
Front. Comput. Sci.,2015, 9(4): 636–642

DOI 10.1007/s11704-015-3162-x

Basic theorem as representation of heterogeneous
concept lattices

Jozef PÓCS 1,2, Jana PÓCSOVÁ3

1 Palacký University Olomouc, Department of Algebra and Geometry, Olomouc 779 00, Czech Republic

2 Mathematical Institute, Slovak Academy of Sciences, Kos̆ice 040 01, Slovakia

3 Technical University of Kos̆ice, BERG Faculty, Institute of Control and Informatization of Production Processes, Kos̆ice

043 84, Slovakia

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Abstract We propose a method for representing heteroge-

neous concept lattices as classical concept lattices. Particu-

larly, we describe a transformation of heterogeneous formal

context into a binary one, such that corresponding concept

lattices will be isomorphic. We prove the correctness of this

transformation by the basic theorem for heterogeneous as

well as classical concept lattices.
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representation

1 Introduction

Formal concept analysis (FCA) is a data-mining method used

for identification of conceptual structures among data sets. It

is also known as a theory of concept lattices based on the

notion of formal context, which is represented by a binary

relation between a set of objects and a set of attributes. In

practice, there are natural examples of object-attribute mod-

els for which relationship between objects and attributes are

represented by fuzzy relations. As a natural consequence

there appeared various fuzzy generalizations of classical

FCA. From many existing approaches we mention work

of Bělohlávek [1,2], Krajči [3–6] or work on multi-adjoint

concept lattices by Medina, Ojeda-Aciego and Ruiz-Calviño
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[7–9]. One can find comparison and survey of some existing

approaches in [10]. As an efficient tool, formal concept anal-

ysis and its fuzzifications has been successfully applied to the

domains such as decision systems, information retrieval, data

mining and knowledge discovery. Hence the research in the-

oretical and practical applications of fuzzy FCA is very wide

[11–24].

Recently, there were described two approaches with differ-

ent types of complete lattices representing the structures of

possible truth values on the side of objects as well as on the

side of attributes. The first one, described in [25,26], has an

input in the form of matrix consisting of Galois connections

between particular objects and attributes. The second one,

called heterogeneous concept lattices [27,28], works with dif-

ferent mutual relationships between the objects and the at-

tributes. We note that both approaches are equivalent from

some point of view, as it was proved in [27].

The main aim of this paper is to describe a representation

of the heterogeneous concept lattices as the classical concept

lattices. We propose a transformation of a heterogeneous for-

mal context into a binary one, such that the corresponding

concept lattices will be isomorphic. Also we give an explicit

expression for the isomorphism between these two concept

lattices. In order to prove the correctness of our transforma-

tion we will use the so-call basic theorem for concept lattices.

The basic theorem for concept lattices represents one of the

fundamental tool for a theoretical study of concept lattices

and its validity allows to find a relatively simple proof of the
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proposed transformation.

The paper is organized as follows. In the next section we

provide the basic notions concerning heterogeneous concept

lattices and we recall the basic theorem for heterogeneous as

well as classical concept lattices. Section 3 contains our main

result. We propose the mentioned transformation of a hetero-

geneous formal context into a binary one. We prove its cor-

rectness and we find an explicit formula for the isomorphism

between heterogeneous and corresponding classical concept

lattice. A simple illustrative example of such representation

is also described. At the end we provide an experiment con-

cerning time complexity of the proposed transformation of

the heterogeneous formal contexts into the binary ones.

2 Heterogeneous contexts and fuzzy concept
lattices

In this section we briefly describe the so-called heteroge-

neous concept lattices, classical concept lattices and we recall

the basic theorems for both types of concept lattices, [27–29].

2.1 Heterogeneous concept lattices

Let B and A be non-empty sets. Let P = ((Pb,a,�) : b ∈
B, a ∈ A

)
be a system of posets and R be a function with do-

main B× A such that R(b, a) ∈ Pb,a for each b ∈ B and a ∈ A.

