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Abstract In this paper, we study a method for isolated

handwritten or hand-printed character recognition using dy-

namic programming for matching the non-linear multi-

projection profiles that are produced from the Radon trans-

form. The idea is to use dynamic time warping (DTW) al-

gorithm to match corresponding pairs of the Radon features

for all possible projections. By using DTW, we can avoid

compressing feature matrix into a single vector which may

miss information. It can handle character images in different

shapes and sizes that are usually happened in natural hand-

writing in addition to difficulties such as multi-class simi-

larities, deformations and possible defects. Besides, a com-

prehensive study is made by taking a major set of state-of-

the-art shape descriptors over several character and numeral

datasets from different scripts such as Roman, Devanagari,

Oriya, Bangla and Japanese-Katakana including symbol. For

all scripts, the method shows a generic behaviour by provid-

ing optimal recognition rates but, with high computational

cost.

Keywords character recognition, the Radon features, dy-

namic programming, shape descriptors

1 Introduction

1.1 Context

With the advent of handwriting recognition technology since
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a few decades [1,2], applications are challenging. For exam-

ple, handwriting recognition principally entails optical char-

acter recognition (OCR) [3–7] is becoming an integral part

of document scanners that include applications such as postal

processing, script recognition, banking, security (signature

verification, for instance) and language identification.

Handwritten character recognition usually means to con-

vert or to translate human writing into the corresponding

computer (printed) character. In this domain, the major dif-

ficulties in character recognition can be summarised as fol-

lows.

• Structure similarities between the classes is the primary

difficulties; it usually refers to multi-class similarity. It

happens more in cursive nature of scripts like Devana-

gari and Bangla.

• Deformations can be from any range of shape variations

including geometric transformation such as translation,

rotation, scaling and even stretching.

• Defects yield imperfections due to printing, optics,

scanning, binarisation and poor segmentation.

To cope aforementioned difficulties, in handwriting recog-

nition, besides pre-processing, optimal or accurate feature se-

lection is an important issue [8]. Both structural and statisti-

cal features as well as their combination have been widely

used [9,10]. Structural features tend to vary since charac-

ters’ shapes vary widely. As a consequence, local structural

properties like intersection of lines, number of holes, con-

cave arcs, end points and junctions change time to time. In

those situations, statistical approaches [11] tolerate to a few

extent, with no substantial change in the global signatures.
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Therefore, the present work is inspired to use statistical fea-

ture to represent isolated handwritten characters, numerals as

well as symbols. In other words, it is more focussed on shape

descriptors and their performances for handwritten character

recognition.

Since there exists large variation in shapes and writing

styles, OCR systems (for unconstrained scripts in particu-

lar) do not provide optimal accuracy. Despite those circum-

stances, it is desirable to develop shape representation such

that it can be used for machine recognition [12–15]. To rep-

resent shape of the character, contour-based shape descrip-

tors have been widely used in comparison to region-based

ones. Fourier processing of the image is an example of using

contour information [16–19]. Besides, curvature approaches

[20–22] basically describe shapes in the scale space using the

maximum of the curvature feature vector by using boundary

contours. The similarity between shapes can be measured by

the distance between scale space representations. Further, the

shape context (SC) [23,24] is robust to small perturbations

while it does not guarantee scale-invariance. On the other

side, common methods on region-based shape descriptors are

based on moment theory [25] that includes geometric, Legen-

dre, Zernike moments (ZM) [26], as well as pseudo-Zernike

moments. Contour-based descriptors on the whole, are ap-

propriate for silhouette shapes since they cannot capture the

interior content as well as disconnected shapes or shapes with

holes. To represent internal structure of the shape, unlike in

Fourier descriptors (FD), Zhang and Lu [27] have proposed a

region-based generic Fourier descriptor (GFD) that avoids the

problem of rotation in the Fourier spectra. Recently, the use

of polar shape descriptors has been mentioned in Ref. [28].

Overall, in almost all global signal-based descriptors [29], to

satisfy common geometric invariance properties, the use of

normalisation process introduces errors as well as they are

sensitive to noise, eventually affecting the whole recognition

process.

Before considering shape analysis in character recognition,

the following are the worth-considering issues:

• Plug and play A single and integrated open source tool-

set will be a global choice since it can be reused as plug

and play [19] as a generic method. In character recog-

nition, not a single OCR engine can handle different

scripts – which is in fact necessary to reduce the cost.

• Non-parametric method The very common implemen-

tation problem is the inability to assume the shape distri-

bution of the patterns in the feature space. Consequently,

non-parametric methods are much more practical.

Besides, feature selection must be sufficiently enriched

with important information. To represent the pattern, global

shape representation is a premier choice due to its simplicity

as well as it sometimes does not require extra pre-processing

and segmentation process as in local pattern representation.

To accomplish recognition, matching is another concern.

