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Abstract Compressed sensing (CS) enables people to ac-

quire the compressed measurements directly and recover

sparse or compressible signals faithfully even when the sam-

pling rate is much lower than the Nyquist rate. However, the

pure random sensing matrices usually require huge memory

for storage and high computational cost for signal reconstruc-

tion. Many structured sensing matrices have been proposed

recently to simplify the sensing scheme and the hardware

implementation in practice. Based on the restricted isometry

property and coherence, couples of existing structured sens-

ing matrices are reviewed in this paper, which have special

structures, high recovery performance, and many advantages

such as the simple construction, fast calculation and easy

hardware implementation. The number of measurements and

the universality of different structure matrices are compared.

Keywords compressed sensing, structured sensing matri-

ces, RIP, coherence

1 Introduction

In the digital revolution, people are now employing various

signal processing techniques and new sensing systems in

general electronic products with ever-increasing resolution

and fidelity. The conventional manners of sampling signals,

images, videos, or other data obey the celebrated Shannon’s

theorem, that requires to sample a signal at a sampling rate
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at least twice the highest frequency present in a signal (so-

called Nyquist rate) to retain signal information intact [1, 2].

The Shannon’s theorem solves the problem in theory per-

fectly, yet unfortunately it is not omnipotent. In many ap-

plications such as remote surveillance or spectroscopy, sam-

pling in the result with Nyquist rate is expensive, or even

physically impossible. So as long as the recovery perfor-

mance achieves an acceptable level, people want to build de-

vices which are capable of acquiring samples at a necessary

rate as low as possible. In some other applications, such as

imaging system or video processing, sampling a large num-

ber of measurements seems feasible. However, because of

the limited storage space and using of advanced compression

techniques, people often discard the most received data, and

just save a small amount of the compressed data (e.g., JEPG).

Apparently it will waste lots of valuable sensing resources

since the entire data are sampled at first.

Aiming at solving above problems, the compressed sens-

ing (short for CS) theory [3–7] has become one of the hottest

research areas in signal processing since 2006. The research

of CS has been growing very fast and it focuses on acquiring

and reconstructing sparse or compressible signals. By using

CS, compressed measurements can be acquired directly and

one may recover the original sparse or compressible signal

faithfully even when the sampling rate is much lower than the

Nyquist rate. An N-length signal x is regarded as sparse if x
has K nonzero values and K � N. Compressible x means

that x can be well-approximated by another sparse signal f
in certain domain Ψ by using only K nonzero coefficients:
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x = Ψf, |f |0 = K. Normally the traditional compression tech-

niques preserve the values and locations of the largest coeffi-

cients, such as JPEG, JPEG2000, MPEG. While CS has more

efficient sensing or sampling protocols that capture the essen-

tial information content embedded in the original signal and

obtain the condensed data straightforwardly. More precisely,

these protocols are nonadaptive linear transforms, which can

be represented by well-designed matrices, called sensing ma-

trices Φ. These matrices should be incoherent to the spar-

sifying matrix Ψ of the compressible signal. With the mea-

surements and the sensing matrix, the process of exact recon-

structing signals from a subset of measurements can be im-

plemented by solving a nonlinear optimization problem. The

approaches to solving the nonlinear problems are named re-

construction/recovery algorithms. From a mathematical point

of view, compressed sensing is also deemed as a technique of

finding sparse solutions to underdetermined linear systems.

The CS theory is a revolution in both the theory of reli-

able signal sampling and physical design of sensors. Since

the original signal can be sensed from fewer linear projec-

tions rather than acquired in its initial domain, the sensing

matrices play an important role in the CS framework. The

property of the sensing matrices affects the number of nec-

essary measurements and the recovery performance directly.

Early researchers proved that a random projection is one of

the best solutions [5,8]. The projection matrices are generated

by orthogonalizing measured vectors uniformly and indepen-

dently on a unit sphere. In addition, sensing matrices consist-

ing of independent and identically distributed (i.i.d.) entries

drawn from a Gaussian or Bernoulli distribution also perform

well in both theory and practice [3, 4]. Though the problem

has been solved in mathematics, there still exist many obsta-

cles to overcome. One main drawback of the pure random

sensing matrices is that they require huge storage-memory,

namely M × N entries to recover a length-N signal, and high

computational cost for signal reconstruction. Moreover, the

difficulty of hardware implementation also makes them ex-

pensive in practice.

To simplify the sensing scheme, many structured sensing

matrices have been proposed in recent years. In this paper,

after explaining some terminologies such as restricted isom-

etry property and coherence, we give an introduction to cou-

ples of existing structured sensing matrices, including sub-

sampled incoherent bases, random Toeplitz matrices, random

demodulator matrices, random convolution matrices, struc-

turally random matrices, convolutional matrices using se-

quences and some other structured sensing matrices. These

matrices have special structures which equip them efficiency

in the construction, calculation or hardware implementation.

