
Front. Comput. Sci., 2014, 8(3): 426–439

DOI 10.1007/s11704-014-3443-9

Achieving high throughput and TCP Reno fairness in
delay-based TCP over large networks

Jingyuan WANG 1, Jiangtao WEN2, Yuxing HAN4, Jun ZHANG2, Chao LI1,3, Zhang XIONG1

1 School of Computer Science and Engineering, Beihang University, Beijing 100191, China

2 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

3 Research Institute of Beihang University in Shengzhen, Shenzhen 518057, China

4 Flora Production Inc., Santa Clara CA 95054, USA

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Abstract The transport control protocol (TCP) has been

widely used in wired and wireless Internet applications such

as FTP, email and HTTP. Numerous congestion avoidance al-

gorithms have been proposed to improve the performance of

TCP in various scenarios, especially for high speed and wire-

less networks. Although different algorithms may achieve

different performance improvements under different network

conditions, designing a congestion algorithm that can per-

form well across a wide spectrum of network conditions

remains a great challenge. Delay-based TCP has a potential

to overcome above challenges. However, the unfairness prob-

lem of delay-based TCP with TCP Reno blocks widely the

deployment of delay-based TCP over wide area networks.

In this paper, we proposed a novel delay-based congestion

control algorithm, named FAST-FIT, which could perform

gracefully in both ultra high speed networks and wide area

networks, as well as keep graceful fairness with widely de-

ployed TCP Reno hosts. FAST-FIT uses queuing delay as a

primary input for controlling TCP congestion window. Packet

loss is used as a secondary signal to adaptively adjust param-

eters of primary control process. Theoretical analysis and ex-

perimental results show that the performance of the algorithm

is significantly improved as compared to other state-of-the-art

Received November 6, 2013; accepted April 7, 2014

E-mail: jywang@buaa.edu.cn

algorithms, while maintaining good fairness.

Keywords TCP congestion control, congestion avoidance,

fairness

1 Introduction

The Transport control protocol (TCP) is a reliable

connection-oriented transport layer protocol that is widely

used on the Internet. Congestion control is an integral module

of TCP that directly impacts the performance of the protocol.

TCP implements congestion control using a sliding window

called the congestion window. Standard TCP congestion con-

trol algorithms such as TCP Reno [2], which make use of the

slow start (SS) and congestion avoidance (CA) algorithms

to adjust the size of the congestion window, have enjoyed

tremendous success to date. However, both high-speed net-

works channels such as optical-fiber links and lossy channels

like wireless networks could cause significant performance

degradation for TCP Reno. On one hand, TCP Reno assumes

all packet losses are only caused by over-driving the network;

therefore any packet losses caused by random physical layer

artifacts (e.g., multi-path, interferences) that have nothing to

do with congestion will also cause the CA algorithm of Reno

to aggressively slow down the transmission rate. On the other

hand, in a high-speed network, TCP Reno requires a very low

This paper is an extended version of the 2014 International Conference on Computing, Networking and Communications paper [1].



Jingyuan WANG et al. Achieving high throughput and TCP Reno fairness in delay-based TCP over large networks 427

bit error rate (in the order 10−7 or lower [3]) to fully utilize

network capacity. This requirement is far from the reality of

network condition.

Many TCP variants have been proposed to improve the CA

algorithm of TCP Reno over wireless or high speed networks,

including TCP Westwood [4, 5], TCP Veno [6] for wireless

applications and highspeed TCP [7], scalable TCP [8] com-

pound TCP [9], TCP CUBIC [10] for high speed networks,

as well as some variants and related technololgies for data-

center networks [11, 12]. Some literatures reported the delay

based TCPs, like TCP Vegas [13] and FAST TCP [3], had a

good scalability over wireless and highspeed network [14],

but the unfairness problem between delay based TCP and

widely deployed TCP Reno limited their deployment in the

Internet [15]. In other words, although these existing TCP

variants have achieved success in their respective target appli-

cations, designing a TCP CA algorithm that performs grace-

fully in both wireless and high speed links to deal with het-

erogeneity of the Internet remains a great challenge.

With network queuing delay as the algorithms inputs,

FAST TCP also has great potential to overcome above chal-

lenges. However, the well-know shortcoming of delay-based

TCP that it is unable to fairly co-exist with standard TCP

Reno seriously limits FAST TCP wide deployment over wide

area networks. Although many improved TCP variants, such

as compound TCP [9], Cx-TCP [16] etc., are proposed to

enable the coexistence between delay-based TCP and TCP

Reno, none of them can achieve similar performance to FAST

TCP over ultra high speed networks. Designing a TCP vari-

ant that can achieve the stat-of-the-art performance over both
ultra high-speed networks and wide area networks, in other

words, enabling FAST TCP over WAN, still remains a great

challenge.