Feature selection corresponds to the matching techniques.

For instance, fixed size pattern representation as in global

signal-based shape descriptors [26,27,30], provide immediate

matching while dynamic time warping (DTW) for instance,

has been popularly used for non-linear sequences having po-

tentially different lengths.

1.2 Outline of the method

In those respects, the paper presents an idea to represent an

isolated character via multi-projection profiles with the help

of the Radon transform [31] and recognition is made with the

help of DTW [32,33]. Thanks to DTW, it avoids compressing

pattern representation into a single vector e.g., [30], which

may miss important information. The concept of the work is

originally derived for off-line signature verification [34,35].

This concept later extended to solve several different pattern

recognition problems including character [36,37].

The Radon transform is essentially a set of parametrised

histograms or features. Therefore, unlike in previous works

[34–37], the method addresses the optimal selection of num-

ber of bins rather than using just the straightforward discrete

Radon transform. Besides, the paper is the thorough exten-

sion of the work [38] where we have attested the possibility of

doing character recognition, i.e., the method takes advantages

of the Radon transform and DTW, and validates over several

different numeral, character and symbol datasets from differ-

ent scripts such as Roman, Devanagari, Bangla, Oriya and

Japanese-Katakana. Our study suggests that the method can

be compared with state-of-the-art shape descriptors in terms

of recognition rate but on the other hand, it possesses high

computational cost.

1.3 Organisation of the paper

The rest of the paper is organised as follows. The proposed

method is explained in Section 2, which mainly includes

character representation and matching. Section 3 provides a

series of tests. It includes a comprehensive study of a set of

major state-of-the-art of shape descriptors and thorough anal-

ysis with respect to the difficulties associated with sample im-

ages. The paper is concluded in Section 4.
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2 Method

2.1 Pre-processing

The preliminary task is to do pre-processing since characters

tend to be highly degraded as they are taken from newspa-

per, postal cards etc. under varying different lighting con-

ditions, for instance. It mainly considers stroke synthesis,

thresholding, gray-scale to binary conversion; noise removal,

foreground textual information extraction by removing back-

ground [39]. However, this introduces many ad-hoc tech-

niques. This work does not aim to develop pre-processing

technique.

In this work, isolated character images are simply con-

verted to binary. Otsu method has been found to be promi-

nent to handle gray-scale images [40]. However, it does not

suit for all types of sample images used in the paper. In such a

case, while converting, an average gray-scale pixel intensity

value (in the range of 70–100) is used to make a threshold that

goes differently from one dataset to another. Figure 1 shows

a few examples of it. In this illustration, binary conversion is

followed by contour detection and thinning using basic image

processing tools.

Fig. 1 An example of binarisation. In every sample image, conventional
gray-thresholding is shown in the first column while use of average gray-
scale intensity value is shown in the second column

2.2 Feature selection

2.2.1 The Radon transform

Besides pre-processing, recognition system is based on how

characters are represented [8]. In this work, the Radon trans-

form is used to represent patterns [31] to select several differ-

ent number of projections.

Let ℘(x, y) in R2 be an original binary pattern, defined in

the domain χ:

℘(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

1, if ℘(x, y) ∈ χ,
0, otherwise.

(1)

As shown in Fig. 2, a collection of projections of the pat-

tern at different angles refers to the Radon transform [31].

In other words, the Radon transform for any image pattern

℘(x, y) and for a given set of angles can be thought of as

computing the projection of all non-zero points. The result-

ing projection is the sum of the non-zero points for any pat-

tern ℘(x, y) in each direction, which eventually form a matrix.

Therefore the integral of ℘ over a line L(ρ, θ) in R2 repre-

sented asL = {(x, y) ∈ R2 : x cos θ+y sin θ = ρ}, can formally

be expressed as,

R(ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
℘(x, y)δ(x cos θ + y sin θ − ρ)dxdy, (2)

where δ(.) is the Dirac delta function,

δ(x) =

⎧
⎪⎪⎨
⎪⎪⎩

1, if x = 0,

0, otherwise.

Also, θ ∈ [0,π] and ρ ∈ [−∞,∞]. For the Radon transform,

Li be in normal form (ρi, θi). For all θi, the Radon transform

now can be described as the length of intersections of all lines

Li. Note that the range of ρ i.e., −ρmin < ρ � ρmax is entirely

based on the size of pattern.

2.2.2 Features set

As said before, the Radon transform is essentially a set of

parametrised histograms or features since projecting angle

extends over [0,π]. Each bin yields a projection profile i.e.,

the Radon histogram. As in Fig. 2, we use projection profiles

from the Radon transform. In generic form, a complete set of

the Radon features R(ρ, b) can be expressed as,

F = {Fb}b=1,2,...,B, (3)

where B is the total number of bins and is computed by con-

sidering the projection angular step. A single Radon feature

at bin b is Fb is the collection of histograms at every discrete

projection angle.

