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Abstract With the explosive growth in the number of pro-

tein sequences generated in the postgenomic age, research

into identifying cytokines from proteins and detecting their

biochemical mechanisms becomes increasingly important.

Unfortunately, the identification of cytokines from proteins

is challenging due to a lack of understanding of the struc-

ture space provided by the proteins and the fact that only a

small number of cytokines exists in massive proteins. In view

of fact that a proteins sequence is conceptually similar to a

mapping of words to meaning, n-gram, a type of probabilistic

language model, is explored to extract features for proteins.

The second challenge focused on in this work is genetic algo-

rithms, a search heuristic that mimics the process of natural

selection, that is utilized to develop a classifier for overcom-

ing the protein imbalance problem to generate precise pre-

diction of cytokines in proteins. Experiments carried on im-

balanced proteins data set show that our methods outperform

traditional algorithms in terms of the prediction ability.

Keywords n-grams, genetic algorithm, cytokine identifica-

tion, sampling, imbalanced data

1 Introduction

Cytokines are proteins or micromolecular polypeptides, and

are also seen as small signaling molecules for cell signaling.

With the development of Bioinformatics, research into the

identification of cytokines has grown rapidly because it is

commonly believed that cytokines can be of great help in

preventing, diagnosing, and curing diseases, especially on

tumor, inflammation and hematopoietic disorder. Therefore,
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recognizing cytokines from protein data sets are vital for fur-

ther studies into cytokines.

Cytokines are a category of small proteins and methods for

classifying general proteins deliver a great help on the identi-

fication of cytokines. Previous research into the classification

of proteins has been developed by analyzing sequence struc-

tures and then predicting them using self-built or basic clas-

sifiers such as support vector machines (SVM) and random

forest [1]. These research methods are as follows:

• Hidden markov model (HMM) [2] and artificial neutral

network (ANN) [3], both are based on statistical learn-

ing theory.

• Basic local alignment search tool (BLAST) [4] and

FASTA [5] are sequence alignments based on similar-

ity.

• Emphasizing machine learning techniques, CTKPred

[6] and a prediction method proposed by Liu et al. [7],

are both based on SVMs. Some other methods use en-

semble classifiers [8] or hierarchical multi-label classi-

fiers [9] to get precise prediction.

Additionally, some web-servers has been constructed to

provide a powerful and efficient way to operate the predic-

tion [8,10].

In our approach, the analysis of protein sequence structure

and machine learning techniques is emphasized to identify

cytokines from proteins. We introduce a probabilistic lan-

guage model called n-gram to extract protein features as a

preparation for predicting cytokines, following this, we use a

self-built classifier that aggregates a sampling model and ba-

sic classifiers to classify the imbalanced protein data sets and

provide the final predictions.
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As a preliminary, we know that a sequential model is typ-

ically used for representing proteins, and in the model, the

structure and function of proteins are encoded by characteris-

tic amino acid sequences. However, a fundamental unsolved

problem is: when we obtain a primary protein sequence, how

do we find its 3-dimensional structure and its function in a

complex cellular environment? Sequence similarity-based-

search tools are usually used to predict the above mentioned

problem, e.g., BLAST [4]. However, this method does not

work when query proteins that do not have significant se-

quence similarity to the properties of known proteins. n-gram

analysis, which has been proven to be exceedingly successful

in the domain of natural language, and is directly responsi-

ble for progress in automatic speech recognition, text clas-

sification, information extraction, statistical machine transla-

tion, and other successful challenging tasks in the past four

decades. Moreover, the n-gram model have recently been

also recommended as an efficient way to analyze protein

sequencens [11], and some improved n-gram models have

recently been developed for protein sequence classification

[12]. Hence, we hypothesize that the n-grams model can be

used to explore the sequence landscape of proteins and pro-

vide fundamental feature representation to identify cytokines

during classification.

However, the number of cytokines is many fewer than the

large number of proteins, which makes the problem of cy-

tokine identification an imbalanced binary classfication prob-

lem. Although cytokine identification has been widely stud-

ied in academia and a variety of methods have been devel-

oped but there is still no work that considers the affect of

imbalanced data influence on the prediction.