Let C = ((Cb,�) : b ∈ B
)

andD = ((Da) : a ∈ A
)

be systems

of complete lattices. Further, let � = ((•b,a) : b ∈ B, a ∈ A
)

be

a system of operations such that •b,a is from Cb × Da to Pb,a

and it is isotone and left-continuous in both arguments, i.e.,

1) c1 � c2 implies c1 •b,a d � c2 •b,a d for all c1, c2 ∈ Cb

and d ∈ Da,

2) d1 � d2 implies c •b,a d1 � c •b,a d2 for all c ∈ Cb and

d1, d2 ∈ Da,

3) if c •b,a d � p for some d ∈ Da, p ∈ Pb,a and for all

c ∈ X ⊆ Cb, then (
∨

X) •b,a d � p,

4) if c •b,a d � p for some c ∈ Cb, p ∈ Pb,a and for all

d ∈ Y ⊆ Da, then c •b,a (
∨

Y) � p.

Then the tuple 〈B, A,P,R,C,D,�〉 is called heterogeneous

formal context.

We recall the notion of direct product of lattices. If (Li : i ∈
I) is a family of lattices the direct product

∏
i∈I Li is defined

as the set of all functions

f : I →
⋃

i∈I
Li,

such that f (i) ∈ Li for all i ∈ I with the “componentwise”

order, i.e., f � g if f (i) � g(i) for all i ∈ I. If Li = L for all

i ∈ I we get a direct power LI . In this case the direct power

LI represents the structure of L-fuzzy sets, hence direct prod-

uct of lattices can be seen as a generalization of the notion

of L-fuzzy sets. The direct product of lattices forms com-

plete lattice if and only if all members of the family are com-

plete lattices. The straightforward computations show that the

lattice operations in the direct product
∏

i∈I Li of complete

lattices are calculated componentwise, i.e., for any subset

{ f j : j ∈ J} ⊆∏i∈I Li we obtain
(∨

j∈J

f j

)
(i) =

∨

j∈J

f j(i) and
(∧

j∈J

f j

)
(i) =

∧

j∈J

f j(i),

where these equalities hold for each index i ∈ I.

Let 〈B, A,P,R,C,D,�〉 be heterogeneous formal context.

There is a pair of mappings ↗ :
∏

b∈B Cb → ∏a∈A Da and

↙ :
∏

a∈A Da →∏b∈B Cb defined by

↗( f )(a) =
∨
{d ∈ Da : (∀b ∈ B) f (b) •b,a d � R(b, a)},

↙(g)(b) =
∨
{c ∈ Cb : (∀a ∈ A)c •b,a g(a) � R(b, a)}.

Proposition 1 The mappings↗ and↙ form a Galois con-

nection.

This fact allows to use concept lattice construction as

in the case of classical concept lattices. By a (heteroge-

neous fuzzy) concept we will understand a pair 〈 f , g〉 from
∏

b∈B Cb × ∏a∈A Da such that ↗ ( f ) = g and ↙ (g) = f .

If 〈 f1, g1〉 and 〈 f2, g2〉 are two concepts we define an order-

ing 〈 f1, g1〉 � 〈 f2, g2〉 if and only if f1 � f2 (or equivalently

g1 � g2). The poset of all such concepts ordered by relation

� is called a heterogeneous concept lattice and denoted by

HCL(B, A,P,R,C,D,�,↗,↙,�).

The following theorem, so-called the basic theorem on

heterogeneous concept lattices, characterizes heterogeneous

concept lattices.

Theorem 1 1) The heterogeneous concept lattice

HCL(B, A,P,R,C,D,�,↗,↙,�) is a complete lattice in

which
∧

i∈I
〈 fi, gi〉 =

〈∧

i∈I
fi,↗

(
↙ (
∨

i∈I
gi
))〉
,

and ∨

i∈I
〈 fi, gi〉 =

〈
↙
(
↗ (
∨

i∈I
fi
))
,
∧

i∈I
gi

〉
.

2) A complete lattice L is isomorphic to

HCL(B, A,P,R,C,D,�,↗,↙,�) if and only if there are two

mappings β :
⋃

b∈B({b}×Cb)→ L and α :
⋃

a∈A({a}×Da)→ L

such that:

i) β does not decrease in the second argument (for the fixed

first one);
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ii) α does not increase in the second argument (for the fixed

first one);

iii) Rng(β) is supremum-dense in L;

iv) Rng(α) is infimum-dense in L;

v) For every b ∈ B, a ∈ A and c ∈ Cb, d ∈ Da

β(b, c) � α(a, d) if and only if c •b,a d � R(b, a).