For many of them, corresponding fast recovery algorithms

have been developed by exploiting their specific structures.

Here we put our emphasis on how the structured matrices are

generated and what are their recovery performances. Based

on these, the number of measurements and the universality

of different structure matrices are compared. The paper will

help readers to understand the characteristics of popular sens-

ing matrices well and may inspire them to explore or pursue

more efficient sensing schemes in the CS area.

The remaining paper is organized as follows. In Section 2,

we describe the core concepts of this paper: sensing matrices,

and introduce two prevalent criteria that examine the effec-

tiveness of sensing matrices: restricted isometry property and

coherence. In Section 3, couples of structured sensing matri-

ces are analyzed. The overview of applications is discussed

in Section 4. Finally, the prospects of structured sensing ma-

trices are discussed in Section 5 followed by the conclusions

in Section 6.

2 Sensing matrices

In our real world, normally the useful signals are not ran-

dom. Images, videos or voices often contain specific struc-

tures and strong correlation among pixels, frames or samples.

These structures and correlations are the assumptions behind

the sparse representation theory. Given an N-dimensional sig-

nal x, Ψ denotes the sparsifying transform basis for x, where

throughout this paper we assume that Ψ is an N × N normal-

ized unitary matrix satisfyingΨ∗Ψ = NIN . So x can easily be

decomposed by means of a linear superposition of K elemen-

tary components:

x =
K∑

k=1

fkψk, (1)

which can be rewritten in the form of matrix multiplication

as

x = Ψf, (2)

where f is a length N sparse vertical vector with K nonzero

values, K � N. Typical transforms Ψ include discrete

Fourier transform (DFT), discrete cosine transform (DCT)

and discrete wavelet transform (DWT). Sometimes the num-

ber of nonzero values in f is larger than K. In this case peo-

ple usually encode the most significant K non-zero entries

of f and disregard the rest, which is also the core principle

of the image compression standard JPEG (using DCT) and

JPEG2000 (using DWT).
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Now assuming a length-N signal x as defined in Eq. (1),

the data acquisition process can be described as

y = Φx = ΦΨf = Θf, (3)

where the measurement y represents an M × 1 sampled vec-

tor, Φ is an M × N measurement/sensing matrix, Θ = ΦΨ.

(3) is the kernel equation of the sensing process. The sens-

ing process with a random Gaussian measurement matrix Φ

and a DCT matrix Ψ is illustrated in Fig. 1, in which there

are four columns of Ψ that correspond to nonzero fi coeffi-

cients; the measurement vector y is a linear combination of

these columns. The CS theory considers problems based on

the fundamental Eq. (3). These problems can be summarized

as how to design efficient sensing matrix Φ, and how to re-

cover x given y andΦ.

Here we focus on the problem of designing proper sens-

ing matrices. Conventionally, if K entries in y are more im-

portant than other entries, people may capture the signal en-

ergy roughly and recover the original signal from K measure-

ments, like what we do for recovering natural image from its

frequency spectrum. However, in the CS framework the en-

tries of f are assumed sparse and randomly distributed, which

means people do not know where the large entries locate. In

this circumstance x is able to be recovered by exploiting the

sparsity from M measurements, M � N and M > K. Because

only partial M measurements are captured to recover the orig-

inal signal, a good sensing scheme should spread out the in-

formation of the non-zero entries into every measurement yk

evenly, in case of losing significant information. Follow this

intuitive idea, people found that random projection is one of

the best candidates as a sensing matrix [5, 9]. Besides, if Φ

represents a Gaussian or Bernoulli random operator, x can

also be faithfully recovered from y using nonlinear optimiza-

tion approaches provided that M � O(K log(N/K)) [3, 4, 10].

These early works made by D. Donoho, E. Candès, T. Tao

and Romberg established the foundation of the CS theory.

From Eq. (3) an essential question might be raised instinc-

tively: apart from the general random operators, what kinds

of sensing matricesΦ are capable to recover x uniquely from

measurements y? Fortunately, two important criteria for eval-

uating proper operators were created to provide fundamen-

tal insights into the geometry of sensing matrices. The most

well-known one is often referred as the Restricted Isometry

Property (RIP):

Definition 1 (RIP [5]) An M × N matrix Θ = ΦΨ is said

to satisfy the RIP with parameters (K, δ) (δ ∈ (0, 1)) if

(1 − δ)‖f‖2 � ‖Θf‖2 � (1 + δ)‖f‖2, for all f ∈ Γ, (4)

where Γ represents the set of all length-N vectors with K non-

zero coefficients.