The key to addressing the problem of imbalance is to sam-

ple the data set in such a way to form a balanced training

set. Previous studies on sampling usually select the desired

training set at random, which is easily influenced by noise

or ignores the information from unselected data. In our ap-

proach, the sampling technique is developed using a genetic

algorithm [13]. Using a genetic algorithm, natural selection

is imitated across a large number of groups and the best one

groups survive and evolve over a certain number of genera-

tions. In particular, more improvements are exploited to make

this sampling technique more stable and converge quickly.

Based on the sampling technique, a self-built classifier is con-

structed as the ultimate predictor for cytokine identification.

Section 2 outlines the methods we will use for our experi-

ments. Section 3 shows the results obtained, and finally Sec-

tion 4 states the conclusions of our work and future research

directions.

2 Methods

Several procedures have been developed to address the issues

of cytokines identification. These procedures include the ex-

traction of features using the n-gram model and building a

classifier to predict cytokines. More specifically, a sampling

model was built based on genetic algorithms to draw a bal-

anced subset from an imbalanced data set, and then a classi-

fier, called an simple genetic algorithm (SGA) classifier was

developed by training the subset to give predictions. Addi-

tionally, several improvements were made to strengthen the

SGA classifier.

2.1 Feature extraction

An n-gram model is a type of probabilistic language model

for predicting the next item in a sequence; supposing that the

nth item is only related to the item before it, and the proba-

bility of current sequence is the product of the probability of

every item in current sequence. Suppose that a sentence w is

a sequence of words (items) w1,w2, . . . ,wn, the probability of

sentence w under the n-gram model is described in Eq. (1):

P(w) =
n∏

i=1

P(wi|w1w2w3· · ·wi−1). (1)

Along this line of consideration, we suppose that the oc-

currence probability of the ith word is related to the N − 1

words instead of only the words before it, then Eq. (1) can be

described in Eq. (2):

P(w) =
n∏

i=1

P(wi|wi−N+1wi−N+2wi−N+3· · ·wi−1). (2)

In Eq. (2), the most commonly N values are 1, 2, and 3,

called 1-gram, 2-gram and 3-gram, respectively.

• 1-gram: works as a words frequency table that describes

the occurrence probability of each word.

• 2-gram: equivalent to a transfer matrix. Provides the oc-

currence probability for each word when given the word

before it.

• 3-gram: is a 3-dimensional transfer matrix that provides

the occurrence probability for each word wi when given

2 specific words wi−1 and wi−2.

Proteins can be described as an amino acid sequence in a

FASTA format file, and just like the mapping of words to

meaning, the mapping of these sequences to structure and

function of proteins is conceptually similar. This analogy is
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being studied by a growing number of researchers, and in our

approach we combine 1-gram and 2-gram models to extract

features of proteins. The standard 20 amino acids are seen

as words of a protein sentence. We compute the appearance

frequency for different amino acid items as features. In the

1-gram model, there are 20 kinds of item, and there are 202

kinds of items in the 2-gram model. In total, for a protein

sequence, there are 420 combinations. Furthermore, we cal-

culated the frequency of occurrence for each combination of

a protein sequence, and there are 420 features in total. The

algorithm is described as follows in detail.

Thus, word n-gram analysis was applied to biological se-

quences. In this way, a 1 × 420 numeric array was obtained

for each specific protein sequence, that is, for n protein se-

quences, we obtain an n × 420 array. We consider that a nu-

meric array can represent the protein sequence and contain

enough information for classification. We employ the ensem-

ble classifier to distinguish the arrays and find protein differ-

ences. The n-gram model extracts more essential protein fea-

tures compared to other methods [8], this will be discussed in

Section 3.

2.2 Basic SGA classifier

A basic SGA classifier framework is developed in two steps.

Building a sampling model based on a genetic algorithm in

order to tap a superior balanced training set from the imbal-

anced data set is a preliminary. Afterwards, the SGA classi-

fier takes shape by training a traditional classifier using the

balanced set previously obtained.

