetical in M and each M-

recursive function is ΣNM

1 -definable in M.

The rest of the paper is organized as follows. Section 2
gives the basic definitions on the standard and nonstandard
models of Peano arithmetic, and Hoare logic, its syntax and
semantics. Section 3 defines M-computable functions for
any model M of Peano arithmetic. Section 4 defines the
M-recursive functions and gives the basic properties of M-

recursive functions. Section 5 proves that the class of all M-
computable functions is equal to the class of all M-recursive
functions. Section 6 defines the M−-recursive functions and
shows that +M, ·M are not M−-recursive. Section 7 gives a
new logical language of Peano arithmetic with quantifier ∀m
and proves that each M-recursive function is ΣNM

1 -definable,
and the whole paper is concluded in the final section.

Our notation is standard, a reference is [10]. We shall use
a, b to be elements of nonstandard models; m, n, natural num-
bers of the standard parts of nonstandard models of Peano
arithmetic; n closed terms of logical language L; m number
variables of logical language L+, and x, y, variables in the log-
ical language of Peano arithmetic.

2 The basic definitions

Let L = {+, ·, <, 0, 1} be the logical language of Peano arith-

metic.

Let N = (N,+N, ·N, <N, 0N, 1N) be the standard model of

Peano arithmetic; and M = (M,+M, ·M, <M, 0M, 1M, I) be a

countable nonstandard model of Peano arithmetic, that is,

M |= φ for each axiom φ of Peano arithmetic, where M is

the universe of M, and I is an interpretation such that

I(+,M) = +M; I(·,M) = ·M;

I(<,M) =<M;

I(0,M) = 0M; I(1,M) = 1M.

In the following we shall omit I in M.

There is a submodel NM = (NM ,+NM
, ·NM

, <NM
, 0NM

, 1NM
)

of M such that NM is isomorphic to N, where NM is the uni-

verse of NM ,

NM = {I(n,M) : n ∈ N},
and

I(+,NM) = +NM
= +M � NM;

I(·,NM) = ·NM
= ·M � NM;

I(0,NM) = 0NM
= 0M;

I(1,NM) = 1NM
= 1M;

I(<,NM) =<NM
=<M� NM.

The logical language L′ for Hoare logic contains the fol-

lowing symbols:

• constants for numbers: 0, 1, 2, . . . ;
• variables for numbers: x0, x1, . . . ;

• function symbols: +, ·;
• binary predicate symbol: <;

• the logical connectives and quantifiers: ¬,→,∀;

• command symbols: :=, ; , if then else,while do.
An expression t is defined as follows:

t ::= n|x|t1 + t2|t1 · t2;

and an boolean expression θ is defined as follows:

θ ::= t1 < t2|¬θ1|θ1 → θ2.

A program α is defined as follows:

α ::= x := t|α1;α2| if θ then α1 else α2| while θ do α1.

An assertion φ is defined as follows:

φ ::= θ|¬φ|φ1 → φ2|∀xφ1(x).

A specificationΦ is an Hoare triple of the following forms:

Φ ::= φ1[α]φ2.

The semantics for Hoare logic is a Kripke’s possible world

semantics, where the possible worlds are stores, and [α] are

interpreted as modalities.

Given a model M = (M, I) of Peano arithmetic, let W be

the set of all the assignments (stores), functions from vari-

ables to M.
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A model M′ is a triple (W, {Rα : α},M), such that for each

α,Rα is a binary relation on W, such that for any w,w′ ∈ W,

• (w,w′) ∈ Rx:=t iff w′ = w(x/tI,w), where tI,w is defined in

the following;

• (w,w′) ∈ Rα1;α2 iff (w,w′) ∈ Rα1 ◦ Rα2 , where (z, z′) ∈
R1 ◦R2 iff there is a z′′ such that (z, z′′) ∈ R1 and (z′′, z′) ∈ R2;

• (w,w′) ∈ Rif θ then α1 else α2 iff either M,w |= θ and

(w,w′) ∈ Rα1 , or M,w 
|= θ and (w,w′) ∈ Rα2 ;

• (w,w′) ∈ Rwhile θ do α1 iff there are w0 = w,w1, . . . ,wi =

w′ such that for each 0 � j � i − 1, M,wj |= θ, (wj,wj+1) ∈
Rα1 , and M,w′ 
|= θ.