Generally speaking, RIP requires the sensing matrix to act

as a near isometry on the set of all K-sparse signals. It is con-

sistent with the thought of spreading energy behind random

sensing matrices. So measurement y preserves the energy that

does not shrink or expand too much comparing with the orig-

inal signal x. If Θ satisfies the RIP, many reconstruction al-

gorithms can be used to recover any K-sparse signal f from

M measurementsΘf, such as Basis Pursuit (BP) or Matching

Pursuit recovery algorithms [11,12]. In addition, RIP guaran-

tees the uniqueness of the reconstruction result f, which does

not hold automatically for some other RIP-related property,

such as the weaker Statistical Restricted Isometry Property

(StRIP) [13].

Because there is no existing algorithm for efficiently ver-

ifying whether a matrix satisfies RIP, people also need the

coherence property to examine the “quality” of Θ:

Definition 2 (Coherence [14, 15]) The coherence μ(Θ)

is the largest absolute inner product between any two

Fig. 1 (a) Compressive sensing measurement process with a random Gaussian measurement matrix Φ and DCT matrix Ψ as sparsifying
matrix; (b) measurement process with Θ = ΦΨ. The original scheme figure is from [7]. We use f to denote the K sparse vector
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normalized columns of Θ

μ(Θ) = max
1�i� j�N

|〈Θi,Θ j〉|, (5)

where Θi,Θ j represent two columns of Θ.

If Θ = ΦΨ, the coherence can also be quantified by cal-

culating the maximal correlation among all rows ofΦ and all

columns ofΨ

μ(Φ,Ψ) = max
1�i, j�N

|〈Φi,Ψ j〉| = max
1�i, j�N

|Θ(i, j)|. (6)

Note that for a unitary matrixΦwithΦ∗Φ = NIN , the mutual

coherence coefficient μ is bounded by 1 � μ(Θ) �
√

N [6].

WhenΦ is chosen as the DFT or the Walsh-Hadamard trans-

form and Ψ is an identity matrix, μ(Θ) = 1. If Φ is a matrix

of random basis vectors or a matrix of i.i.d. Gaussian entries

N(0, 1), the mutual coherence between Φ and any orthonor-

mal matrix Ψ is on the order of O
( √

2 log N
)

with very high

probability, far from the lower bound [16]. Coherence μ is

a core concept in constructing CS matrix, and it will be fre-

quently used in the sensing matrix analysis.

3 Structured sensing matrices

The initial work of CS focused on randomized sensing matri-

ces, in which the entries of matrices are independently gen-

erated from standard probability distributions. For instance,

with overwhelming probability, all matrices satisfying ran-

dom Gaussian/Bernoulli distribution obey the RIP could be

uniquely recovered from number of measurements M and

M � C · K log(N/K) (7)

where C is some constant depending on each instance [4]. As

mentioned in the introduction, pure random matrices are not

easily applicable to real implementations due to its large stor-

age and heavy computation. In recent years some structured

sensing matrices have been proposed. Unlike pure random

matrices, special constructions make structured sensing ma-

trices suitable for various applications, and we will introduce

them chronologically and analyze their performances respec-

tively.

3.1 Subsampled incoherent bases

For subsampled incoherent base matrices, the most fa-

mous examples are random subsampled Fourier and Walsh-

Hadamard matrices. An M × N sensing matrix is constructed

by random selecting rows from an N×N square DFT (or FFT)

matrix F or a Walsh-Hadamard transform (WHT) matrix H,

respectively. Specifically,

F =
1√
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
...

1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

where ω = e−
2πi
N is a primitive Nth root of unity in which

i =
√−1 and

HN =

⎡⎢⎢⎢⎢⎢⎣
HN/2 HN/2

HN/2 −HN/2

⎤⎥⎥⎥⎥⎥⎦ , (9)

with an initial matrix H1 = [+1]. The oversampling factor

for partial DFT matrix was proved as (log N)6 at first in [5],

then was improved to (log N)4 in [17]. Generally speaking,

the RIP property of sampled unitary matrix is summarized as

following theorems.

Theorem 1 (RIP for randomly subsampled unitary matrix

[17, 18]) Suppose that the M × N matrix Θ is a ran-

domly subsampled unitary matrix, i.e., it can be written as

Θ = 1√
M

RΩU, where 1√
M

is a normalizing coefficient, RΩ
is a random sampling operator which selects M samples out

of N ones uniformly at random, and U is an N × N unitary

matrix satisfying U∗U = NIN . Then Θ satisfies the RIP with

high probability provided that

M � O
(
δ−2μ2(U)K log4 N

)
, (10)

where δ denotes the restricted isometry constant in Definition

1.