We confirm that there is a best balanced training set exists
in the imbalanced data set, what matters is that it is extremely
difficult to discover if random selection is adopted. Nonethe-
less, genetic algorithms provide a way to find the approxi-
mate best after many generations. That is, a balanced training
set that has good prediction performance will be obtained.

Genetic algorithms mimic natural selection, in which we

randomly initiate a large number of balanced sets, called

groups, as the ancestors. Descendants are generated from

Fig. 1 The sampling model using genetic algorithm
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these groups with an interaction rate α, and a fitness func-

tion plays a significant part in this procedure to evaluate their

prediction ability and discard those that are poor in classifica-

tion. After many of generations, a best group will be kept and

this is the desired balanced set. The procedure is as illustrated

in Fig. 1.

In this procedure, a fitness function based on the value clas-

sifiers measured is essential to assess every group. Binary

classification yields two discrete results: positive and nega-

tive. Table 1 shows the four possible outcomes four possible

outcomes; if a positive sample is correctly classified , it is

counted as a true positive (TP), otherwise false negative (FN),

and if negative example is classified correctly, it is counted as

a true negative (TN), otherwise a false positive (FP).

Table 1 Confusion matrix

Predicted positives Predicted negatives

Real positives TP FN

Real negatives FP TN

Algorithm 1 Using n-gram to extract features of proteins

1: procedure extractFeatures (int n)

2: sum← 0, i← 0, values[] ← 0

3: seq← a protein sequence

4: aminoAcids← 20 amino acid abbreviations

5: while i < n do

6: sum← sum + 20i+1

7: allPermutations[] ← permutation(aminoAcids, i + 1)

8: end while

9: i← 0

10: while i < n do

11: for ( j = 0; j < seq.length() − i;+ + j) do

12: str ← seq.subS tring( j, j + i)

13: for (k = 0; k < sum;+ + k) do

14: if str = allPermutations[k] then

15: values[k] ← values[i] + 1

16: end if

17: end for

18: end for

19: end while

20: return values[ ]

20: end procedure

Based on the confusion matrix, the accuracy of the result

can be calculated by a fitness function that is the success rate

of the prediction result on the test set, defined by Eq. (3).

f = Accuracy =
T P + T F

T P + T N + FP + FN
. (3)

Based on the sampling model, we can generate a balanced

training set. This training set is used to build a classifier like,

for example a decision tree, and then it can be used to predict

the class of test set. The basic SGA classifier is illustrated in

Fig. 2.

Fig. 2 The basic SGA classifier

2.3 Improved SGA classifier

In order to improve the performance of the SGA classifier,

two methods were utilized. First a new fitness function re-

places Eq. (4), and a voting classifier with discriminative pre-

diction tables contributes to the classification result.

Equation (3) places great value on the success rate of to-

tal prediction of the test set, in imbalanced binary classifica-

tion problems, however, correctly classifying examples from

the minority class (true positives) can be more important than

correctly classifying examples from the majority class (true

negatives). In other words, all the instances in the test set can

be predicted as the majority class will result in a high but use-

less success rate. Therefore, the true positive (TP) and true

negatives (TN) should be considered and a weighted average

in Eq. (4).

f = ω ∗ T P
T P + FN

+ (1 − ω) ∗ T N
T N + FP

. (4)

In this equation, the classification accuracy of both classes

is treated equally when ω = 0.5, and minority class will con-

tribute more to the fitness function than majority class when

ω > 0.5.

This fitness function is designed to investigate two aspects.

The first aspect is how to effectively balance the TP and TN

rates for a specific instance of a particular classification task.

The second aspect is whether classifiers that produce stronger

classification accuracy on the minority class (i.e., ω in favour

of the TP rate), will have better classification ability when

compared to a classifier whose fitness function treats the ac-

curacy of both classes as equally important.