In this paper, we first analyze the theoretical advantages

and disadvantages for existing TCP CA algorithms from the

throughput model perspective, and demonstrate the advan-

tage of pure delay based TCP algorithms over other CA al-

gorithms when used over wireless and high speed networks.

Based on the analysis, we show that the unfairness between

delay based TCP and TCP Reno is a major barrier of obtain-

ing efficient and fair congestion avoidance for wireless and

high speed heterogeneous network. To solve this problem, we

propose a novel TCP CA algorithm, named FAST-FIT, which

is a continuation and improvement over the TCP-FIT [17–19]

algorithm that we proposed. Similar to the Reno based TCP-

FIT, FAST-FIT is capable of utilizing more fully the capacity

of wireless and high-speed networks while maintaining good

fairness characteristic. In contrast to the TCP-FIT algorithm

in [18] which uses packet loss as the primary congestion win-

dow control input, FAST-FIT primarily uses queuing delay,

and thereby improves the performance in high packet loss

environments. Experiments over live networks with emula-

tors demonstrated the throughput and fairness characteristic

of the proposed algorithm and improvements over other ap-

proaches.

The rest of this paper is organized as follows. An analysis

of the inherent performance limitation based on the through-

put model of existing loss-based and hybrid TCP algorithms

is provided in Section 2. An analysis on advantages and dis-

advantages of delay based TCP algorithms is provided in Sec-

tion 3. In Section 4, a novel TCP algorithm, FAST-FIT, is

proposed on the basis of recent proposed TCP-FIT. In Sec-

tion 5, three sets of experimental results, Emulation experi-

ments, PlanetLab experiments and 3G wireless experiments

are shown. Section 6 concludes the paper.

2 Throughput model based analysis of exist-
ing loss based and hybrid CA algorithms

In this section, we use the throughput models to analyze the

inherent performance limitations of existing loss based and

hybrid Congestion Avoidance algorithms. We will use TCP

Reno as an example, although the same analysis also applies

to other loss based or hybrid CA algorithms.

As illustrated in Fig. 1, we assume that the network only

contains one bottleneck link with a bandwidth capacity limit

C. We also assume that there are S TCP sessions indexed

by s ∈ {1, 2, . . . , S } sharing this bottleneck link, and differ-

ent sessions may have different non-bottleneck routing paths.

For each TCP session s, the corresponding end-to-end round-

trip propagation delay and inherent random packet loss rate

are denoted as Ds and Ps respectively. Ds and Ps reflect

the aggregated impacts of both the bottleneck link and the

non-bottleneck links traversed by session s. After the com-

bined throughput of all TCP sessions reaches the bottleneck

capacity C, TCP packets begin to queue up in various buffers,

Fig. 1 A network with single bottleneck link



428 Front. Comput. Sci., 2014, 8(3): 426–439

resulting in a queueing delay. When the length of a queue

becomes longer than a threshold, routers using mainstream

queue management algorithms will start dropping packets,

producing congestion packet loss.

For TCP session s, the throughput T ′s(t) is adjusted in each

period according to a function Fs:

T ′s(t + 1) = Fs(T
′
s(t), v

′(t)), (1)

where v′(t) is the congestion measure price of the bottle-

neck link at period t. Following the notation of [20], v′(t) =
m(p′(t), q′(t)), where v′(t) is a function of the congestion

packet loss rate p′(t) and the queuing delay q′(t) of the bot-

tleneck link at time t. To investigate the intrinsic properties of

Congestion Avoidance algorithms, we follow the convention

of [20] and [21], and ignore the impacts of factors such as

slow start, time out, and retransmission to the performance of

the system, and assume that the throughput of a TCP session

is determined solely by its Congestion Avoidance algorithm.

According to the conclusion of [20], the network topology

of Fig. 1 will reach a equilibrium state when

Ts = Fs(Ts, v(p, q)), (2)

where p and q are the average congestion packet loss rate and

queueing delay of bottleneck at equilibrium state. Assuming

Fs is continuously differentiable and ∂Fs/∂v � 0 in the open

set {(Ts, v)|Ts > 0, v > 0}, by implicit function theorem, there

exists a unique function fs from {Ts > 0} to {v > 0} that

v = fs(Ts).