Theorem 1 implies that the RIP bound of a randomly sub-

sampled unitary matrix depends on μ(U). Note that for a uni-

tary matrix U with U∗U = NIN , 1 � μ(U) �
√

N. When

U is chosen as the FFT or the Walsh-Hadamard transform,

μ(U) = 1 and by Eq. (10), one has

M � O
(
δ−2K log4 N

)
. (11)

All above bounds are for the uniform reconstruction, which

means that once the sampling operator Φ is constructed, all

sparse signals in a certain basisΨ can be recovered as long as

M is sufficiently large. If one fixes x and wants to recover it

specifically, the problem turns to a non-uniform one and this

weaker assumption leads to less measurements. In detail:

Theorem 2 (Non-uniform recovery [19]) Assume that Θ is

a randomly subsampled unitary matrix that follows the same
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definition as in Theorem 1. Let f in (3) be a fixed arbitrary K-

sparse signal. Then f can be faithfully recovered from y using

l1 norm optimization, if M satisfies

M � O(μ2(U)K log N). (12)

In addition, if we fix f ∈ RN and suppose that the coef-

ficient sequence f of x is K-sparse in the basis Ψ; select M

measurements in the Φ domain uniformly at random, then if

M � C · μ2(Φ,Ψ)K log N, (13)

for some positive constant C, its l1 norm minimization solu-

tion is exact with overwhelming probability [6, 20]. For the

cases of DFT and WHT matrices, Φ = F or H, the bound

of M holds for O(K log N). The theorems listed here are also

very useful to prove the feasibility of other structured sensing

matrices.

Although partial FFT (or WHT) has near-optimal theo-

retical guarantee, easy hardware implementation and fast-

computable recovery, its major shortcoming is the lack of the

universality property. A universal sensing matrix means that

the matrix can handle signals that are sparse in any domain.

IfΦ is a Gaussian random matrix, the matrixΦΨ will remain

Gaussian for any unitary transform Ψ. However, if Φ is ran-

domly sampled from a FFT, it will not be universal, as μ(FΨ)

can not be O(1) for all basesΨ, eg. whenΨ = F∗, μ(FΨ) will

be large.

3.2 Random toeplitz matrices

Because all elements in random matrices are required to sat-

isfy the i.i.d. random distribution, it becomes natural to raise a

question one step further: can we reduce the randomness a lit-

tle and achieve a similar reconstruction performance? Bajwa

et al. first followed this thought to propose random Toeplitz

matrices (RTM) in 2007 [21, 22]. In RTM, the entries are

independence distributed in one row, while reserve certain

structure among other rows. Specifically, if a probability dis-

tribution P(a) yields an i.i.d. CS matrix (having unit-norm

columns in expectation) then an M ×N (partial) Toeplitz ma-

trix A (also having unit-norm columns in expectation) of the

form

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

aN−1 aN−2 · · · a0

aN aN−1 · · · a1

...
...

...

aN+M−2 aN+M−3 · · · aM−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

where the entries {ai}N+M−2
i=1 have been drawn independently

from P(a), is also a CS matrix in the sense that it satisfies

RIP of order 3K with high probability for every δ ∈ (0, 1/3)

provided M > C · K3 log(N/K), where C is a constant [21].

In the technical aspect, the proof of RIP of RTM used

the celebrated Hajnal-Szemeredi theorem on equitable col-

oring of graphs to partition an M × 3K Toeplitz-structured

submatrix AT into roughly O(K2) i.i.d. submatrices having

dimensions approximately equal to O(M/K2) × 3K. By us-

ing random Toeplitz matrices, only O(N) independent ran-

dom variables are required to generate. Multiplication with

Toeplitz matrices can be more efficiently implemented using

fast Fourier transform, resulting in faster acquisition and re-

construction algorithms. In addition, Toeplitz-structured ma-

trices meet the naturally requirement for certain application

areas such as system identification. Later Haupt et. al. and

Rauhut improved the bound of M to O(K2 log N) [22] and

O(K log2(N)) [23], respectively.

Meanwhile, random Toeplitz matrices also have disadvan-

tages. For example, RTM are proved to be able to recover

signals sparse only in the time domain. Their strong struc-

tures make them not suitable for processing signals sparse in

other bases, such as DCT domain.

3.3 Random demodulator

The random demodulation (RD) matrix was proposed by

Tropp et al. in 2010 [24]. Pseudorandom binary sequence are

often used to modulate the input signal. Similar implementa-

tions include Bernoulli or Rademacher random variables. The

random demodulator is a sampling system that can be used to

acquire sparse, bandlimited signals in an analog model. Fig-

ure 2 displays a block diagram for the RD system [24]. It

is for a continuous-time signal f whose highest frequency

is less than W/2 hertz. Tropp et al. modulated the signal by

multiplying the signal with a high-rate pseudonoise sequence,

which smeared the tones across the entire spectrum. Then a

low-pass anti-aliasing filter was applied to capture the sig-

nal x by sampling x at a relatively low rate. Simulations sug-

gested that the RD requires just O(K log(W/K)) samples per

second to stably reconstruct the original signal.