Given a possible world w and an expression t, the interpre-

tation tI,w of t in w is illustrated as follows:

tI,w =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(n), if t = n;

w(x), if t = x;

tI,w
1 +

M tI,w
2 , if t = t1 + t2;

tI,w
1 ·M tI,w

2 , if t = t1 · t2,

and given a possible world w and a boolean expression θ, θ is

satisfied in w, denoted by M,w |= θ, if

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tI,w
1 <M tI,w

2 , if θ = t1 < t2;

M,w 
|= θ1, if θ = ¬θ1;

M,w |= θ1 ⇒M,w |= θ2, if θ = θ1 → θ2,

where instead of using⇒ as the logical implication in Hoare

logic, we use→1).

Given an assertion φ and a possible world w, we say that φ

is satisfied in w, denoted by M,w |= φ, if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M,w |= θ, if φ = θ;

M,w 
|= φ1, if φ = ¬φ1;

M,w |= φ1 ⇒M,w |= φ2, if φ = φ1 → φ2;

Aa ∈ M(M,w(x/a) |= φ1(m)), if φ = ∀xφ1(x).

Given a possible world w, a specification φ1[α]φ2 is satis-

fied at w, denoted by M,w |= φ1[α]φ2, if

M,w |= φ1 ⇒ Aw′((w,w′) ∈ Rα ⇒M,w′ |= φ2).

3 The M-computability induced by the acces-
sibility relations

Given a model M′ = (W, {Rα : α},M) of Hoare logic, for any

program α, let Rα be the accessibility relation for α.

Rα induces a function f M
α : Mi → M such that for any

�a ∈ Mi and b ∈ M,

f M
α (�a) = b,

if and only if there are w,w′ ∈ W and x1, . . . , xi such that

(w,w′) ∈ Rα and

w(x1) = a1, . . . ,w(xi) = ai;

w(x) = b.

We say that f M
α is M-computable.

By the definition of Rα, we have the following lemma.

Lemma 1 f M
α is well-defined. That is, for any v, v′,w,w′ ∈

W with (v, v′), (w,w′) ∈ Rα, if

v(x1) = w(x1), . . . , v(xi) = w(xi),

then

v′(x) = w′(x).

Proof By the induction on the structure of α. �

Example 1 Let α ::= y := y + 1. Then, for any w,w′ ∈
W, (w,w′) ∈ Rα iff v′ = v(y/(v(y) +M 1M)), where for any x,

v(y/a)(x) =

⎧
⎪⎪⎨
⎪⎪⎩

v(x), if x � y;

a, otherwise.

Rα induces a function f M
α : M → M such that for any

a, b ∈ M,

f M
α (a) = b iff b = a +M 1M.

That is, f M
α (a) = a +M 1M. �

Example 2 Let

α(a,m) ::= x := a; while y � m do (x := x + 1; y := y + 1).

Then, for any w,w′ ∈ W, (w,w′) ∈ Rα iff there are w1, . . . ,wm

such that (w,w1) ∈ Rx:=x+1, (wm,w′) ∈ Rx:=x+1 and for each

1 � i < m, (wi,wi+1) ∈ Rx:=x+1.

Rα induces a function f M
α : M → M such that for any a ∈ M

and m ∈ NM ,

f M
α (a,m) = b iff b = a +M m.

That is, f M
α (a,m) = a +M m. �

Example 3 Let

α(x) ::= y := 0; while x � y do y := y + 1.

1) In syntax, we use ¬,∧,→,∀,∃ to denote the logical connectives and quantifiers; and in semantics we use ∼,&,⇒,A,E to denote the corresponding
connectives and quantifiers
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For any w,w′ ∈ W, (w,w′) ∈ Rα if and only if

1) w(y) = 0;

2) w′(y) = w′(x);

3) w(x) is standard.