Following the conclusion of [21] and [22], the congestion

control process of such network can be modeled as an op-

timization problem that maximizes the aggregate utility of

TCP sessions passed by the bottleneck:

max
T�0

∑

s

Us(Ts), subject to
∑

s

Ts � C, (3)

where Us is the utility function of each session s:

Us(Ts) =
∫

fs(Ts)dTs, Ts � 0,

Since the throughput property of a CA algorithm could be de-

scribed by its throughput model, Fs and fs of a TCP session

s are determined by the throughput model of the Congestion

Avoidance algorithm adopted by s:

Ts = Tca (v(p, q),Ds, Ps) .

The throughput models of several popular TCP CA algo-

rithms are summarized in Table 1 [3,8,9,23–27]. All of these

models follow the same assumptions and only consider the

CA part of a TCP CA algorithm.

Taking TCP Reno as a example, since p � 0 and q � 0,

there is an upper bound for the throughput of a Reno session

s for any given Ps and Ds:

Ts =
1

Ds + q

√
3

2(Ps + p)
�

1
Ds

√
3

2Ps
= T max

s . (4)

For a bottleneck link only contains TCP Reno sessions, when

the optimal solution of the optimization problem defined in

Eq. (3) is achieved, the aggregated throughput of all TCP ses-

sions over the bottleneck link is upper bounded by

∑

s

Ts � min

⎧⎪⎪⎨⎪⎪⎩C,
∑

s

T max
s

⎫⎪⎪⎬⎪⎪⎭ .

It can been seen that when C >
∑

s T max
s , no matter what

the solution of the optimization problem is, the bottleneck

always stays in an unsaturated state. Because T max
s is in-

versely proportional to Ds and
√

Ps as shown in Eq. (4), TCP

Reno sessions are unable to fully utilize network capacity

when the bottleneck link state of the network is extremely

bad (i.e., having a high random packet loss rate and/or a very

long propagation delay), or if the bandwidth of bottleneck is

Table 1 TCP CA throughput models

Throughput models Upper bounds T max

Reno T = 1
D+q

√
3

2(P+p) [23] T max = 1
D

√
3

2P

CUBIC T = 1.17 4
√

1
(D+q)(P+p)3 [24] T max = 1.17 4

√
1

DP3

CTCP T = 1
D+q

Λ

(P+p)
1

2−k
, Λ =

(
1−(1−β′)2−k

2−k

) 1−k
2−k

α
′ 1

2−k (1−(1−β′)1−k)
[9] T max = 1

D
Λ

P
1

2−k

Scalable TCP T = α(1+β)
2(P+p)(1−β)(D+q) [8] T max =

α(1+β)
2PD(1−β)

Defined α = 0.01, β = 0.875

Veno T = 1
D+q

√
1+γ

2(1−γ)(P+p) , where 1
2 � γ �

4
5 [25] T max = 1

D

√
1+γ

2(1−γ)P
Westwood T = 1√

(D+q)((P+p)D+q)

√
(1−(P+p))

P+p [26] T max = 1
DP

√
1 − P

Vegas/FAST T = α′/q, where α′′ is preset parameter [3, 27] ×



Jingyuan WANG et al. Achieving high throughput and TCP Reno fairness in delay-based TCP over large networks 429

sufficiently high. This can be seen as an inherent reason

why TCP Reno cannot achieve optimal performance in wire-

less and/or high speed networks. Similar conclusions can

be drawn from other loss based or hybrid TCP Congestion

Avoidance algorithms in Table 1. As shown in last column of

Table 1, all these algorithms have a corresponding throughput

upper bounder T max, which limits network utilization.

3 Delay based CA algorithms

Based on the results in [27] and [3], in this section we show

that delay based TCP CA algorithms, TCP Vegas and FAST

TCP, have the potential of fully utilizing network bandwidth

capacity, but they have the problem of unfairness.

In delay based TCP algorithms such as TCP Vegas, the

congestion window w is controlled by the following method

[13]:

w←

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w + 1, if di f f < γv,

w, if di f f = γv,

w − 1, if di f f > γv.

(5)

In TCP Vegas, di f f is calculated as:

di f f =

(
w

rttmin
− w

rttavg

)
· rttmin =

rttavg − rttmin

rttavg
w,

where rttavg is the average RTT of a congestion window up-

date period, and rttmin is the minimum RTT sample observed.

rttmin is in general used as a reasonable estimate of the propa-

gation delay of the network. γv is a parameter of TCP Vegas.

In delay based TCP, q = rttavg − rttmin is an approximation

for the queuing delay in bottleneck router, T = w/rttavg could

be considered as an estimate of the average throughput for a

TCP session, since TCP sends w packets in a RTT. There-

fore, the average queue length Q of the in-flight packets in

the bottleneck buffer of a TCP session can be expressed as:

Q = q · T = (rttavg − rttmin) · w
rttavg

. (6)

Therefore, di f f is equal to the length of the in-flight packet

queued in the bottleneck buffer. When TCP Vegas reaches the

steady state, the stable queue length is Q∗ = γv according to

Eq. (5).