To make the Radon transform invariant to affine transfor-

mations, we consider the following properties.

1) Translation We use image centroid (xc, yc) such that

translation vector is �u = (xc, yc): R(ρ − xc cos θ −
yc sin θ, θ). Therefore, translation of f results in the shift

of its transform in ρ by a distance equal to the projection

of translation vector of the line L.
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Fig. 2 An illustration of the projection profiles from Radon transform. (a) A sample; (b) the complete Radon transform features; (c) several
possible projection profiles over [0,π] the Radon histograms or features

2) Scaling Features are normalised into [0, 1] at every

projecting angle.

3) Rotation If angle of rotation is α, then Rα(ρ, θ) =

R(ρ, θ + α). This simply implies a circular shift of the

features from where it is rotated.

2.3 Feature matching

As explained in Section 2, we have a collection of set of fea-

tures F in a specified number of bins B, to represent any pat-

tern ℘. Now, a feature at bin b can be represented as,

F = { fl}l=1,2,...,L, (4)

where l ∈ ρ.
Given two patterns: query ℘q and database ℘d, matching

can be obtained between corresponding features fromF q and

F d. The Radon transform generates different ρ sizes depend-

ing on the image size. In order to be able to adapt to these

differences in size, DTW algorithm is employed. In what fol-

lows, matching computation between two features will be ex-

plained first and then derived the matching score between the

whole patterns.

2.3.1 DTW as a non-linear similarity measure

DTW allows us to find the dissimilarity between two non-

linear sequences potentially having different lengths [32,33].

Let us consider two Radon features at bin b, representing

Fq = { f q
k }k=1,2,...,K ,

(5)
Fd = { f d

l }l=1,2,...,L,

respectively for ℘q and ℘d patterns. At first, a matrix M of

size K × L is constructed. Then for each element in matrix

M, local distance metric δ(k, l) between the events ek and el is

computed, and δ(k, l) can be expressed as, δ(k, l) = (ek − el)2,

where ek = f q
k and el = f d

l . Let D(k, l) be the global distance

up to (k, l),

D(k, l) = min

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D(k − 1, l − 1),

D(k − 1, l),

D(k, l − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ δ(k, l), (6)

with an initial condition D(1, 1) = δ(1, 1) such that it allows

warping path going diagonally from starting node (1, 1) to

end (K, L). The main aim is to find the path for which the least

cost is associated. The warping path therefore provides the

difference cost between the compared sequences. Formally,

the warping path is,

W = {wt}t=1,2,...,T , (7)

where max(k, l) � T < k + l − 1 and tth element of W is

w(k, l)t ∈ [1 : K] × [1 : L] for t ∈ [1 : T ]. The optimised

warping pathW satisfies the following three conditions.

a) Boundary condition: w1 = (1, 1) and wT = (K, L),

b) Monotonicity condition: k1 � k2 � · · · � kK and

l1 � l2 � · · · � lL,

c) Continuity condition: wt+1 −wt ∈ {(1, 1)(0, 1), (1, 0)} for

t ∈ [1 : T − 1].

a) conveys that the path starts from (1, 1) to (K, L), align-

ing all elements to each other. b) forces the path advances one

step at a time. c) restricts allowable steps in the warping path

to adjacent cells, never be back. Note that c) implies b).

We then define the global distance between Fq
k and Fd

l as,
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Δ(Fq,Fd) =
D(K, L)

T
. (8)

The last element of the K × L matrix, normalised by the

T provides the DTW-distance between two sequences where

T is the number of discrete warping steps along the diagonal

DTW-matrix.

Until now, we provide a global concept of using DTW dis-

tance for non-linear sequence alignment. In order to provide

faster matching, we have used local constraint on time warp-

ing proposed in [41]. We have w(k, l)t such that l−r � k � l+r

where r is a term defining a reach i.e., allowed range of warp-

ing for a given event in a sequence. With r, upper and lower

bounding measures can be expressed as,

UpperboundUk = max( f q
k−r : f q

k+r),

LowerboundLk = min( f q
k−r : f q

k+r). (9)

Therefore, for all k, an obvious property of U and L is

Uk � f q
k � Lk. With this, we can define a lower bounding

measure for DTW:

LB_Keogh(Fq,Fd) =

√√√√√√√√√ K∑

k=1

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

( f d
k − Uk)2, if f d

k > Uk;

( f d
k − Lk)2, if f d

k < Lk;

0, otherwise.

(10)

Since this provides a quick introduction of local constraint

for lower bounding measure, we refer to Ref. [41] for more

detail.