The corresponding function f M
α is such that for any a ∈ M,

f M
α (a) =

⎧
⎪⎪⎨
⎪⎪⎩

a, if a ∈ NM ;

↑, otherwise.
�

Notice that the domain dom( f M
α ) = NM of f M

α is not arith-

metical in M and the first-order logic, that is, there is no for-

mula φ(x) such that for any a ∈ M,

a ∈ dom( f M
α ) iffM |= φ(x/a).

dom( f M
α ) = NM is arithmetical in M and Hoare logic, that is,

there is a formula φ1[α]φ2 such that for any a ∈ M,

a ∈ dom( f M
α ) = NM iffM |= φ(x/a)[α(x/a)]ψ(x/a).

In fact, let φ1[α]φ2 = true[α]true. Then,

M |= φ1(x/a)[α(x/a)]ψ(x/a) iff α(x/a) terminates

iff a ∈ dom( f M
α ).

Example 4 Let

α(x, z) ::= y := z; while x � y do y := y + 1.

For any w,w′ ∈ W, (w,w′) ∈ Rα if and only if

1) w(y) = w(z);

2) w′(y) = w′(x);

3) w(x) = w(z) +M i for some standard number i.

The corresponding function fα(x, z) is such that for any a, b ∈
M,

fα(a, b) =

⎧
⎪⎪⎨
⎪⎪⎩

a, if a = b +M i for some i ∈ NM;

↑, otherwise.
�

Let CM be the set of all M-computable functions.

4 The M-recursive functions

The M-recursive functions are a generalization of the recur-

sive functions from the standard model to the nonstandard

models of Peano arithmetic.

Definition 1 A function f : Mi → M is M-recursive if ei-

ther

1) f is elementary, that is,

f = λa.n|λa, b.(a+M b)|λa, b.(a ·M b),

where n ∈ NM;

2) (Composition) there are M-recursive functions f1(�a) and

f2(b, �a) such that for any �a ∈ M,

f (�a) = f2( f1(�a), �a);

there are M-recursive functions f1(�a) and f2(m, �a) such that

range( f1) ⊆ NM , and for any �a ∈ M,

f (�a) = f2( f1(�a), �a);

3) (Recursion) there are M-recursive functions

f1(�a), f2(m, b, �a) such that for any m ∈ NM and �a ∈ Mi,

⎧
⎪⎪⎨
⎪⎪⎩

f (0M, �a) = f1(�a);

f (m, �a) = f2( f (m −M 1M, �a),m, �a),

or

4) (μ-operator) there is a total M-recursive function

f1(m, �a) such that for any �a ∈ M,

f (�a) = μm ∈ NM( f1(m, �a) = 0M).

Let RM be the set of all M-recursive functions.

For example, function

f (m, a) = a−m =

⎧
⎪⎪⎨
⎪⎪⎩

a, if m = 0M;

f (m −M 1M, a) −M 1M, if m = m′ +M 1M,

is M-recursive

Proposition 1 The following function f is M-recursive,

where for any a ∈ M,

f (a) =

⎧
⎪⎪⎨
⎪⎪⎩

a, if a ∈ NM;

↑, otherwise.

Proof Let g(a,m) = a −M m. Define f (a) = μm(g(a,m) =

0M) = μm(a −M m = 0M). Then, for any a ∈ M,

f (a) ↓= a iff a ∈ NM . �

Proposition 2 λa : M,m : NM .am is M-recursive.

Proof For any a ∈ M and m ∈ NM , if m = 0M then

am = 1M; if m � 0M then am = am−M1M ·M a. Hence,

λa : M,m : NM .am is M-recursive. �

It can be proved that λa : M.na and λa, b : M. ab are not

M-recursive.

Proposition 3 For any M-recursive function f , there is a

polynomial p with coefficients of form fα : Mn → NM such

that for any �a, b ∈ M,

f (�a) = b iff p(�a) = b.
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Proof We prove by induction on the recursiveness defini-

tion of f .

If f is elementary, then the proposition holds.

Assume that f (�a) = f1( f2(�a), �a)) and the proposition holds

for f1 and f2. Let p1, p2 be two polynomials such that for any
�a, a ∈ M,

f1(a, �a) = p1(a, �a);

f2(�a) = p2(�a).