In FAST TCP, the congestion window w is controlled by

[3]:

w← min

{
2w,

1
2

w +
1
2

(
rttmin

rttavg
w + γ f

)}
,

where γ f is a parameter. When the congestion window of

FAST TCP reaches the steady state value w∗, γ f can be cal-

culated as

γ f =

(
1 − rttmin

rttavg

)
w∗ =

rttavg − rttmin

rttavg
w∗ = Q∗.

It can be seen from the above analysis that, the queue

length Q equals to γv and γ f for TCP Vegas and FAST TCP

respectively. From Eq. (6), T = Q/q in Vegas and FAST.

Their steady state throughput of delay based CA can then be

calculated as [3, 13]:

Tdelay =
γ

q
. (7)

It is easy to prove that if there exists a Vegas/FAST session

s′ in the network defined in the last section, optimization

problem Eq. (3) will reach a optimal solution that satisfies∑
s∈S Ts = C.

Proof We assume that the optimal solution of Eq. (3) sat-

isfies
∑

s∈S Ts < C, which means that the bottleneck is not

saturated. According to the network model in Fig. 1, there

are no packets queued in bottleneck buffer, leading to queu-

ing delay q = 0. From Eq. (7), Ts′ −→ ∞. This contradicts

with
∑

s∈S Ts < C. �

From the above analysis, theoretically, except for pure de-

lay based TCP CA algorithms such as Vegas or FAST, loss

based or hybrid CA algorithms can only mitigate but can

not fully solve the bandwidth utilization problem in wireless

and/or high speed networks.

Although having the advantage of potentially fully utiliz-

ing network capacity, delay based TCP CA algorithms also

have severe problems. Because of buffers, increasing queu-

ing delay may not necessarily lead to immediate packet loss.

As a result, when delay based TCP shares the same bot-

tleneck with other TCP algorithms, between the time delay

starts to increase and congestion-caused packet loss starts to

occur, the transmission rate for the delay based TCP will de-

crease; while that for other TCPs will not, resulting in un-

fairness. This disadvantage limits the deployment of delay

based TCP CA algorithms in real networks. As pointed out

in [15], “given any target fairness between TCP Reno and

FAST/Vegas, there exists a protocol parameter γ that achieves

it. It is however an open problem how to compute γ in prac-

tice dynamically with only local information.”

4 An Inter-protocol fair delay based CA al-
gorithm

In this section, we describe an inter-protocol fair CA algo-

rithm called FAST-FIT. We show how the proposed delay



430 Front. Comput. Sci., 2014, 8(3): 426–439

based TCP CA algorithm overcomes the problems described

in Sections 2 and 3. The new algorithm has the potential of

fully utilizing network bottleneck capacity, and is able to co-

exist with TCP Reno in a fair way. The design of proposed

algorithm is motivated by throughput model of the TCP-FIT

[18] algorithm.

4.1 TCP-FIT

TCP-FIT is a novel TCP Congestion Avoidance algorithm for

heterogenous networks. It was first proposed by Wang et al.

in [18]. The algorithm is a hybrid TCP CA algorithm and

uses both packet loss and queuing delay as inputs to conges-

tion window control.

Similar to TCP Reno, TCP-FIT uses the additive increase

multiple decrease (AIMD) mechanism to adjust the conges-

tion window w. In AIMD based Congestion Avoidance algo-

rithms,

Each RTT : w← w + a,

Each Loss : w← w − bw,
(8)

where a and b are two parameters that are usually fixed. For

example in TCP Reno, a = 1 and b = 1/2. By contrast, in

TCP-FIT,

Each RTT : w← w + Nt,

Each Loss : w← w − 2
3Nt + 1

w,

where Nt is a dynamic parameter updated periodically:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nt+1 = Nt + 1, Q < α
w̄
Nt
,

Nt+1 = Nt, Q = α
w̄
Nt
,

Nt+1 = max{1,Nt − 1}, Q > α
w̄
Nt
,

(9)

where Q is calculated as in Eq. (6), and similar to the value of

di f f in TCP Vegas, is the estimated average queue length of

the in-flight packets in the bottleneck buffer. w̄ is the average

window size of a Nt update period and α ∈ (0, 1) is a preset

parameter.