2.3.2 Matching score and time complexity

Aggregating distances between the radon features in all cor-

responding bins b ∈ B between ℘q and ℘d yields a global

pattern matching score,

Dist.(℘q, ℘d) =
∑

b∈B

Δ(Fq
b,F

d
b). (11)

Overall, the Radon feature alignment goes one-to-one ba-

sis since we assume that test images are not rotated and thus

B is the maximum possible number of matchings, i.e., time

complexity can be expressed as O(B). The overall execution

time however, depends on how many bins are taken. Its value

determines the number of matchings associated with it. As a

consequence, it advances linearly with the number of patterns

in the database.

2.3.3 Illustration

Figure 3 shows the matching score matrix for a few sample

images from a particular known class of Devanagari numeral

“0” with different shapes and sizes. This illustration aims to

demonstrate how far DTW absorbs the varying the Radon

features (i.e., histograms) sizes resulting from image signal

variations due to different sizes. To compute distance between

them, the discretised Radon transform is used. In this illustra-

tion, the small difference in matching score between the two

samples is mostly due to shape variation. Further, it is im-

portant to notice that the method performs well for possible

shape variations due to deformations and distortions in ad-

dition to the size difference. Therefore, it is well-suited for

natural handwriting (Section 1).

2.4 Character recognition

The Dist.(,) of course, conveys how similar/dissimilar a

database character is with respect to a query. In order for simi-

larity to be ranging from 0 to 1, for any query q, we normalise

Dist.(℘q, ℘d), d ∈ {1, 2, . . . ,DB} with

Dist.(, ) =
Dist.(, ) − Dist.min .(, )

Dist.max .(, ) − Dist.min .(, )
.

We then express similarity between the two characters,

Similarity(℘q, ℘d) = 1 − Dist.(℘q, ℘d). (12)

For recognition, the closest candidate from the database

character having the highest similarity with respect to

query, is said to be the recognised character, i.e.,

argmax
d∈1,2,...,DB

{Similarty(℘q, ℘d)}.

3 Experiments

3.1 Datasets

Several different datasets from different scripts including

symbol2) are tested in order to provide a wide range of natural

writing styles. They are grouped into three categories.

1) Numeral datasets: Roman, Devanagari, Oriya and

Bangla [42,43],

2) character datasets: Roman, Japanese-Katakana and

Bangla, and

3) symbol dataset.

Figure 4 shows a sample for each class for all categories.

Numeral category consists of ten classes for all scripts. In

case of character datasets, number of classes vary from

one script to another: 26 classes for Roman, 47 classes for

2) ISI character datasets for Indian scripts, CVPR unit, India. ETL3 and ETL5 datasets for Roman and Japanese-Katakana scripts, AIST, Japan
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Fig. 3 Matching scores between sample images (same class) from Devanagari numeral dataset. Matching score matrix shows the behaviour
of the method when shape and size vary. (a) Sample images with shape and size variation; (b) matching score @ 10−2

Fig. 4 Sample images from several different scripts for both numeral and character categories including symbol dataset. (a) Numeral; (b)
character; (c) symbol
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Japanese-Katakana and 50 classes for Bangla. Symbol cate-

gory consists of 11 classes.

3.2 State-of-the-art shape descriptors

As said in Section 1, to validate the method, a comprehensive

study is made by taking a set of major global signal-based

shape descriptors as benchmarking methods such as:

1) R−signature [30],

2) GFD [27],

3) SC [23],

4) ZM 26.

For those descriptors, it is important to fit the best param-

eters. For R−signature, the discrete Radon transform is used,

i.e., range of projecting angle is [0,π] by default. In case of

GFD, the parameters are tuned as, radial (4:12) and angular

(6:20) frequencies to get the best combinations with the pro-

vided range. For SC, the test follows [23], i.e., 100 number of

sample points are used. In case of ZM, 36 zernike functions

of order less than or equal to seven has been used.

In the proposed method, a series of tests will be made for

all possible projection angle–range (Section 2) over [0,π] so

that different number of bins are selected starting from the

180 to two Radon features. To simplify, we will call it as

D−Radon. Since the proposed method and R−signature are

basically based on the Radon transform theory to represent

patterns, let us keep on eyes to realise how it has been ad-

vanced i.e., the recognition performance gap that can exist

between them.

3.3 Evaluation protocol

While experimenting, every test sample is matched with

training candidates and the closest one is reported. As de-

scribed in Section 4, the closest candidate corresponds to the

labelled class, which we call “character recognition”. For-

mally, recognition rate can be defined as

recognitionrate =
c
Q
, (13)

where c is the number of correctly recognised candidates and

Q is the total number of test candidates.

To evaluate the performance of the methods,K−fold cross

validation (CV) has been implemented unlike traditional di-

chotomous classification. In K−fold CV, the original sample

for every class is randomly partitioned into K sub-samples.