Fig. 2 Block diagram for the random demodulator. The components in-
clude a random number generator, a mixer, an accumulator, and a sampler
(taken from [24])
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In mathematics, the random demodulator can be seen as a

linear system that maps a continuous-time signal to a discrete

sequence of samples. To express the system in matrix form,

let ε0, ε1, . . . , εW−1 be the chipping sequence in a diagonal

matrix D, H is an R ×W accumulate-and-dump sampler ma-

trix, where R is the sampling rate. Assume that W is divisible

by R, the overall action of the system is

Θ = ΦΨ = HD · F̂, (15)

where

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · ·
1 1 · · ·

. . .

1 1 · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

there are W/R 1 in each row of H, and

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε0

ε1

. . .

εW−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17)

and F̂ is a W ×W permuted DFT matrix with

F̂ =
1√
W

[
e−2πi·nw/W

]
n,w
, (18)

where n = 0, 1, . . . ,W−1 and w = 0,±1, . . . ,±(W/2−1),W/2.

The main advantage of the RD system is it bypasses the

need for a high-rate analog-to-digital converter (ADC). It is

typically much easier to implement demodulation rather than

sampling, thus a low-rate ADC is allowed to use and a more

robust system with low-power can be achieved. In theory, the

RD guaranteed the recovery of random general signals with

the sampling rate of R ∼ O(K log W +K log3 W) in the noise-

less case and R ∼ O(K log6 W) in the noisy case, where C is

a positive constant.

3.4 Random convolution

The random convolution (RC) model was first proposed by

Romberg in 2007 [25, 26]. In the RC, the construction has

two steps. The signal x ∈ RN was circularly convolved with

a “pulse” h ∈ RN , then subsampled. The pulse is supposed to

be random and its energy spreads uniformly across the dis-

crete spectrum. If one writes the convolution of x and h into

the matrix form as Hx, where [25]

H = N−1/2F∗ΣF, (19)

with F as the discrete Fourier matrix and Σ as a diagonal ma-

trix whose non-zero elements are the Fourier transform of h.

The matrix Σ can be generated by

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ0

σ1

. . .

σN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where the diagonal entries σw are unit magnitude complex

numbers with random phases as follows:

w = 0 : σ ∼ ±1 with equal probability,

1 � w < N/2 : σw = e jθw , where θw ∼ Uniform([0, 2π])

w = N/2 : σN/2+1 ∼ ±1 with equal probability

N/2 + 1 � w � N − 1 : σw = σ
∗
N−w, the conjugate of σN−w.

(21)

From Eq. (21) one can see that the action of H on a signal

x can be broken down into a DFT followed by a random-

ization of the phases with symmetric constraints, followed

by an inverse DFT. Fourier optics imaging architecture im-

plementing random convolution followed by randomly pre-

modulated summation (RPMS) is shown in Fig. 3. Alterna-

tively, the random sampling process can also be substituted

with randomly pre-modulated summation, which means to

break them into blocks of size N/M, and summarize each

block with a single number. This action will influence the

bound of sufficient recovery measurements with a factor of

log N.

Fig. 3 Fourier optics imaging architecture implementing random convolu-
tion followed by RPMS [25]. SLM represents the spatial light modulator

Random convolution is significant since it is deemed as an

efficient data acquisition strategy that can recover noiseless

N-length signals in any fixed representation from O(K log N)

measurements, which is relatively small for structured CS

matrices. The randomness exists in both sampling process

and entries generation, making RC universal (or uniform) to-

wards the choice of signal representation. It is specially im-

portant for signals sparse in unknown bases.

3.5 Structurally random matrices

Structurally random matrix (SRM) is a novel framework of

fast and efficient CS introduced by Do et al. [27, 28]. In the

SRM, the sensing signal is prerandomized by scrambling its
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Fig. 4 Block diagram for sampling scheme of SRM [27]

sample locations for flipping its sample signs and then fast-

transforming the randomized samples. The sensing measure-

ments are obtained by subsampling the resulting transform

coefficients finally. The sampling algorithm contains three

steps. The diagram is illustrated in Fig. 4.

As shown in Fig. 4, the sampling procedure is (i) pre-

randomizing a signal; (ii) applying some fast transform to the

randomized signal; (iii) randomly subsampling the transform

coefficients to get compressed measurements. If decompos-

ing the algorithm mathematically as a product of 3 matrices,

then the SRM can be represented as [27],

A = DFR, (22)

where

• R, the randomizer, is a random permutation matrix (de-

noted as the global randomizer) or a random diagonal

matrix of Bernoulli i.i.d. entries (denoted as the local

randomizer).

• F is some computable transform such as the FFT, the

DCT, the WHT, etc.