The average throughput model of Eq. (8) is found in [28]

as:

T =
1

RTT

√
2b

a(2 − b)PLR
. (10)

Using the notations in Sections 2 and 3, and let D, P, q, p

be the end-to-end propagation RTT, the inherent packet loss

rate, the queuing delay and the congestion packet loss rate of

a TCP session, then RTT = D+q and PLR = P+ p. Let a = 1

and b = 1/2, the throughput model of TCP Reno

Treno =
1

D + q

√
3

2(P + p)
. (11)

For TCP-FIT, in the steady state, a = N∗ and b = 2/(3N∗+1),

where N∗ is the steady state of Nt, we get:

Tfit =
N∗

D + q

√
3

2(P + p)
. (12)

Comparison between Eqs. (12) and (11) shows that the

throughput of TCP-FIT is N∗ times of the throughput of TCP

Reno under the same network conditions.

From Eq. (9) we also know that N∗ satisfies:

Q∗fit = α ·
w̄∗

N∗
, (N∗ � 1), (13)

where Q∗fit and w̄∗ are average queue length and window size

at the steady state. On the other hand, from Eq. (6) we have

Q∗fit = q · w̄∗

D + q
. (14)

Combining Eqs. (13) and (14) gives

N∗ = max

{
α

D + q
q
, 1

}
. (15)

Plugging Eq. (15) into Eq. (12), we find the throughput model

of TCP-FIT:

Tfit = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α

q

√
3

2(P + p)
,

1
D + q

√
3

2(P + p)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (16)

It is easy to show following the same proof as for Vegas and

FAST in Section 3 that TCP-FIT can fully utilize network

bandwidth.

4.2 The FAST-FIT algorithm

Comparing the throughput models of TCP-FIT with Ve-

gas/FAST, it is observed that if let γ = α
√

3/2(P + p), Ve-

gas/FAST would have a similar throughput expression as

TCP-FIT, i.e.,

T =
α

q

√
3

2(P + p)
. (17)

Therefore solely from the throughput model perspective,

TCP-FIT can be considered as a delay based TCP having an

average queue length of Q∗fit = α
√

3/2(P + p). We know TCP

sends w packets during a RTT, and the average window size

of TCP Reno should be

w̄reno = T · (D + q) =

√
3

2(P + p)
=

1
α

Q∗fit. (18)



Jingyuan WANG et al. Achieving high throughput and TCP Reno fairness in delay-based TCP over large networks 431

Therefore, from Eq. (18), we know that the queue length of

a TCP-FIT session is α times of the window size of a TCP

Reno session under the same network condition.

To guarantee that the throughput of TCP-FIT is not lower

than TCP Reno, N is limited to a value of at least 1. In ad-

dition, we can show that a well selected α will ensure that

the value of N of a TCP-FIT session will decrease to 1 when

a TCP-FIT and some TCP Reno sessions share a bottleneck

without random packet loss.

For a network scenario where a group of TCP Reno ses-

sions share a lose-free bottleneck link with a TCP-FIT ses-

sion, if α � Q̄reno/w̄reno, the TCP-FIT session will degenerate

to a Reno session, i.e., N∗ = 1. Q̄reno and w̄reno are the average

queue length and window size of the TCP Reno sessions.

Proof Define T̄reno as the average throughput of Reno ses-

sions, Tfit as the throughput of the TCP-FIT session. From Eq.

(16) we know Tfit � T̄reno. We assume that Tfit > T̄reno. Since

they share the same bottleneck and have the same queueing

delay q, we have the relation of queue length of TCP-FIT

session Qfit:

Qfit = Tfit · q > T̄reno · q = Q̄reno. (19)

But from Eq. (18) and α � Q̄reno/w̄reno we have:

Qfit = α · w̄reno �
Q̄reno

w̄reno
· w̄reno = Q̄reno.

This contradicts with Eq. (19), therefore Tfit > Treno cannot

be true, so Tfit = Treno and N∗ = 1. �

Through the proof we found the throughput model of TCP-

FIT can keep a fairness with TCP Reno over a no random

packet loss link if we set α lower than a threshold. It is easier

to implement since we donot need to keep α equal to an exact

value. In practical implementations, Q̄reno/w̄reno can be ap-

proximated by the ratio of buffer size to the bandwidth-delay

product (BDP) of the link. It is approximated by (rttmax −
rttmin)/rttmax in TCP-FIT, where rttmax and rttmin are the max-

imal and the minimal sample values of a TCP session. α is

set to (rttmax − rttmin)/2rttmax. Experimental results show that

both the throughput and fairness of the implementation are

good when adopting this approximation [18].