Of theK sub-samples, a single sub-sample is used for valida-

tion, and the remainingK − 1 sub-samples are used for train-

ing. This process is then repeated for K folds, with each of

the K sub-samples used exactly once. Finally, a single value

results from averaging all. The opposite process holds for in-

verseK−fold CV, i.e.,K−1 sub-samples are used for testing.

While experimenting, tests move from normalK−fold CV

to inverse. This means that every test goes from K − 1 to

K − 4 training sub-samples when K = 5. The aim of the

use of such a series of rigorous tests is to avoid the biasing of

the samples that can be possible in conventional dichotomous

dataset classification.

3.4 Results and analysis

3.4.1 Results outline

In this section, we aim to discuss about how results will be

presented.

Table 1 shows the average recognition rates for all datasets

(category-wise) using K−fold CV, where one can notice the

following.

1) In all categories, comparison is first made among the

benchmarking methods (from the state-of-the-art shape

descriptors) before confronted “the best” performer

with D−Radon for several different number of bins. To

make easy comparison, the compared results are high-

lighted.

2) For benchmarking methods, the best performer is high-

lighted first. Then in case of the proposed method, the

highlighted numeric figures from different number of

bins will then be identified as optimal selection of B

when also considering computational complexity.

3) The bold-faced numeric figure is the best score from

both worlds.

Further, in order to attest the significance of the perfor-

mance differences between D−Radon at every separate and

benchmarking methods, we have provided their probability

(p) score using 2-tailed t-test, assuming the null hypothesis

in Table 2 where the level of required significance is 0.05.

We note the following:

1) if p = 0.05, the null hypothesis were correct (i.e., the

methods do not differ);

2) if p < 0.05, the methods are said to be statistically sig-

nificant;

3) if p < 0.001, the methods are statistically highly signif-

icant.

Having this idea, in Table 2, we will have an opportu-

nity to realise the statistical performance differences made

by D−Radon over every benchmarking method. These dif-

ferences are highlighted at every pre-defined value of B.

On the whole, we are not limited just on the straightfor-

ward recognition rates and their comparison but also pro-
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viding the statistical significance of their performance differ-

ences.

3.4.2 Results

Based on the framework presented in the earlier section,

dataset category-wise results (reported in Tables 1 and 2) will

be discussed.

• Numeral datasets

In Roman dataset, all shape descriptors provide encourag-

ing recognition performances, having almost similar results

(Table 1). The significant differences between them exist in

case of Devanagari and Bangla datasets (Table 2). SC yields

consistent recognition rates for all while others do not fol-

low such a characteristic. GFD however, comes closer to SC.

D−Radon is now confronted with SC and sometimes with

GFD. In this category, there exists no surprising differences

between them, i.e., a marginal difference of 1%–2%. How-

ever, we note that the number of bins B = 90 for D−Radon,

provides better results and B = 60 can also be compared with.

While keeping a closer look at Table 2,D−Radon provides

that the differences are statistically significant with

• R−signature upto B = 36, 9, 9, and 18 respectively for

Roman, Oriya, Devanagari and Bangla datasets;

• ZM upto B = 2 for all datasets except Roman, i.e.,

B = 36;

• GFD upto B = 60 for all datasets except Oriya, i.e.,

B = 90;

• SC at B = 180 for all datasets except Bangla where no

decision can be made.

Table 1 Average recognition rate in % using K−fold cross validation (K = 5)