Then, f (�a) = p1(p2(�a), �a) is a polynomial.

Assume that f is defined by the recursion and f1, f2, and

the proposition holds for f1 and f2. Let p1, p2 be two polyno-

mials such that for any �a ∈ Mi and a ∈ M,

f1(�a) = p1(�a);

f2(a, �a) = p2(a, �a).

Then,

f (m, �a) =

⎧
⎪⎪⎨
⎪⎪⎩

p1(�a), if m = 0M;

p2( f (m −M 1M, �a), �a), if m � 0M,

is a polynomial.

Assume that f (�a) = μm( f1(m, �a) = 0M). Then, f (�a) · a0M

1 is

the polynomial for f (�a). �

Corollary 1 λa, b : M.a −M b, λa : M.2a and λa, b : M.ab

are not M-recursive, where a −M b = c iff a +M c = b or

a <M b. �

Each primitively recursive function is provably recursive,

and so is λn.2n. There is a Σ1-formula ∃zθ(x, y, z) such that

PA � ∀x∃!y∃zθ(x, y, z). For any nonstandard model M of

Peano arithmetic, for any a, b ∈ M, 2a = b iff M |=
∃zθ(x/a, y/b, z), iff there is an element c ∈ M such that

M |= θ(x/a, y/b, z/c). If a, b ∈ M − NM then c � NM.

∃zθ(x, y, z) defines λm : NM.2m in M.

5 The equivalence of CM and RM

In this section, we prove that each M-computable function

is M-recursive, and conversely, each M-recursive function is

M-computable.

Theorem 1 CM = RM.

Proof Firstly we prove that CM ⊆ RM, that is, for any

M-computable function f M
α for some program α, f M

α is M-

recursive. We prove the claim by induction on α.

• Case 1 α = x := t. If t = n then f M
α (a) = n for any

a ∈ M, is M-recursive; if t = x then f M
α (a) = a for any a ∈ M,

is M-recursive; if t = t1 + t2 and f M
α1

and f M
α2

are M-recursive

for t1 and t2, respectively, then f M
α (a) = f M

α1
(a) +M f M

α2
(a) is

M-recursive; similar for t = t1 · t2.
• Case 2 α = α1;α2. Assume that f M

α1
(�a), f M

α2
(b, �a) are

M-recursive. Then,

f M
α1;α2

(�a) = f M
α2

( f M
α1

(�a), �a)

is M-recursive;

• Case 3 α = if φ then α1 else α2. Assume that

φ(x1, . . . , xi) contains variables x1, . . . , xi without any quan-

tifier. Then, for any �a ∈ M,

χφ(�a) =

⎧
⎪⎪⎨
⎪⎪⎩

1M, if M |= φ(x1/a1, . . . , xi/ai);

0M, otherwise,

is M-recursive. Assume that f M
α1

(�a), f M
α2

(�a) are M-recursive

for α1 and α2, respectively. Then,

f M
α (�a) =

⎧
⎪⎪⎨
⎪⎪⎩

f M
α1

(�a), if χφ(�a) = 1M;

f M
α2

(�a), if χφ(�a) = 0M,

= χφ(�a) f M
α1

(�a) +M (1M −M χφ(�a)) f M
α2

(�a)

is M-recursive;

• Case 4 α = while φ then α1. Assume that f M
α1

(�a) is

M-recursive for α1. Then, for any m ∈ NM , �a ∈ Mi−1,

f M
α (�a) =

⎧
⎪⎪⎨
⎪⎪⎩

f M
1 (m, �a), if Em(M 
|= φ(x/ f M

1 (m, �a)));

↑, otherwise,

where

f M
1 (m, �a) =

⎧
⎪⎪⎨
⎪⎪⎩

f M
α1

(�a), if m = 0M;

f M
α1

( f M
1 (m −M 1M, �a), �a), otherwise.

Because Em(M 
|= φ(x/ f M
1 (m, �a))) and f M

1 (m, �a) are M-

recursive, f M
α (�a) is M-recursive.

Then, we prove that RM ⊆ CM, that is, for any M-recursive

function f , there is a program α such that f M
α = f . We prove

the claim by induction on the structure of f .