2.2 Classical (binary) concept lattices

Now we briefly recall the basic notions of FCA [29].

Let 〈G,M, I〉 be a formal context, i.e., G,M � ∅ and

I ⊆ G × M. There is a pair of mappings ↑ : P(G) → P(M)

and ↓ : P(M) → P(G), which forms a Galois connection be-

tween the power sets of G and M respectively.

X↑ = {y ∈ M : 〈x, y〉 ∈ I,∀x ∈ X},

Y↓ = {x ∈ G : 〈x, y〉 ∈ I,∀y ∈ Y}.
The corresponding concept lattice is denoted by

B(G,M, I). The following theorem, the basic theorem on

concept lattices, represents the well-known characterization

of concept lattices [29].

Theorem 2 1) The concept lattice B(G,M, I) is a complete

lattice in which infimum and supremum are given by:
∧

t∈T
〈At, Bt〉 =

〈⋂

t∈T
At,
(⋃

t∈T
Bt
)↓↑〉
,

∨

t∈T
〈At, Bt〉 =

〈(⋃

t∈T
At
)↑↓
,
⋂

t∈T
Bt

〉
.

2) A complete lattice L is isomorphic to B(G,M, I) if and

only if there are mappings γ̄ : G → L and μ̄ : M → L such

that γ̄(G) is supremum-dense in L, μ̄(M) is infimum-dense in

L and 〈g,m〉 ∈ I is equivalent to γ̄(g) � μ̄(m) for all g ∈ G

and all m ∈ M.

3 Basic theorem as a representation of het-
erogeneous concept lattices

We say that a heterogeneous concept lattice

HCL(B, A,P,R,C,D,�,↗,↙,�) is representable as a (clas-

sical) concept lattice, if there exists a formal context 〈G,M, I〉
such that the concept lattices HCL(B, A,P,R,C,D,�,↗,↙
,�) and B(G,M, I) are isomorphic. In order to find such rep-

resentation we will use the both basic theorems presented

in the previous section. First, we transform a heterogeneous

formal context into a binary one such that corresponding

concept lattices will be isomorphic.

Let 〈B, A,P,R,C,D,�〉 be a heterogeneous formal con-

text. We put

G =
⋃

b∈B

({b} ×Cb
)

and M =
⋃

a∈A

({a} × Da
)

and define a binary relation I ⊆ G × M as

〈 〈b, c〉 , 〈a, d〉 〉 ∈ I iff c •b,a d � R(b, a), (1)

for all b ∈ B, a ∈ A and for all c ∈ Cb and d ∈ Da. In this

case the set of objects consists of the elements of the form

〈b, c〉 for some b ∈ B and c ∈ Cb. Similarly, the set of at-

tributes consists of the ordered pairs 〈a, d〉 for some a ∈ A

and d ∈ Da.

Theorem 3 The concept lattices HCL(B, A,P,R,C,D,�,↗
,↙,�) and B(G,M, I) are isomorphic.

Proof Denote by L the heterogeneous concept lattice

HCL(B, A,P,R,C,D,�,↗,↙,�). Since L is isomorphic to

itself, there is a pair of mappings β :
⋃

b∈B({b} × Cb) → L

and α :
⋃

a∈A({a} × Da) → L satisfying conditions (i)–(v) of

Theorem 1.

Now we define γ̄ : G → L and μ̄ : M → L by γ̄(b, c) =

β(b, c) for all b ∈ B and c ∈ Cb; and μ̄(a, d) = α(a, d) for all

a ∈ A and d ∈ Da. According to the conditions iii) and iv) of

Theorem 1 sets γ̄(G) and μ̄(M) are supremum-dense in L and

infimum-dense in L respectively. The condition v) and rule 1)

give the following equivalent assertions

〈 〈b, c〉 , 〈a, d〉 〉 ∈ I iff c •b,a d � R(b, a),

iff γ̄(b, c) � μ̄(a, d),

for all b ∈ B, a ∈ A and for all c ∈ Cb and d ∈ Da.

This yields that the assumptions of the Basic Theorem for

concept lattices (Theorem 2) are fulfilled, hence the concept

lattice B(G,M, I) is isomorphic to the lattice L. �

The proof of the basic theorem for concept lattices allows

to find such isomorphism. First we recall an important fact.