Benchmarking methods D−Radon for different values of B

Dataset Training R−sign. ZM GFD SC 180 90 60 36 18 09 02

Roman K − 1 78 83 97 98 100 100 100 88 79 76 71

K − 2 75 78 95 97 100 100 99 84 75 74 68

K − 3 70 74 94 96 98 96 95 79 74 71 66

K − 4 66 67 91 96 98 96 94 77 74 68 67

Oriya K − 1 58 44 98 98 100 98 92 81 67 60 51

K − 4 52 38 96 96 98 97 94 77 64 55 48

K − 3 46 43 85 93 98 96 88 74 62 50 47

Numeral K − 4 43 32 72 92 97 92 90 71 68 49 45

datasets Devanagari K − 1 55 40 86 96 99 97 89 79 71 62 52

K − 2 54 40 84 94 98 96 87 75 68 59 48

K − 3 50 38 81 93 98 94 84 74 66 58 47

K − 4 46 34 69 87 96 95 83 73 65 55 46

Bangla K − 1 48 47 73 95 95 95 84 72 60 51 41

K − 2 48 44 69 94 94 92 79 68 55 48 38

K − 3 46 43 68 91 93 86 76 61 54 47 37

K − 4 44 40 64 89 92 81 75 59 53 45 36

Roman K − 1 80 77 96 99 100 100 100 88 83 80 71

K − 2 77 74 94 98 99 99 96 86 81 79 70

K − 3 75 67 93 97 98 97 94 85 77 75 67

K − 4 69 58 91 98 98 96 93 83 77 74 68

Katakana K − 1 69 42 88 91 99 97 88 82 77 71 62

Character K − 2 66 37 85 87 97 96 86 80 75 66 62

datasets K − 3 63 34 84 84 96 94 85 77 75 66 60

K − 4 59 28 78 81 96 93 84 76 72 64 60

Bangla K − 1 22 11 23 55 77 73 69 58 55 45 33

K − 2 18 09 22 49 74 71 66 58 54 43 29

K − 3 14 06 18 46 72 70 65 57 51 42 27

K − 4 11 06 16 43 71 70 63 55 50 39 25

Symbol K − 1 81 82 85 90 100 100 99 91 82 80 76

Symbol K − 2 78 77 82 88 100 100 98 89 81 78 74

dataset K − 3 74 73 75 82 100 99 97 85 78 77 73

K − 4 70 69 72 76 100 99 97 85 78 76 72
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Table 2 Probability value (p) using t-test, considering 5−fold cross validation

Benchmarking D−Radon for different values of B

Dataset methods 180 90 60 36 18 09 02

Roman Rsign. 0.001 0 0.000 6 0.000 3 0.000 2 0.168 2 1.000 0 0.109 7

ZM 0.003 9 0.002 7 0.001 8 0.012 0 1.000 0 0.143 8 0.065 0

GFD 0.011 4 0.015 3 0.022 1 0.002 9 0.000 1 0.000 0 0.000 0

SC 0.002 8 0.194 1 0.824 0 0.005 2 0.000 0 0.000 3 0.000 0

Oriya R−sign. 0.000 2 0.000 0 0.000 2 0.000 0 0.013 1 0.006 0 0.4918

ZM 0.000 1 0.000 0 0.000 4 0.000 3 0.005 5 0.009 9 0.021 9

GFD 0.023 1 0.044 0 0.579 7 0.059 1 0.040 3 0.003 2 0.003 8

Numeral SC 0.027 2 0.252 2 0.035 7 0.000 1 0.000 5 0.000 0 0.000 0

datasets Devanagari R−sign. 0.000 0 0.000 1 0.000 2 0.000 3 0.000 5 0.003 4 0.091 7

ZM 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.002 1

GFD 0.015 5 0.021 7 0.127 6 0.206 2 0.021 2 0.003 4 0.001 7

SC 0.028 1 0.172 7 0.007 2 0.000 6 0.000 1 0.000 0 0.000 0

Bangla R−sign. 0.000 0 0.000 1 0.000 3 0.003 4 0.003 6 0.141 1 0.000 9

ZM 0.000 0 0.000 1 0.000 0 0.001 1 0.000 2 0.000 4 0.001 6

GFD 0.000 2 0.000 7 0.000 8 0.101 8 0.000 3 0.000 0 0.000 0

SC 0.194 1 0.121 5 0.000 7 0.000 5 0.000 0 0.000 0 0.000 0

Roman R−sign. 0.001 2 0.000 6 0.000 4 0.004 3 0.048 1 0.235 1 0.040 1

ZM 0.004 3 0.003 2 0.002 8 0.014 4 0.038 1 0.067 8 1.000 0

GFD 0.003 6 0.000 5 0.037 3 0.000 0 0.000 2 0.000 1 0.000 0

SC 0.051 6 1.000 0.169 6 0.000 7 0.000 5 0.000 4 0.000 0

Katakana R−sign. 0.000 2 0.000 1 0.000 5 0.000 4 0.003 0 0.095 7 0.143 8

Character ZM 0.000 1 0.000 0 0.000 1 0.000 1 0.000 2 0.000 3 0.001 8

datasets GFD 0.003 6 0.003 3 0.236 1 0.018 9 0.003 6 0.000 5 0.000 9

SC 0.004 8 0.005 1 1.000 0 0.003 3 0.002 9 0.000 2 0.000 6

Bangla R−sign. 0.000 0 0.000 0 0.000 0 0.000 1 0.000 1 0.000 2 0.000 4

ZM 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0

GFD 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 8

SC 0.000 2 0.001 2 0.000 1 0.022 5 0.065 2 0.023 9 0.000 1

Symbol R−sign. 0.002 0 0.001 5 0.001 5 0.021 7 0.072 7 0.295 2 0.235 2

Symbol ZM 0.002 9 0.002 4 0.002 3 0.003 3 0.092 9 0.287 1 0.495 0

dataset GFD 0.005 6 0.004 6 0.004 8 0.010 7 0.579 0 0.756 9 0.121 0

SC 0.014 8 0.012 8 0.015 3 0.161 5 0.155 3 0.079 6 0.023 3

• Character datasets

In Table 1, surprisingly, R−signature provides higher

recognition rates in Roman dataset compared to itself in the

previous Numeral category. SC, GFD and ZM show simi-

lar behaviour as before. The similar characteristics occur in

Japanese-Katakana dataset. But in case of Bangla, GFD, ZM

and R−signature do not hold the same. Overall, SC provides

better recognition performance. In contrast to D−Radon, SC

is lagging by approximately 1%, 5% and 22% respectively in

Roman, Japanese-Katakana and Bangla datasets. As before,

60 number of bins can be taken for comparison for Roman

and Japanese-Katakana datasets while 18, for Bangla dataset.