• Case 5 f (�a) = n|a1 +
M a2|a1 ·M a2.

If f (�a) = n then let α ::= x := n, and f M
α (�a) = n;

If f (�a) = a1 +
M a2 then let α ::= x := x1 + x2, and

f M
α (�a) = a1 +

M a2; and similar for f (�a) = a1 ·M a2.

• Case 6 f (�a) = f2( f1(�a), �a). Assume that α1, α2 are

such that f M
α1

(�a) = f1(�a) and f M
α2

(b, �a) = f2(b, �a). Then, let

α = α1;α2, and

f M
α (�a) = f (�a).

•Case 7 f (m, �a) =

⎧
⎪⎪⎨
⎪⎪⎩

f1(�a), if m = 0M;

f2( f (m −M 1M, �a),m, �a), otherwise.

Assume that α1, α2 are such that f M
α1

(�a) = f1(�a), f M
α2

(b,m, �a) =
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f2(b,m, �a). Define

α ::= if m = 0 then α1,

else (y := 0; (while y � m do α2; y := y + 1)).

Then, f M
α (m, �a) = f (m, �a).

• Case 8 f (�a) = μm ∈ NM( f1(m, �a) = 0M). Assume that

α1 is such that f M
α1

(m, �a) = f1(m, �a). Define

α ::= y := 0;α1; (while x � 0 do y := y + 1;α1).

Then,

f M
α (�a) = f (�a).

Assume that m = μm ∈ NM( f1(m, �a) = 0M). Then, when

y = m, x = f1(m, �a) = 0M and f M
α (�a) = m (the value of y);

and if f M
α (�a) = m, then f1(m, �a) = 0M and because m is the

least one, f (�a) = m. �

6 The M−-recursive functions

In this section, we show that if the logical language L is re-

strained to L− = {s, 0, 1,=}, where s is the successor operator,

then for any nonstandard model M of L,+M and ·M are not

M−-recursive.

Definition 2 A function f : M → M is M−-recursive if

either

1) f is elementary, that is,

f (�m;�a) = n|m1|(m +M 1M)|a1|a1 +
M 1M,

where n ∈ NM;

2) (Composition) there are M−-recursive functions

f1(�m;�a) : (NM)i×M j → M and f2(�m;�a, a) : (NM)i×M j+1 →
M such that for any �m ∈ (NM)i, and �a ∈ M j,

f (�m;�a) = f2(�m;�a, f1(�m, �a));

there are M−-recursive functions f1(�m;�a) : (NM)i × M j →
NM and f2(�m,m;�a) such that for any �m ∈ (NM)i,m ∈ NM

and �a ∈ M j,

f (�m,m;�a) = f2(�m, f1(�m;�a);�a);

3) (Recursion) there are M−-recursive functions f1(�m;�a) :

(NM)i × M j → M, f2(�m; a, �a) : (NM)i × M j+1 → M such that

for any �m ∈ (NM)i,m ∈ NM and �a ∈ M j,

⎧
⎪⎪⎨
⎪⎪⎩

f (0M, �m;�a) = f1(�m;�a);

f (m +M 1M, �m;�a) = f2(�m; f (m, �m;�a), �a);

or

4) (μ-operator) there is a total M−-recursive function

f1(m, �m;�a) : (NM)i+1×M j → M such that for any �m ∈ (NM)i

and �a ∈ M j,

f (�m;�a) = μm ∈ NM( f1(m, �m;�a) = 0M).

Let RM− be the set of all the M−-recursive functions.

Theorem 2 For any M−-recursive function f : (NM)i ×
M j → M, there is an M−-recursive function f ′ : (NM)i×M →
M such that

f = f ′.

Proof We prove the theorem by induction on the definition

of f .

For the elementary M−-recursive functions, the claim is

clear.

Assume that f (�m;�a) = f2(�m, �a, f1(�m, �a)), f2(�m, �a, a) =

f ′2(�m, a) and f1(�m;�a) = f ′1(�m; a1). Then, let f ′(�m; a) =

f2(�m; f1(�m; a)), and

f (�m;�a) = f ′(�m; a).