Let B(G,M, I) be a concept lattice and L be a complete lat-

tice such that γ̄(G) is supremum-dense in L, μ̄(M) is infimum-

dense in L and 〈g,m〉 ∈ I is equivalent to γ̄(g) � μ̄(m) for all

g ∈ G and all m ∈ M. Then the mapping ϕ : B(G,M, I) → L

given by

ϕ(X, Y) =
∨
{γ̄(g) : g ∈ X}, (2)

is an order isomorphism between B(G,M, I) and L (see [29]

page 21 for details).

As in the previous proof, denote by L the heterogeneous

concept lattice HCL(B, A,P,R,C,D,�,↗,↙,�). We define

the following singleton functions T c
b ∈

∏
b∈B Cb for each
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b ∈ B and c ∈ Ca, and S d
a ∈
∏

a∈A Da for each a ∈ A and

d ∈ Da:

T c
b(x) =

⎧
⎪⎪⎨
⎪⎪⎩

c, if x = b;

0Cb , otherwise,

S d
a(x) =

⎧
⎪⎪⎨
⎪⎪⎩

d, if x = a;

0Da , otherwise.

From the basic properties of Galois connections it can be

easily shown ([28]) that the mappings β :
⋃

b∈B({b}×Cb)→ L

and α :
⋃

a∈A({a} × Da)→ L defined by

β(b, c) =
〈↙ (↗ (T c

b)),↗ (T c
b)
〉
,

α(a, d) =
〈↙ (S d

a),↗ (↙ (S d
a))
〉
,

fulfill the conditions i)–v) of Theorem 1.

Theorem 4 The mapping ϕ : B(G,M, I) → L given by

ϕ(X, Y) = 〈 f , g〉, where f (b) =
∨{c ∈ Cb : 〈b, c〉 ∈ X} for

all b ∈ B and g(a) =
∨{d ∈ Da : 〈a, d〉 ∈ Y} for all a ∈ A, is

an order isomorphism.

Proof According to the definition of the formal context

(G,M, I) the mappings γ̄ : G → L and μ̄ : M → L defined

by

γ̄(b, c) = β(b, c) =
〈↙ (↗ (T c

b)),↗ (T c
b)
〉
,

μ̄(a, d) = α(a, d) =
〈↙ (S d

a),↗ (↙ (S d
a))
〉
,

fulfill the conditions of the basic theorem for concept lattices.

Due to Eq.(2) the mapping ϕ : B(G,M, I)→ L defined by

ϕ(X, Y) =
∨{
γ̄(b, c) : 〈b, c〉 ∈ X

}

is an order isomorphism.

From this and using the expression for supremum in L we

obtain

ϕ(X, Y) =
∨{
γ̄(b, c) : 〈b, c〉 ∈ X

}

=
∨

〈b,c〉∈X

〈↙ (↗ (T c
b)),↗ (T c

b)
〉

=
〈
↙
(
↗ (

∨

〈b,c〉∈X
T c

b

))
,↗ (

∨

〈b,c〉∈X
T c

b

)〉
.

First, we show that

↗
(∨
{T c

b : 〈b, c〉 ∈ X
)
(a) =

∨{
d ∈ Da : 〈a, d〉 ∈ Y

}

is valid for all a ∈ A.

Obviously for all b ∈ B we have

(∨
{T c

b : 〈b, c〉 ∈ X
)
(b) =

∨{
c ∈ Cb : 〈b, c〉 ∈ X

}
.

Let a ∈ A be any fixed element. Properties 1) and 3) of the

operations •b,a imply the following two equivalent assertions

(∀b ∈ B)
( ∨

〈b,c〉∈X
c
)
•b,a d � R(b, a),

(∀b ∈ B) c •b,a d � R(b, a),∀c : 〈b, c〉 ∈ X.

Due to the condition i) and fact that
〈〈b, c〉, 〈a, d〉〉 ∈ I for

all 〈b, c〉 ∈ X if and only if 〈a, d〉 ∈ X↑ = Y, we obtain equal-

ity between these sets

{
d ∈ Da : (∀b ∈ B)

( ∨

〈b,c〉∈X
c
) •b,a d � R(b, a)

}

=
{
d ∈ Da : 〈a, d〉 ∈ Y

}
.