In Table 2,D−Radon provides that the differences are sta-

tistically significant with

• R−signature upto B = 18, 18 and 2 respectively for Ro-

man, Japanese-Katakana and Bangla datasets;

• ZM upto B = 18, 2 and 2 for Roman dataset and B = 2

for both Japanese-Katakana and Bangla datasets;

• GFD upto B = 60, 90 and 2 respectively for Roman,

Katakana and Bangla datasets;

• SC at B = 180, 90 and 36 respectively for Roman,

Japanese-Katakana and Bangla datasets.

• Symbol dataset

In this test, R−signature comes closer to all shape descrip-

tors unlike before (Table 1). As in previous experiments, SC

provides higher recognition rate. Compared toD−radon, it is

less than by more than 10%. Overall,D−Radon yields 100%

recognition rate for B = 180 and B = 90. It is important to

notice that 36 number of bins is sufficient to make compari-

son with SC.

In Table 2,D−Radon provides that the differences are sta-

tistically significant with
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• R−signature, ZM and GFD upto B = 36;

• SC upto B = 60.

In all datasets, D−Radon supersedes all methods, while

providing small differences with SC, “the best” performer

from state-of-the-art of shape descriptors. The notable differ-

ence is found to be exist in case of Bangla character and sym-

bol datasets. GFD is following behind the first two. ZM pro-

vides substantial difference in recognition rate against GFD,

SC and D−Radon. While, R−signature performs far behind

all with the difference fairly in large amount.

Another remarkable point is thatD−Radon provides com-

petitive recognition rates even when the decrement of number

of bins upto 60. 36 number of bins can also comparatively be

treated with the state-of-the-art of shape descriptors in a few

datasets such as Roman and Symbol. Furthermore, recogni-

tion rates ranging from normalK−fold CV to inverse, do not

provide a big difference. This means that the method is found

to be almost stable even when number of training samples

is reduced significantly. To see the stability over the range

of K−fold CV to inverse, let us have a look into D−Radon

where B = 180 (and sometimes 90), there exists very small

difference between them, for all tests except for only Bangla

character dataset.

3.4.3 Analysis

Considering the datasets (Section 1) used, methods (Section

2) are analysed in response to the evaluation protocol (Sec-

tion 3) based on experimental results in Table 1 (Section 4).

While analysing, recognition performance is taken into ac-

count that consists of two major issues:

1) How accurate the system is?

2) How long it takes to process it?

In what follows, both are discussed.

• Accuracy

The accuracy of the recognition engine reflects the dis-

crimination power of the shape descriptor as well as the num-

ber of training samples used. Within this framework, a few

common difficulties will be discussed. As mentioned in the

very beginning of Section 1, let us highlight a few major chal-

lenges such as

1) multi-class similarity;

2) symmetric shape similarity;

3) missing parts;

4) stroke length or size variation.

Multi-class similarity is one of the major problems in char-

acter recognition as shown in Fig. 5. It happens more in

Bangla character dataset. In such a dataset, the recognition

rate determines the actual discrimination power difference

that exists between the shape descriptors since one cannot

judge the superiority by taking a simple dataset like Roman.

In addition, shape descriptors with rotation invariant proper-

ties have been affected from those samples as shown in Fig.

5 (b). This means that symmetric shape similarity due to ro-

tation, translation and even scaling affects the recognition en-

gine. Such samples are found in Japanese-Katakana charac-

ter dataset, Oriya and Devanagari numeral dataset as well as

symbol dataset. In symbol dataset, symmetric shape similar-

ity severely affects the existing shape descriptors even though

sample images are quite simple. Similarly, missing parts in-

troduce shape similarity. Besides, sample images with long

ascender and/or descender part of the stroke affects SC com-

pared to GFD. Due to these circumstances, existing methods

require more training samples in order to get varieties of writ-

ing in the labelled known classes. This has been attested in

experimental results (Table 1) where substantial decrement

in recognition rate has been observed when training samples

are reduced from K − 1 to K − 4, where K = 5. Despite,

D−Radon provides fairly better in those situations. Further-

more, size variation does not have significant affect as it em-

ploys DTW for radon features alignment.