Assume that f (m, �m;�a) is defined by the recursion and

f1(�m;�a), f2(�m; f (m′, �m;�a), �a). By the induction assumption,

let f ′1(�m; a) and f ′2(�m; a) be the functions such that

f1(�m;�a) = f ′1(�m; a1);

f2(�m; a, �a) = f ′2(�m; a).

Let

f ′(m, �m; a) =

⎧
⎪⎪⎨
⎪⎪⎩

f ′1(�m; a), if m = 0M;

f ′2(�m; f ′(m′, �m; a)), if m = m′ +M 1M.

Then,

f (m, �m;�a) = f ′(m, �m; a1).

Assume that f (�m;�a) = μm(g(m, �m;�a) = 0M), and

g(m, �m;�a) = g′(m, �m; a1). Let f ′(�m; a) = μm(g′(m, �m; a) =

0M). Then,

f (�m;�a) = f ′(�m; a1). �

The theorem shows that each M−-recursive function has at

most one parameter in M; and may have several parameters

in NM.

Corollary 2 +M and ·M are not M−-recursive.

Proof Because λa1, a2.a1 +
M a2 is a function with two pa-

rameters in M, there is no M−-recursive function f ′(�m; a)

such that

f ′(�m; a) = a1 +
M a2.
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Similarly, there is no M−-recursive function f ′(�m; a) such

that

f ′(�m; a) = a1 ·M a2. �

Tennenbaum’s theorem says that for any nonstandard

model M of Peano arithmetic, the addition +M and multi-

plication ·M are not recursive. Precisely, given a nonstandard

model M of Peano arithmetic, let N be the standard model

of Peano arithmetic such that N = M. Then, +M and ·M, as

functions on N, are not recursive in N.
Theorem 2 shows that in the logical language L−, +M

and ·M are not M−-recursive. For the standard model N of

Peano arithmetic, +N and ·N are N−-recursive, where the N−-

recursiveness is equivalent to the N-recursiveness.

7 The ΣNM

1 -definability of the M-recursive
functions

In the first-order theory of Peano arithmetic, for any nonstan-

dard model M of Peano arithmetic, there is an M-recursive

function f M
α such that f M

α is not arithmetical, i.e., not defin-

able in M. Let

α(x) ::= y := 0; while y � x do y =: y + 1.

Then, f M
α is defined as follows: for any a ∈ M,

f M
α (a) = a iff a ∈ NM .

Because NM is not arithmetical in M, f M
α is not arithmetical

in M.

We change the first-order logic for Peano arithmetic so that

f M
α is definable in M.

The logical language L+ contains the following symbols:

• constant symbols: 0, 1, 2, . . . , n, . . . ;
• number variables: m0,m1,m2, . . . ;

• variables: x0, x1, x2, . . . ;

• binary function symbols: +, ·;
• binary predicate symbol: <;

• logical connectives and quantifiers: ¬,→,∀.
Terms are defined as follows

t ::= n|m|x|t1 + t2|t1 · t2.

Formulas are defined as follows:

φ ::= t1 < t2|¬φ1|φ1 → φ2|∀mφ1(m).

A model M is a pair (M,+M, ·M, <M, 0M, 1M, I), where

• M is the universe;

• I(+) = +M, I(·) = ·M, I(<) =<M;

• I(0) = 0M, I(1) = 1M ∈ M.

Let

NM = {I(n) : n ∈ N}.

An assignment v is a function from variables to M, and a num-

ber assignment w is a function from number variables to NM .

The interpretation of t at (M, v,w), denoted by tM,v,w, is

defined as follows:

tM,v,w =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(n), if t = n;

w(m), if t = m;

v(x), if t = x;

tM,v,w
1 +M tM,v,w

2 , if t = t1 + t2;

tM,v,w
1 ·M tM,v,w

2 , if t = t1 · t2.