Hence, from the definition of the mapping↗we obtain for

all a ∈ A

↗ (
∨
{T c

b : 〈b, c〉 ∈ X
)
(a) =

∨{
d ∈ Da : 〈a, d〉 ∈ Y

}
.

Due to this fact, the equality

↙
(
↗ (

∨

〈b,c〉∈X
T c

b

))
(b) =

{
c ∈ Cb : 〈b, c〉 ∈ X

}
,

for all b ∈ B can be proved in the same way. �

Example 1 For a positive integer n � 2 denote by Ln an

n-element chain Ln = { i
n−1 : 0 � i � n − 1} ⊆ [0, 1].

Given positive integers n,m, k � 2 let us consider the map-

ping Pk
n,m : Ln × Lm → Lk defined for each c ∈ Ln and d ∈ Lm

as

Pk
n,m =

�(k − 1) · c · d�
k − 1

,

where � � is the ceiling function and · denotes the usual prod-

uct of rational numbers. Any Pk
n,m satisfies the conditions 1)–

4) of the product operations in the definition of heterogeneous

formal context.

Let B = {b1, b2} be a set of elements, A = {a1, a2} be a

set of attributes. Further we put Cb1 = L3, Cb2 = L2 and

Da1 = L2, Da2 = L3. To define the system of operations � we

set •b1 ,a1 = P3
3,2, •b1,a2 = P2

3,3, •b2 ,a1 = P4
2,2 and •b2,a2 = P3

2,3.

Let us note, that the system P of posets is given by the cor-

responding operations •b,a, e.g., Pb1,a1 = (L3,�). Finally, the

incidence relation R is given in Table 1.

Table 1 Incidence relation R

Object�Attribute a1 a2

b1 1/2 0

b2 2/3 1/2

Now we transform the heterogeneous formal con-

text 〈B, A,P,R,C,D,�〉 into the binary one. Hence we
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put G = {〈b1, 0〉, 〈b1, 1/2〉, 〈b1, 1〉, 〈b2, 0〉, 〈b2, 1〉}, M =

{〈a1, 0〉, 〈a1, 1〉, 〈a2, 0〉, 〈a2, 1/2〉, 〈a2, 1〉} and using rule 1) we

obtain the incidence relation I ⊆ G × M depicted in Table 2.

Let us note that the symbol × on a position in the table in-

dicates that the corresponding object is in the relation I with

the corresponding attribute.

Table 2 Incidence relation I of the transformed binary context

Object/Attribute 〈a1 , 0〉 〈a1 , 1〉 〈a2, 0〉 〈a2 , 1/2〉 〈a2, 1〉
〈b1, 0〉 × × × × ×
〈b1 , 1/2〉 × × ×
〈b1, 1〉 × ×
〈b2, 0〉 × × × × ×
〈b2, 1〉 × × ×

From this formal context we obtain concept lattice

B(G,M, I) (Fig. 1). Consequently, using the formula from

Theorem 4 we obtain the isomorphic heterogeneous concept

lattice (Fig. 2).

Fig. 1 Classical concept latice corresponding to Table 2

Fig. 2 Heterogeneous concept lattice corresponding to Table 1

Let 〈B, A,P,R,C,D,�〉 be a heterogeneous formal con-

text. We will assume that the object set B, the attribute set

A as well as all the posets in P, C and D are finite. Denote

by n and m the number of objects and attributes respectively.

Further let c = max{|Cb| : b ∈ B} and d = max{|Da| : a ∈ A},
i.e., c denotes the maximal cardinality of some lattice in C
and d denotes the maximal cardinality of some lattice in D.

Our aim is to provide an estimation for time complexity of

transformation of a heterogeneous formal context into a bi-

nary one.

Let 〈G,M, I〉 be the transformed binary context. Then G =
⋃

b∈B({b} ×Cb), M =
⋃

a∈A({a} ×Da) and we obtain |G| � n · c
and |M| � m · d. Further, we assume that for all b ∈ B,

a ∈ A and for any given values c1 ∈ Cb, d1 ∈ Da the decision

whether c1 •b.a d1 � R(b, a) can be done in a constant time

t ∈ R. Since the incidence relation I ⊆ G × M is given by the

condition

〈 〈b, c1〉 , 〈a, d1〉 〉 ∈ I iff c1 •b,a d1 � R(b, a),

we obtain T � t · n · c · m · d for time complexity T of this

transformation.