Futhermore, considering that a single subset sampled from

the original data set is not convincing enough, three subsets

are sampled instead using that model, as shown in Fig. 3. One
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Fig. 3 The improved sampling model using genetic algorithm

of them, named best balanced training subset(T) (BBTS(T))

is inherent in the basic sampling model, and the others,

named best balanced training subset(P) (BBTS(P)), whic is

precise for positive instances, and best balanced training sub-

set(N) (BBTS(N)), which is precise for negative instances.

To distinguish the preoperties of the two subsets, two fitness

functions are used to achieve these subsets. Equation (5) con-

centrates on the number of TPs, all positives for BBTS(P),

and in likemanner as Eq. (6), the success rate of prediction on

negative instances, to which is attached importance, is specif-

ically for sampling BBTS(N).

fP =
T P

T P + FP
. (5)

fN =
T N

T N + FN
. (6)

Previous improvements on the sampling model aim at

achieving three distinctive balanced sets. Using training that

separates the internal classifier in SGA will gives its fore-

cast for each instance from the test set. That is, for a particu-

lar instance from the test set, there will be three class labels.

All possible combinations of the three class labels are shown

in Table 2. 0 and 1 are class label the internal classifier in

SGA classifier gives, 0 means the prediction result is positive

while 1 means negative. P1 is the prediction result given by

training BBTS(T). P2 is the prediction result given by train-

ing BBTS(P). P3 is the prediction result given by training

BBTS(N).

Table 2 Possible combinations of prediction results

No. P1 P2 P3

1 0 0 0

2 0 0 1

3 0 1 0

4 0 1 1

5 1 0 0

6 1 0 1

7 1 1 0

8 1 1 1

In fact, the final class label is required for every combina-
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tions. Conventionally, the final class label of every row should

be the same as the one most predicted, as shown in Table 3.

Moreover, this rule of getting the final class label can be de-

scribed by Eq. (7).

FPbasic = �P1 + P2 + P3 − 1.5
3

�. (7)

Table 3 Basic prediction table (FP is the final class label)

No. P1 P2 P3 FP

1 0 0 0 0

2 0 0 1 0

3 0 1 0 0

4 0 1 1 1

5 1 0 0 0

6 1 0 1 1

7 1 1 0 1

8 1 1 1 1

Even so, this basic approach to give a final class label does

not take full advantage of the properties of BBTS(P) and

BBTS(N). Take BBTS(P) for example, its ability to clasify

positive instances is nonnegligible, which means it is very in-

fluential when it labels “0” to a specific instance. Simultane-

ously, labeling “1” under training BBTS(N) should be taken

with a higher weight. Similarly important, the prediction abil-

ity of three distinctive training sets should be assessed to de-

cide the weighting we should apply.

Because BBTS(P) focuses on positive classification and

BBTS(N) specializes in negative classification, BBTS(T) is

selected as the standard of balancing the classification abil-

ity in both cases. In other words, the prediction ability in

BBTS(P)’s and BBTS(N)’s expertise should be better than

that of BBTS(T)’s. Therefore, three situations should be con-

sidered as follows:

1) The prediction ability of BBTS(P) > BBTS(N) �
BBTS(T).

2) The prediction ability of BBTS(N) > BBTS(P) �
BBTS(T).

3) The prediction ability of BBTS(P) ≈ BBTS(N) �
BBTS(T).

For this purpose, Eq. (7) is improved to Eq. (8).

FPimproved = � (3 − ω1 − ω2)P1 + ω1P2 + ω2P3 − 1.5
3

�. (8)

For the three situation, the parameters take the following

values,

1) ω1 = 1.6, ω2 = 0.9;

2) ω1 = 0.9, ω2 = 1.6;

3) ω1 = 1, ω2 = 1.

In the situations mentioned above, three logical expres-

sions were explored to give final classification results.

1) FP1 = P1P2 + P2P3;

2) FP2 = P3 + P1P2;

3) FP3 = P1P2 + P1P3 + P2P3.

Therefore, a new prediction table was developed as seen in

Table 4, and the improved SGA classifier framework is shown

in Fig. 4.