A formula φ is satisfied at (M, v,w), denoted by (M, v,w) |=
φ, if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

tM,v,w
1 <M tM,v,w

2 , if φ = t1 < t2;

(M, v,w) 
|= φ1, if φ = ¬φ1;

(M, v,w) |= φ1 ⇒ (M, v,w) |= φ2, if φ = φ1 → φ2;

An ∈ NM((M, v,w(m/n)) |= φ1(m)), if φ = ∀mφ(m).

Proposition 4 NM is definable in M.

Proof Let φ(x) = ∃m(x = m). Then,

NM = {a ∈ M : M |= ∃m(x/a = m)}. �

Remark L+ is different from L. Robinson’s overspill lemma

holds in L and does not in L+. �

Theorem 3 For any M-recursive function f : (NM)i ×
M j → M, there are recursive functions g1, . . . , gk : (NM)i →
NM such that for any �m ∈ (NM)i and �a ∈ M j,

f (�m;�a) =
k∑

h=1

gh(�m)aih1
1 · · · aih j

j .

Proof We prove by induction on the recursiveness defini-

tion of f .

If f is elementary then the theorem holds for f .

Assume that f (�m;�a) = f1(�m; f2(�m;�a), �a)) and the theorem

holds for f1 and f2. Let

f1(�m; a, �a) =
∑

1�h�k gh(�m)aih1
1 · · ·aih j

j · aih ;

f2(�m;�a) =
∑

1�h′�k′ hh′(�m)aih′1
1 · · · a

ih′ j

j .
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Then,

f (�m;�a) =
∑

1�h�k

gh(�m)aih1

1 · · · aih j

j

⎛
⎜⎜⎜⎜⎜⎜⎝

∑

1�h′�k′
hh′(�m)a jh′1

1 · · · a
jh′ j
j

⎞
⎟⎟⎟⎟⎟⎟⎠

ih

=
∑

1�h�k

∑

1�h′′�k′′
gh(�m)hh′′(�m)aih1+ih′′1

1 · · · aih j+ jh′′ j

j

=
∑

1�h′′′�k′′′
g′h′′′ (�m)a j1h′′′

1 · · ·a jjh′′′
j ,

where
⎛
⎜⎜⎜⎜⎜⎜⎝

∑

1�h′�k′
hh′(�m)a jh′1

1 · · · a
jh′ j

j

⎞
⎟⎟⎟⎟⎟⎟⎠

ih

=
∑

1�h′′�k′′
hh′′(�m)a j1h′′

1 · · · a jjh′′
j ,

and for each h′′′ � k′′′, g′h′′′ (�m) is recursive,.

Assume that f is defined by the natural recursion and f1, f2;

and the proposition holds for f1 and f2. Let

f1(�m;�a) =
∑

1�h�k gh(�m)ai1h

1 · · · aijh

j ;

f2(�m; a, �a) =
∑

1�h′�k′ hh(�m)a j1h′
1 · · · a jjh

j · a jh′ .

Then, by the induction on m,

f (0M, �m;�a) =
∑

1�h�k

gh(�m)ai1h
1 · · · aijh

j ;

f (m +M 1M, �m;�a)

=
∑

1�h′�k′ hh′(�m)a j1h′
1 · · · a

jjh′
j · ( f (m, �m;�a)) jh′

=
∑

1�h′�k′ hh′(�m)a j1h′
1 · · · a

jjh′
j ·

(∑

1�h′′�k′′ hh′′ (�m)a j1h′′
1 · · · a jjh′′

j

) jh′

=
∑

1�h′�k′
∑

1�h′′′�k′′′ hh′(�m)hh′′′(�m)a j1h′+ j1h′′′
1 · · · a jjh′+ j jh′′′

j

=
∑

1�h(4)�k(4) g′
h(4) (�m)a

j1h(4)

1 · · · a jjh(4)

j

is a polynomial, where by the induction assumption,

( f (m, �m;�a)) jh′ =
∑

1�h′′�k′′
hh′′ (�m)a j1h′′

1 · · ·a jjh′′
j ,

and hh′′ (�m) and g′
h(4) (�m) are recursive.

Assume that f is defined by the minimalization operator

and f1, and the proposition holds for f1. Let

f1(m, �m;�a) =
∑

1�h′�k′
hh(�m)a j1h′

1 · · ·a jjh

j .