• D, the random downsampler, is a matrix composed of

nonzero rows of a random diagonal matrix whose diag-

onal entries Dii are i.i.d. binary random variables with

P(Dii = 1) = M/N, where M is the number of measure-

ments.

The reconstruction algorithm can be any l1 norm mini-

mization or greedy pursuit algorithm. SRMs are highly rel-

evant to large-scale, real-time compressed sensing applica-

tions as they have fast computation and support block-based

processing. Meanwhile, SRMs have theoretical sensing per-

formance of O(K log N) measurements for exact recovery,

which is comparable to that of completely random sensing

matrices. In the construction of sensing operator, SRMs use

the random downsampler, fast transform and random diago-

nal matrix, like random convolution. SRMs provide the prop-

erties of universality and hardware implementation friendli-

ness for reconstructing sparse signals.

3.6 Structured matrices using sequences

In the most previous work, random sequences have been ex-

ploited to generate sensing matrices. [22, 29] use Bernoulli

random sequence. An alternative way is to obtain matrices

from diagonal unimodular sequences σ with random phases

[25], i.e., σk = e jθk , where θk is a random variable that is uni-

formly distributed in [0, 2π). In [30, 31], σ can be perfect or

nearly perfect sequences.

Different from random sequences, recently many re-

searchers adopt deterministic sequences to construct sensing

matrices. These sequences are generated delicately and many

of them have been widely implemented in communication

and coding theory. Because the sequences have determined

the formulation, the sensing matrices based on sequences of-

ten have less randomness, and many of them are even de-

terministic [13, 32–35]. Here we only introduce one of them

named convolutional matrices using deterministic filter [34]

as an example to have a look how to construct sensing matri-

ces employing sequences.

The sampling operator Φ can be represented as a partial

circulant matrix with the following form [34]

Φ =
1√
M

RΩA, (23)

where A is a circulant matrix that can be expressed as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 aN−1 · · · a1

a1 a0 · · · a2

...
...

...

aN−1 aN−2 · · · a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

ForΦ given in (23), the measurement process can be realized

by circularly convolving x with a filter a = [a0 a1 · · · aN−1]T

and then downsample the output at locations indexed by Ω.

As known the circulant matrix A can be diagonalized using

FFT. This property enables the convolutional matrix with fast

computation. It is easy to see that the filter vector a (i.e., the

first column of A) can be obtained by taking the inverse FFT

of sequence σ = [σ0 σ1 · · · σN−1]T, i.e.,

a =
1√
N

F∗σ. (25)

σ may adopt various unimodular sequences. The coherence

bounds for different sequences are given in Table 1. For real
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Table 1 Coherence parameter μ(A) for different diagonal sequences σ

σ N μ(A)

FZC Arbitrary 1

m-sequence 2k − 1, k ∈ N
√

1 + 1
N

Complex matrices N ≡ 3 (mod 4) and N prime
√

1 + 1
N

Legendre sequence
N ≡ 1 (mod 4) and N prime 1 + 1√

N

Golay sequence 2κ1 10κ2 26κ3 , κ1, κ2, κ3 ∈ N
√

2

Even N 4 + 4√
NExtended FZC

Odd N 2.69 + 8.15√
N

Real matrices
Even N, N = 2κ1 10κ2 26κ3 , κ1, κ2, κ3 ∈ N 2

(
1 + 1√

N

)

Extended Golay
Odd N, N = 2κ1 10κ2 26κ3 − 1, κ1, κ2, κ3 ∈ N 1 + 2√

N

sensing matrices A, the diagonal sequence needs to be conju-

gate symmetric, shown as extended sequences in Table 1.

Using the uniform and non-uniform theorems, the coher-

ence bounds reveal that M � O(δ−2μK log4 N) measurements

are enough for uniform recovery and M � O(δ−2μK log N)

for non-uniform recovery, where δ denotes the restricted

isometry constant. These convolutional matrices are not uni-

versal, while they show the effectiveness for signals sparse in

both the time and frequency domain. When σ is the Frank-

Zadoff-Chu (FZC) sequence, the corresponding sensing ma-

trices are also capable for recovering signals sparse in the

DCT domain. The number of measurements in regard to dif-

ferent sequences can be calculated easily from Table 1 and

Theorems 1 and 2.

3.7 Other sensing matrices

Many other sensing matrices were developed in recent years.

To accelerate the computational speed for large data, block

structures were introduced for Gaussian matrix [36], Toeplitz

matrix [37], Hadamard matrix [38] and SRM [27], etc. The

block structure means the sensing matrices have the follow-

ing form with structured matrices as blocks Ai, i = 1, 2, . . . , l.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1

A2

. . .