Table 4 Improved prediction table (FP1 is the final class label of situation
1); FP2 is the final class label of situation 2); FP3 is the final class label of
situation 3))

No. P1 P2 P3 FP1 FP2 FP3

1 0 0 0 0 0 0

2 0 0 1 0 1 0

3 0 1 0 0 0 0

4 0 1 1 1 1 1

5 1 0 0 0 0 0

6 1 0 1 0 1 1

7 1 1 0 1 1 1

8 1 1 1 1 1 1

2.4 Measurement

In the same manner introduced in Section 2.2, the most fre-

quently used metric is accuracy, defined by Eq. (3). However,

accuracy is not a useful measure for imbalanced data, espe-

cially when there are many fewer instances of the minority

class than the majority class. In the simplest case, if a given

data set includes 1 positive instance and 99 negatives, a naive

approach to classifying examples to be a majority class would

be to reach an accuracy of 99 percent. On the surface, the ac-

curacy rate of 99 percent across the entire data set appears

superb instead of reflecting the fact that none of minority in-

stances are successfully identified.

Several measures have been developed to take into account

the imbalance nature of the problems [14]. Given the confu-

sion matrix, the true positive (TP) rate, also called as recall,

and true negative (TN) rate are defined in Eqs. (9) and (10):

T Prate =
T P

T P + FN
. (9)

T Nrate =
T N

T N + FP
. (10)

FPrate =
FP

T N + FP
. (11)

FNrate =
FN

T P + FN
. (12)
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Fig. 4 The Improved SGA Classifier

Precision =
T P

T P + FP
. (13)

From these basic metrics, others have been proposed, such

as the F-measure [15] or, if we are concerned about the per-

formance of both negative and positive classes the G-mean

measure [16]:

F-measure =
2 × Precision × Recall

Precision + Recall
, (14)

G-mean =
√

T Prate × T Nrate. (15)

Furthermore, many classifiers are subject to some kind of

threshold that can be varied to achieve different values of

the above measures. Each threshold value generates a pair

of measurements of (FPrate, T Prate). By linking these mea-

surements with the FPrate on the X-axis and the T Prate on the

Y-axis, an receiver operating characteristic (ROC) [17] graph

is plotted. The ideal model is one that obtains 1 TP rate and 0

FP rate. An ROC curve gives a good summary of the perfor-

mance of a classification model. To compare several classifi-

cation models by comparing ROC curves, it is hard to claim

a winner unless one curve clearly dominates the others over

the entire space [18]. The area under an ROC curve (AUC)

provides a simple measure of classifier performance for eval-

uating which model is better on average.

3 Experiments and discussion

3.1 Imbalanced data set

The protein family database (PFAM) is a large collection of

protein families and domains [19], in which we simply divide

them into two classes, cytokines and non-cytokines. To dis-

tinguish cytokines family members from PFAM, seven steps

need to be completed as follows:

1) Download cytokines from UniProt (http://www.uni-

prot.org/);

2) Delete duplicate cytokines;

3) Determine and store the PFAM ID for every cytokine

sequence;

4) Delete duplicate PFAM IDs;

5) Choose the longest cytokine sequence as a positive in-

stance for every PFAM ID;

6) Delete all the positive PFAM IDs from PFAM;

7) Choose the longest cytokines sequence as a negative in-

stance for every negative PFAM ID.

In this way, a 126 cytokine sequence was obtained for pos-

itive instances and a 10 260 protein sequence for the negative

class. With ratio 1 : 81.43, an imbalanced data set for identi-

fying cytokines took shape.

3.2 Selection of parameters and prediction table

In a natural selection process, the inheritable variation of

chromosome variation and gene mutation bears the respon-

sibility of delivering gene information to the next generation.

Chromosome variation usually emerges in the parents genes

for their child through mutation.

In a genetic algorithm, this kind of variation must be intro-

duced. The mutation rate is set to α. We varied α from 0% to
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20%. Additionally, as mentioned in Section 2.3, parameter ω

in the fitness function and the prediction table in SGA classi-

fier need to be preassigned. To study their impact on the final

classification performance, in this group of experiments, we

variedω from 0 to 1, and chose the three individual prediction

tables to test which has better performance.