According to the above analysis, the throughput model of

TCP-FIT has the potential of fully utilizing the network ca-

pacity over wireless and high speed network while preserving

fairness with TCP Reno. The algorithm is also closely related

to delay based TCP algorithms, and we can implement the

following delay based TCP achieving the same steady state

throughput model as in Eq. (17).

In this proposed algorithm that we will name FAST-FIT,

the congestion window is adjusted by:

w← min

{
2w,

1
2

w +
1
2

(
rttmin

rttavg
w + α · β

)}
,

where β is a parament which is updated in a manner similar

to the congestion window in a Reno session, i.e.,

Each RTT : β← β + 1,

Each Loss : β← β/2,
and in the steady state β∗ =

√
3/2(P + p). Therefore the

throughput of FAST-FIT becomes:

TFAST-FIT =
α · β∗

q
=
α

q

√
3

2(P + p)
,

which is identical to Eq. (17). To guarantee that the conges-

tion window of FAST-FIT is no less than that for TCP Reno,

w is set to β if w < β. Therefore, FAST-FIT has the same

throughput model Eq. (16) with TCP-FIT.

FAST-FIT uses queuing delay as the primary congestion

window control signal and packet loss as the secondary sig-

nal to adaptively adjust the parameter β of primary control,

and oppositely, TCP-FIT uses packet loss as the primary con-

trol signal, and queuing delay as secondary signal to adjust

N. FAST-FIT could be considered as a dual implementation

of TCP-FIT. Although FAST-FIT and TCP-FIT have identical

steady state throughput model, their behavior in the transient

state are quite different. As can be seen from the experimen-

tal results, FAST-FIT inherits the inherent random packet loss

immunity of delay based TCP, which has better performance

over high random packet loss networks, whereas TCP-FIT

performs better over low random packet loss environments.

5 Experiments

In this section, we show a group of experimental results from

academic labs to real world deployment. First, we compare

the performance of FAST-FIT with other variants over an

emulator based testbed. Secondly, we show the results per-

formed on 254 nodes of PlanetLab test bed distributed over

192 cities in 43 countries. PlanetLab is a group of com-

puters available as a testbed for computer networking and

distributed system research. Thirdly, we show performance

results over commercial 3G wireless networks: WCDMA

of ChinaUnicom, CDMA 2000 of ChinaTelecom, and TD-

SCDMA of ChinaMobile.

5.1 Emulation experiments

We first compare the performance of FAST-FIT with other



432 Front. Comput. Sci., 2014, 8(3): 426–439

TCP variants over an emulator based testbed. The setup of the

experiments is shown in Fig. 2. In the setup, Linux servers

and a client are connected via a Linktropy emulator1). The

Linktropy emulator provides an interface of adjusting band-

width, packet loss rate, delay, delay distribution, and other pa-

rameters of the network. In our experiments, FAST-FIT and

TCP-FIT are implemented and embedded into Linux kernel

(v2.6.31). Other TCP Congestion Avoidance algorithms are

available on the Linux kernel v2.6.31.

Fig. 2 The setup of emulator testbed

We first investigate the throughput performance for FAST-

FIT, TCP-FIT, Reno, CUBIC and Vegas. In our experiment,

the link bandwidth of Lintropy was set to 4 Mbps, and the

packet loss rate was set from 0.5% to 4%. In each experi-

ment, the propagation delay of the link was varied from 150

ms to 400 ms. As can be seen in Fig. 3, FAST-FIT and TCP-

FIT both achieved higher throughput than other TCP CA

algorithms. When the random packet loss is at a lower level,

Fig. 3 Bandwidth occupation among competing TCP sessions. (a) Packet
loss rate 0.5%; (b) Packet loss rate 1%; (c) Packet loss rate 2%; (d) Packet
loss rate 4%

0.5%, the throughput of TCP-FIT was higher than FAST-FIT.

With increasing packet loss rate and RTT, the throughput of

FAST-FIT becomes higher than TCP-FIT. In order to further

understand this performance difference, we define a network

status factor S = RTT
√

PLR as a quantitative metric of net-

work condition in the paper. As shown in Fig. 4, compared to

TCP-FIT, FAST-FIT has a better performance in worse net-

work environments.

Fig. 4 Throughput performance comparison of TCP variants with different
network status factor over emulator testbed

The throughput improvements of FAST-FIT and TCP-FIT

to other TCP variants are summarized in Table 2. In the

present paper, we define throughput improvement of algo-

rithms A over B as (TA−TB)/TB. As shown in Table 2, FAST-

FIT achieved a remarkable performance gain compared with

other TCP CA algorithms.