Al

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

Block-based sensing has more advantageous for realtime

applications since the encoder does not need to send the sam-

pled data until the whole signal is measured. Besides struc-

ture sensing matrices, the sensing matrices can even be de-

terministic. Various deterministic matrices have been intro-

duced in [13, 32, 39–42]. Comparing to structured sensing

matrices, deterministic sensing matrices has fixed forms and

there is no randomness in the construction. Specifically, sec-

ond order Reed-Muller codes are used in [13,43] and dual of

extended binary BCH codes are exploited in [13, 44]. Many

other sequences are also employed in the deterministic ma-

trix design, such as discrete chirp sequences [13, 32, 34],

Kerdock and Delsarte-Goethals codes [45], Sidelnikov se-

quences [46] and Alltop sequences [13, 47, 48], etc. Deter-

ministic sensing matrices have fixed constructions, and thus

normally they can not guarantee to recover all signals with

high probability. They are able to recover most signals but an

exponential fraction with high probability. Some papers fo-

cus on the problems of designing sensing matrices that lead

to good (expected-case) mean squared error (MSE) perfor-

mance rather than the worst case [49]. For more informa-

tion regarding sensing matrices the readers may refer to ref-

erences [18, 50] and CS website [51].

3.8 Relations between structured sensing matrices

The sensing matrices introduced in this section are not de-

veloped independently. They are associated with each other.

Subsampled Fourier and Hadamard matrices were firstly

proved as the qualified structured sensing matrices. They be-

long to the subsampled incoherent bases group of matrices.

Random Toeplitz matrices are very famous and significant to

many applications, such as channel estimation [22] and sys-

tem identification [40]. The randomness exists in each row

while between rows they have strong structure. In real time

signal processing the modulation idea has been widely imple-

mented, which is also used in random demodulator. The cel-

ebrated random convolution is actually a special modulation

of signals in the Fourier domain. Moreover, SRM are a group

of structured matrices generated from an approach based on

random convolution but with Bernoulli diagonal phase mod-

ulation for signals in more flexible domains. Finally, struc-

tured and deterministic sensing matrices using sequences are

analyzed as a new sub-area in sensing matrix design.

Practically people may utilize different structured sens-
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ing matrices according to the sensing models and hardware

constraints. For instance, if one needs structured matrices to

model the 1-dimensional convolution in sensing processing,

random Toeplitz or Circulant matrices are employed due to

the natural of the convolution calculation. In addition, in the

same model if the objective signal is sparse in the Fourier

domain and the phases of the modulated signal can be sym-

metrical, random convolution are suitable to solve this prob-

lem accelerated by fast algorithms. When the phases can only

be modulated as ±1 and should be determined in advance

for hardware reasons, convolutional CS matrices using deter-

ministic sequences are recommended with a price of larger

number of measurements M comparing with that of random

convolution. If fixing the entire sensing scheme, the sensing

matrices will be deterministic and there is no randomness in

construction. In this case deterministic matrices constructed

from coding theory are the only candidates, and usually they

are with strict size constraints. In general, there is a tradeoff

between randomness and number of measurements M. Less

randomness facilitates the sensing scheme, however it often

leads to more measurements and consequently longer sensing

time.

4 Applications of structured sensing matrices

Essentially CS theory can be recognized as a data processing

technique that recovers sparse data from under-determined

equations. The advantage of CS is to process sparse signals

that can not be processed appropriately before, or obtain the

compressed data using proper physical instruments directly.

Fortunately most of the signals in the real world that people

are interest in belong to sparse signals or can be approximated

in certain domain. So from its emergence CS has been imple-

mented in numerous applications including communications,

machine learning, imaging, geophysical data analysis, radar,

remote sensing, data streaming, quantum state tomography,

and so on. For instance the matrices mentioned previously,

the Toeplitz matrices are quite suitable for communication

channel estimation [22]; random demodulators are designed

for sampling of sparse wideband analog signals [24,52]; ran-

dom convolution matrices can be exploited in radar imag-

ing [25]; also, the validity of SRMs has been verified in image

processing [27, 28]; convolutional matrices using sequences

have widely applications in communication and signal pro-

cessing [34,35,53,54]. Apart from these works, here we sim-

ply introduce two celebrated applications of CS, in medical

imaging and single pixel camera.

A promising application for compressed sensing is in re-

ducing the sampling rate in magnetic resonance imaging

(MRI) [55–57]. The main motivation of CS MRI is that, MRI

scanners sequentially sample the human’s body in the 2-D

continuous Fourier domain, and sensed coefficients satisfy

the sparse property which is also the prerequisite of the the-

ory of CS. Moreover, MRI is very time consuming. In order

to obtain a clearer image, one often needs a long time to col-

lect the data. However, the speed of data collection is limited

by physical and physiological constraints. Applying the CS

technique may accelerate the scanning process with the same

accuracy due to fewer CS measurements being required. The

schematic diagram of MRI using CS is shown in Fig. 5(a).