Then,

f (�m;�a) = μm( f1(m, �m;�a) = 0M)

=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μm( f1(m, �m;�n) = 0M), if �a = �n for some

�n ∈ (NM) j;

undefined, otherwise.

Because for any �m ∈ (NM)i and �a ∈ M j, f (�m;�a) =
∑k

h=1 gh(�m)aih1

1 · · · aih j

j , we have

f (�m;�a) ∈ NM iff �a ∈ (NM)i. �

Corollary 3 λa, b : M. a�M b =

⎧
⎪⎪⎨
⎪⎪⎩

a −M b if b �M a

0M otherwise
is not

M-recursive, where

a −M b = c iff b +M c = a. �

Corollary 4 For any M-recursive function f (�m;�a),

range( f (�m;�a)) ∩ NM = range( f (�m; �m′)). �

Definition 3 A set A ⊆ M is M-recursively enumerable if

there is an M-recursive function f (�m;�a) such that

range( f (�m;�a)) = A.

Corollary 5 For any set A ⊆ NM, A is M-recursively enu-

merable if and only if A is recursively enumerable. �

Corollary 6 For any nonstandard number a ∈ M and any

subset A ⊆ [a]M = {a +M n : n ∈ NM}, A is M-recursively

enumerable if and only if there is a recursively enumerable

set B ⊆ NM such that B + a = {n +M a : n ∈ B} = A. �

Theorem 4 For any M-recursive function f (�m;�a), {(�m;�a; b) :

f (�m;�a) = b} is ΣNM

1 -definable in M.

Proof For any �m ∈ (NM)i, b ∈ M and �a ∈ M j, we have

f (�m;�a) = b,

iff b =
k∑

h=1

gh(�m)aih1
1 · · · aih j

j ,

iff An1, . . . , nk

⎛
⎜⎜⎜⎜⎜⎜⎝

k∧

h=1

φh(�m, nh)⇒ b =
k∑

h=1

nhaih1

1 · · · aih j

j

⎞
⎟⎟⎟⎟⎟⎟⎠
,

iff M |= ∀n1, . . . , nk

( k∧

h=1

φh(�m, nh)→ y/b

=

k∑

h=1

nh(x1/a1)ih1 · · · (x j/a j)ih j

)

,

iff En1, . . . , nk

⎛
⎜⎜⎜⎜⎜⎜⎝

k∧

h=1

φh(�m, nh) ∧ b =
k∑

h=1

nhaih1

1 · · · aih j

j

⎞
⎟⎟⎟⎟⎟⎟⎠
,

iff M |= ∃n1, . . . , nk

( k∧

h=1

φh(�m, nh) ∧ y/b

=

k∑

h=1

nh(x1/a1)ih1 · · · (x j/a j)
ih j

)

. �

Corollary 7 For any M-recursive function f , there is a

quantifier-free formula φ(m, x1, . . . , xi, y) such that for any

a1, . . . , ai, b ∈ M,

f (a1, . . . , ai) = b iffM |= ∃mφ(m, x1/a1, . . . , xi/ai, y/b). �
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8 Conclusions

The classical recursion theory was generalized to the α-

recursion theory for admissible ordinals α, the β-recursion

theory, etc. However, the recursion theory has not been gen-

eralized to be on any nonstandard model of Peano arithmetic,

because a nonstandard model of Peano arithmetic is not well-

ordered.

The M-recursive functions are the recursive functions gen-

eralized to a structure (nonstandard model) M with substruc-

ture NM. Hence, strictly speaking, the M-recursive functions

are the (M,NM)-recursive functions, where the recursion and

the μ-operator are applied with respect to the elements in NM,

not with respect to any element in M.

We extend the logical language L of Peano arithmetic to

L+, where L+ has the variables for natural numbers and the

quantifier restrained to be on the standard part of M. With

the uniformity of the definability of M-recursive functions

with respect to nonstandard models M of Peano arithmetic,

we could prove that each specification φ[α]ψ is reducible to

some formula θ in L+ such that HL(PA) � φ[α]ψ if and only

if θ is provable in L+, and hence, Hoare logic is complete in

this semantics.
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