Table 2 Throughput improvements on emulator testbed

PLR 0.5% to Vegas/% to Reno/% to CUBIC/%

FAST-FIT 24 300 138

TCP-FIT 460 360 179

PLR 1.0%

FAST-FIT 66 527 310

TCP-FIT 50 466 266

PLR 2.0%

FAST-FIT 176 842 707

TCP-FIT 70 480 397

PLR 4.0%

FAST-FIT 220 890 714

TCP-FIT 75 441 345

We next tested the fairness of FAST-FIT, TCP-FIT, CU-

BIC, Reno and Vegas when they share the same bottleneck

link with Reno. In our experiment, one connection of each of

the above TCP algorithms was set up to compete with four

TCP Reno sessions. The combined bandwidth was set at 10

Mbps, with a propagation delay of 100 ms and 0% to 2% ran-

1) Linktropy mini2 wan emulator



Jingyuan WANG et al. Achieving high throughput and TCP Reno fairness in delay-based TCP over large networks 433

dom packet loss rate. In Fig. 5, the gray part of each bar repre-

sents the bandwidth occupied by the four TCP Reno sessions,

and the black part represents the fifth TCP session. Under per-

fect network conditions with no packet loss, as shown in Fig.

5(a), both TCP-FIT and FAST-FIT occupied about 20% of the

total bandwidth, i.e., it seems as if the Reno sessions were re-

placed by a fifth Reno session, or the theoretical “fair share”.

TCP CUBIC, however, occupies up to 25% of the bandwidth,

i.e., TCP CUBIC might be overly aggressive and therefore is

not TCP Reno friendly. As can be seen from the figure , TCP

Vegas only occupied less than 10% of the bandwidth . When

the packet loss rate was set to 2%, as illustrated in Fig. 5(b),

the combined throughput of all five TCP sessions were only

able to occupy up to 70% of the total network bandwidth.

TCP-FIT in this case was able to pick up some of the capac-

ity that other Reno sessions left unused. It is important to note

that the percentages of the bandwidth that the other Reno ses-

sions used were still comparable to their respective numbers

when five Reno sessions were used, indicating that the ad-

ditional throughput that TCP-FIT was able to “grab” did not

come at the expense of the Reno sessions.

Fig. 5 Bandwidth occupation among competing TCP sessions. (a) Packet
loss rate 0%; (b) packet loss rate 2%

5.2 PlanetLab experiments

PlanetLab is a group of computers available as a testbed for

computer networking and distributed systems research. We

tested and compared the performance of TCP-FIT and FAST-

FIT on PlanetLab along with TCP Reno and CUBIC, as well

as TCP Vegas. In our experiments, 245 PlanetLab nodes lo-

cated in 192 cities of 43 countries were used to download

video clips from HTTP servers located in San Diego, Cali-

fornia, USA. The geographical distribution of these nodes is

shown in Fig. 6. These nodes covered 233 ISPs, representing

the condition of the current Internet.

Fig. 6 Geographical distribution of nodes in PlanetLab experiments

As described in Section 2, in TCP-FIT and FAST-FIT, α

should be set smaller than the ratio of link buffer size and

BDP. This ratio can be approximated by (rttmax−rttmin)/rttmax

average of each link from the server to planetlab nodes.

We used TCP Reno to measure the ratio and its distribu-

tion for each planetlab node (Fig. 7). The average value of

rttmax/(rttmax − rttmin) was 2.25, for the sake of safety, we set

α = 1/5.

Fig. 7 CDF of rttmax/(rttmax − rttmin) on PlanetLab

5.2.1 Throughputs

The throughputs of different TCP CA algorithms on the Plan-

etLab testbed was studied first. In the experiments, PlanetLab

nodes downloaded seven 10-minute video clips encoded at 4

Mbps from an HTTP server located in Orange, California,

USA. The average size of these video clips was 300 MB. 245

planetlab nodes simultaneously and repeatedly downloaded

these clips for six hours. The cumulative distribution function



434 Front. Comput. Sci., 2014, 8(3): 426–439

(CDF) for the download throughput of these nodes is shown

in Fig. 8(a), while the average throughput of these nodes is

shown in Fig. 8(b). As shown in the figures, the through-

put of FAST-FIT was higher than Vegas, Reno and CBUIC

but lower than TCP-FIT. We speculated that this was because

many nodes on PlanetLab were connected using high speed

networks. To justify this speculation, we applied a modified

TCP Vegas with a limited window size smaller than 5 to mea-

sure the inherent packet loss rate and propagation delay on

each planetlab node. The CDF of the measured packet loss

rate and RTT are shown in Fig. 9. As can be seen from the

figure, 90% of the PlanetLab nodes experienced less than 1%

packet loss rate; 80% of the PlanetLab nodes experienced

RTT shorter than 100 ms. It can be calculated from the figure

that the average packet loss rate and RTT are 0.7% and 82 ms

respectively and the network status factor is 6.8. The network

condition of planetlab testbed is relatively good compared to

linktropy experiments to the benefit of TCP-FIT according to

Fig. 8 CDF and average throughput of different TCP variants on planetLab.
(a) Throughput CDF; (b) average throughput

Fig. 9 CDF of (a) packet loss rate and (b) RTT of PlanetLab nodess

Fig. (4). This confirmed our speculation.