From a practical point of view it is interesting to exper-

imentally compare computational times of transformation

with classical binary algorithm and direct application of an

algorithm for heterogeneous fuzzy concept lattices. For this

purpose we use the algorithm for binary concept lattices [30]

and an algorithm for a special type of heterogeneous concept

lattices, the so-called GOSCL algorithm [31].

In this special case of heterogeneous concept lattices the

system C consists of two-element lattices and the system D
corresponding to the attribute set contains arbitrary complete

lattices.

In these experiments all attributes had randomly assigned

an i-element chain from the set {Li}10
i=2 as a truth value struc-

ture. For all objects b ∈ B and a ∈ A the product •b,a was

defined as P2
2,i where i denotes an index such that truth value

for the attribute a was Li. Also an incidence relation R was

generated randomly with the uniform distribution.

In Table 3 are averaged computation times of GOSCL al-

gorithm for different number of objects n and number of at-

tributes m = 3, 5, 7, 10. The most experimental run for dif-

ferent input context setup was repeated 100 times (those with

duration greater than 1 000 seconds were repeated 20 times)

and computation times were averaged. Experiments were per-

formed on the machine with Intel i5/750 (2.66 GHz) proces-

sor.

Table 3 Computation times (in seconds) for GOSCL

mn
3 5 7 10

10 0.002 8 0.009 3 0.032 0.135 3
20 0.009 3 0.027 0.084 9 0.538 9
30 0.019 2 0.167 9 1.547 9 4.780 1
40 0.050 8 0.432 5.245 1 23.56
50 0.103 9 1.603 2 14.678 63.907
60 0.161 1 3.395 5 35.045 192.29
70 0.310 2 5.245 63.418 451.49
80 0.385 7 10.034 9 128.45 1 892
90 0.526 4 17.225 199.05 4 651

100 0.824 2 32.257 1 318.87 7 923
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The results for computation times of transformation and

classical binary algorithm are in Table 4.

Table 4 Computation times (in seconds) for tr. + bin.

m
n

3 5 7 10

10 0.013 4 0.031 8 0.123 2.329 3

20 0.023 8 0.117 6 1.584 9 14.316

30 0.071 3 0.474 1 7.487 1 105.71

40 0.103 6 1.249 25.141 523.56

50 0.746 2 2.930 7 68.215 963.46

60 1.938 2 8.352 1 97.404 1 622

70 3.230 4 13.138 145.28 3 059

80 7.365 1 24.398 208.51 4 532

90 15.028 39.274 291.75 6 023

100 22.242 60.083 378.93 7 821

In general, a computational time is influenced by number

of concepts which should be created. Thus it depends on pa-

rameters n and m respectively. The greater value of m, the

larger is the lattice
∏

a∈A Da. Hence, the likelihood for creat-

ing a concept is greater than for a smaller value of m. Con-

sequently, more concepts are created and the computational

time is greater.

In the case when the number of attributes is bounded as

well as the maximal cardinality of complete lattices c and

d, the time complexity of the proposed transformation is

bounded by a linear function T � K · n according to the

parameter n (number of objects). This situation appeared in

our experiments. As one can see, for the small values of n

the effect of the transformation is significant. However, with

the greater values n, the ratio of computation times becomes

smaller. Hence the transformation effect is not so significant

as for relatively small n. Although presented results also de-

pend on the implementation aspects of both algorithms, this

fact can indicate that GOSCL algorithm is not so effective as

combination of transformation with the next application of

relatively fast binary algorithm. However, in order to achieve

the greater statistical credibility, this hypothesis should be

verified on the larger samples.

4 Conclusions

We described a representation of the heterogeneous concept

lattices, introduced in [28], as the classical concept lattices.

This representation is based on the so-called basic theorems

for concept lattices (for the classical as well as for the het-

erogeneous case). We also provided an expression describing

isomorphism between the classical and heterogeneous con-

cept lattices. Such representation allows to use various algo-

rithms designed for classical contexts also for heterogeneous

ones. Hence, the efficiency of any new algorithm developed

for the heterogeneous concept lattices can be compared with

those classical ones. Also we think that some well developed

notions from FCA could be transformed into heterogeneous

approach via this representation.
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