Another category of the application involves the design

of new acquisition hardware that is able to acquire projec-

tions of a signal against a class of vectors. In this case, the

sensing process is accomplished by physical optical instru-

ments, and the research normally focuses on the problem of

how to design sensing matrices whose entries belong to some

patterns/bases that can be easily implemented on the hard-

ware. One example is the framework of recovering an im-

age based on optical modulators, known as the single pixel

camera shown in Fig. 5(b) [58]. The digital micromirror de-

vice (DMD) is a reflective spatial light modulator that se-

lectively redirects parts of the light beam [59]. The DMD

is comprised of an array of bacterium-sized, electrostatically

actuated micro-mirrors, and each mirror rotates about a hinge

and can swing between two stages +10◦ or −10◦. The state

of each mirror depends on the bit loaded in the correspond-

ing position of the programmable sensing matrix, and many

structured sensing matrices may be implemented in this sce-

nario. People have tested that the system works well when

matrix entries are drawn randomly from a fast transform such

as a Walsh Hadamard transform [60]. Many advanced imag-

ing hardware architectures based on the single pixel camera

model have been developed after these techniques mature,

e.g., in terahertz imaging [61, 62]. With regard to real ap-

plications, actually it is not trivial to decide which strategy

or structured sensing matrices we shall use. Because differ-

ent matrices have their own features and performances, we

have to investigate the practical scenarios and make the trade-

off between number of measurements M, universality or not,

hardware constraints, computation and so on.

5 Prospects and future works

As a key research area of the encoding part of the com-
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Fig. 5 (a) Illustration of the domains and operators used in [57] as the requirements of CS: sparsity in the transform domain, incoherence of
the undersampling artifacts and the need for nonlinear reconstruction that enforces sparsity; (b) diagram of the single pixel camera. The image
x is reflected off a digital micro-mirror device (DMD) array whose mirror orientations are modulated in the pseudorandom pattern supplied by
the random number generator (RNG) [58]

pressed sensing theory, the research of structured sensing ma-
trices is really important and has attracted more and more
attention in recent several years. Although in literatures peo-
ple have proposed many structured sensing matrices, matri-
ces with special structures are deadly needed with regard to
special settings or hardware requirements.

Generally speaking, the future development of sensing ma-
trices will focus on two aspects. The first one is to use less
randomness and less memory storage. For instance, compar-
ing with full random matrices, more sparse sensing matrices
with certain structure have and will be exploited to reduce
the calculation in CS [63]. The structure of a network also

can be embodied in a matrix revealed by a one-to-one cor-

respondence with an expander graph [64]. The second as-

pect is to design sensing matrices satisfying certain struc-

ture in reality. This will be the main motivation for devel-

oping more structured sensing matrices. Take several exam-

ples to illustrate it. In the communication system the con-

volution process is equivalent to a Toeplitz matrix consist-

ing of the transmitting signals multiplying the system im-

pulse response function. That’s the reason why Toeplitz CS

matrices could be utilized in sparse channel estimation [22].

In [52] the authors proposed a practical sampling system

called modulated wideband converter (MWC) by adopting

periodic waveforms, a low-pass filter and a low rate sampler.

They proved that perfect recovery of multi-bandlimited sig-

nals from the proposed samples can be achieved under certain

necessary and sufficient conditions. In mathematics, the sam-

pling process can be reformed as a structured sensing matri-

ces y = SF̄D, where SF̄D represent the sign pattern matrix,

reorder Fourier matrix and diagonal matrix, respectively. This

matrix structure comes from the hardware design, and it per-

forms well in practice [52]. In addition, the structured sensing

matrices were also implemented in statistical physics, such

as the seeding matrix with coupling block diagonal struc-

ture. This work was proposed in [65] for a framework named

seeded compressed sensing. Krzakala et al. proved that in

their model the experimental recovery results approached

the theoretical limit for large systems. To sum up, people

will continue to work on pursuing various structured sensing

matrices with less randomness/measurements, better perfor-

mances and hardware friendly property incorporating knowl-

edge from other fields such as coding theory, communication,

random matrix theory etc., subject to specific requirements

based on real settings.

6 Conclusion

After explaining the fundamental knowledge of sensing ma-
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trices, RIP and coherence, we reviewed couples of existing

structured sensing matrices, including subsampled incoher-

ent bases, random Toeplitz matrices, random demodulator

matrices, random convolution matrices, structurally random

matrices and other structured sensing matrices. For each of

them, we concentrated on the structure of the matrix, the

measurement bounds and its scope of application. Though

it is difficult to cover all of the developments in structured

sensing matrices area, here we aim to explain the main idea

and demonstrate a few well-known examples that are repre-

sentatives of a wider class of the CS problem.
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