Fig. 5 Difficulties in character recognition — a few examples. (a) Multi–
class similarity; (b) symmetric shapes

• Computational cost

Another important issue is computational cost. In

D−Radon, running time complexity is high since it uses clas-

sical DTW for matching. As far as concern to computational

cost, the observed average running time for feature selection

and matching for a single pair, for all methods is provided in
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Table 3. All tests have been made using MATLAB 7.8.0 in

Linux platform. InD−Radon, running time is largely depend

on how big the image is and the number of bins used to repre-

sent it. An optimal selection of number of bins would be the

premier choice to reduce the delay.

Table 3 Average running time/s

Method Time

1) R-signature [30] 01

2) ZM [26] 04

3) GFD [27] 03

4) Shape Context [23] 16

5)D−Radon 36

On the whole,D−Radon provides optimal recognition per-

formance for all datasets except Bangla character dataset.

However, in Bangla character dataset, it provides huge differ-

ence with SC — “the best” performer from state-of-the-art so

that it makes easier to convey its discriminant power. But on

the other hand, its recognition performance does not compete

with related OCR engines because they are script dependent.

But the method is still competitive by providing its robustness

to deformations, shape and size variations including possible

defects. To attest it, another relevant experimental test is re-

ported in the following.

3.5 Extensions

The previously used datasets do not really provide a com-

plete framework where the method can show its robustness

on different sizes in addition to deformed and distorted mod-

els. Therefore, a new Devanagari numeral dataset has been

created as shown in Fig. 6, where for each sample, there are

five different scaled images (random scaling) and five differ-

ent deformed and distorted images by just randomly taking

out/keeping in black pixels from/in the images.

Fig. 6 An example of the new dataset for a single Devanagari numeral
sample. It illustrates scaling and deformation plus distortion. The first five
samples are scaled images and remaining five are deformed and distorted
sample images

As before, all shape descriptors are tested using K−fold

CV and average recognition rates are provided in Table 4 and

the differences between the methods (in terms of probability

value by using t-test) are provided in Table 5.

Table 4 Average recognition rate in % using K−fold cross validation (K = 5)

Benchmarking methods D−Radon for different values of B

Numeral dataset Training R−sign. ZM GFD SC 180 90 60 36 18 09 02

Devanagari K − 1 52 46 81 69 97 96 91 84 74 66 56

K − 2 49 45 79 68 95 94 88 81 72 65 52

K − 3 48 42 77 66 94 92 86 78 69 64 50

K − 4 46 39 74 64 93 92 86 77 68 62 48

Table 5 Probability value (p) using t-test, considering 5−fold cross validation

Benchmarking D−Radon for different values of B

Numeral dataset methods 180 90 60 36 18 09 02

Devanagari R−sign. 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.010 4

ZM 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 2

GFD 0.000 1 0.000 2 0.000 7 0.018 7 0.000 4 0.000 2 0.000 0

SC 0.000 0 0.000 0 0.000 0 0.000 2 0.002 2 0.000 3 0.000 2

Unlike in previous tests, GFD shows better results among

the state-of-the-art. In contrast, D−Radon provides signifi-

cant difference with it. Depending on the pattern complex-

ity, state-of-the-art of shape descriptors’ performances vary:

sometimes SC (Table 1) and sometimes GFD (Table 4). This

means that one cannot receive the consistent recognition per-

formance from the existing shape descriptors. The huge dif-

ference that exists with SC between Table 1 and Table 4 is

due to two different major factors, i.e., it is not

1) scale invariant;

2) robust to deformations and distortions.

The later factor affects all shape descriptors. For both,

D−Radon performs better and provides huge difference with

the existing ones. In Table 5,D−Radon provides that the dif-

ferences are statistically significant with

1) R−signature, ZM upto B = 02;

2) GFD, upto B = 36;

3) SC upto B = 18.
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4 Conclusion and future perspectives

In this paper, we have studied a method for character recog-

nition based on the combination of the Radon features i.e.,

multi-projection profiles for representing the pattern and dy-

namic programming for non-linear profiles similarity match-

ing. We have found that it can be compared with the state-

of-the-art of shape descriptors for isolated off-line charac-

ter recognition that are taken several different publicly avail-

able datasets. Besides, the trade-off between the selection of

number of bins or profiles and running time has been clearly

shown, but it has not been proved yet.

The method can generally be applied — it provides higher

recognition rates for all scripts — since not a single OCR en-

gine can do it. Computing the Radon transform is very simple

and immediate. But the execution time for matching is high

when using the standard DTW algorithm. Therefore, our fur-

ther work will be summarised in the following:

1) finding the dynamic trade-off between the number of

bins and the execution time and tune the parameters ac-

cordingly;

2) reducing the execution time either by applying the ad-

vanced DTW or simply using graphical processing units

(GPU) and similarly, parallel computing;

3) establishing comparison with the OCR engines of all

corresponding scripts.

Along with this, further test on several different publicly

available datasets such as NIST, is still our concern.
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