As shown in Table 5, the highest AUC value with least

fluctiation is achieved when α = 0.15.

Table 5 Classification result using different gene mutation rates α

α Accuracy G-mean AUC

0.00 0.56 ± 0.13 0.63 ± 0.04 0.62 ± 0.02

0.05 0.50 ± 0.12 0.62 ± 0.05 0.64 ± 0.03

0.10 0.56 ± 0.15 0.64 ± 0.07 0.65 ± 0.04

0.15 0.57 ± 0.15 0.64 ± 0.05 0.65 ± 0.03

0.20 0.57 ± 0.15 0.64 ± 0.05 0.65 ± 0.04

As shown in Table 6, the highest AUC value with least

fluctuation is achieved when ω = 0.5.

Table 6 Classification result using new fitness function with different
weights

ω Accuracy G-mean AUC

0.3 0.57 ± 0.03 0.64 ± 0.04 0.65 ± 0.04

0.4 0.59 ± 0.01 0.65 ± 0.03 0.65 ± 0.04

0.5 0.60 ± 0.05 0.64 ± 0.03 0.65 ± 0.03

0.6 0.60 ± 0.06 0.64 ± 0.03 0.64 ± 0.03

0.7 0.59 ± 0.02 0.65 ± 0.07 0.66 ± 0.08

We performed an experiment using the prediction tables as

shown in Table 4, the results are given in Table 7, where we

can see that FP1 achieves a higher AUC value.

Table 7 Classification result using different prediction table (FP1, FP2,
and FP3 refer to Table 4, which aggregates the three kinds of prediction
table mentioned in Section 2.3)

Prediction Table Accuracy G-mean AUC

FP1 0.74 ± 0.05 0.68 ± 0.02 0.69 ± 0.02

FP2 0.82 ± 0.04 0.67 ± 0.01 0.68 ± 0.01

FP3 0.77 ± 0.07 0.68 ± 0.03 0.68 ± 0.02

3.3 Comparing basic SGA with improved SGA and other

software tools

To demonstrate the performance of the improved SGA com-

pared with basic SGA, we conducted experiments to compare

their effects. The results are given in Table 8, which illus-

trates that the improved SGA outperforms basic SGA in all

the three aspects (ACC, GM, AUC).

There are only a few software tools or web servers avail-

able on line that can predict cytokines from protein pri-

mary sequences. We compare our algorithm (CytoSGA)

against CTKPred [6] and CytoKey1). CTKPred was pro-

posed for identifying cytokine using SVM. It extracts features

from depeptide composition and makes comparisons using

PFAM search. We compare our CytoPre with CytoKey and

CTKPred. Experiments show our system can outperform the

other approaches, as shown in Table 9.

Table 8 Classification result using basic and improved SGA (The basic
one use the regular fitness funtion; the improved SGA classifier works with
α = 0.15, ω = 0.5, and using FP1 as its prediction table)

SGA Accuracy G-mean AUC

Basic 0.57 ± 0.15 0.64 ± 0.05 0.65 ± 0.03

Improved 0.74 ± 0.05 0.68 ± 0.02 0.69 ± 0.02

Table 9 Classification result comparing with different software tools

Feature extraction method Accuracy G-mean AUC

CTKPred 0.66 ± 0.04 0.64 ± 0.03 0.64 ± 0.03

CytoKey 0.69 ± 0.04 0.65 ± 0.02 0.67 ± 0.02

CytoSGA 0.74 ± 0.05 0.68 ± 0.02 0.69 ± 0.02

4 Conclusion

Our propsed cytokine identification method employs a ge-

netic algorithm to sample from the negative set. This im-

proved genetic algorithm can discover representative nega-

tive samples and improve the generalization of the classifier.

It solves the imbalanced data classification problem, and in-

creases the cytokine detection performance. However, sam-

pling loses the negative data information. Our method may

not be suitable for other applications. Imbalanced classifica-

tion for big data is still an open problem to be addressed in

the future.

The JAVA code of this work is freely available online2) .
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