The average improvement of FAST-FIT and TCP-FIT to

TCP Vegas, Reno and CUBIC on planetlab are summarized

in Table 3. As can be seen from the table, both FAST-FIT

and TCP-FIT achieve remarkable throughput gain compared

to other TCP variants.

Table 3 Throughput improvements over the PlanetLab testbed

Improvements to Vegas/% to Reno/% to CUBIC/%

FAST-FIT 46 34 17.7

TCP-FIT 65 51 33

5.2.2 Fairness

Next, the fairness properties of FAST-FIT were investigated

on the planetlab testbed. In the experiments, another HTTP

server using TCP Reno was used to compete with a com-

petitor server. Both servers had the same set of video clips.

During the experiments, the CA algorithm on the competi-

tor server cycled through different algorithm, while nodes on

Planetlab nodes simultaneously downloaded video clip files

from the two servers. The Reno server and its competitor

were located close-by so as to avoid impacts from differ-

ences in routing. We used the “tracepath” tool to get the router

list from the servers to each planetlab nodes to calculate the

router overlap rates, the number of routers shared by the two

server divides the total number of routers they used. This rate

was about 60% on average and its CDF of paths from the

servers to each planetlab nodes is shown in Fig. 10.

Fig. 10 CDF of throughput of routers overlap rate

The download speed distribution and average of planetlab

nodes for the competitor server is shown in Fig. 11. The re-

sult of the figure is the same as that of the throughput experi-

ments. The download speed distribution and mean from Reno

server is shown Fig. 12. From the Fig. 12 we found, com-

peting with different TCP algorithms, sessions of TCP Reno

server have different throughputs. As shown in Figs. 12(a)



Jingyuan WANG et al. Achieving high throughput and TCP Reno fairness in delay-based TCP over large networks 435

and 12(b), the Reno session competing with FAST-FIT had

an average throughput similar to TCP CUBIC. It was higher

than the session competing with TCP-FIT but lower than with

Reno and Vegas, indicating that the fairness of the proposed

algorithm was comparable to the widely used CUBIC algo-

rithm.

Fig. 11 CDF and average throughput of competitor server. (a) Throughput
CDF; (b) average throughput

Fig. 12 CDF and average throughput of Reno server. (a) Throughput CDF;
(b) average throughput

The average aggregative throughputs for the Reno and

competitor servers are plotted in Fig. 13. As shown in the

figure, the aggregative throughputs of FAST-FIT and TCP-

FIT were still higher than other TCP variants, i.e., the gain

in performance was not due to stealing bandwidth from the

Reno server. The improvement to the aggregative through-

put is summarized in Table 4. It is worth mentioning that,

in both the throughput and fairness experiments, TCP Vegas

showed poor performance on the planetlab testbed. Although

TCP Vegas is robust in random packet loss environments, it

cannot work well in wired wide area networks.

Fig. 13 Aggregative throughput of different TCP variants of Reno and
competitor servers on planetLab

Table 4 Improvements of aggregative throughput of Reno Server and Com-
petitor

Improvements to Vegas/% to Reno/% to CUBIC/%

FAST-FIT 22 7 8

TCP-FIT 30 12 13

5.3 Wireless experiments

Finally, we test the algorithm on three different live commer-

cial 3G wireless networks, namely the WCDMA network of

ChinaUnicom, the CDMA 2000 network of ChinaTelecom

and the TD-SCDMA network of ChinaMobile. The experi-

ments covered all 3G standards operating in the Chinese mo-

bile telecommunication market.

In each experiment, Windows XP laptops were connected

to TCP servers using 3G wireless cards. A script was used to

automatically and periodically cycle through different TCP

algorithms on the server over long durations of time (e.g.,

seven hours), while the client collected throughput informa-

tion and other useful data. The period for changing the TCP

algorithms was set to about 5–10 minutes, so that 1) the algo-

rithms tested were able to reach close to steady-state perfor-

mances; 2) the period was consistent with the durations of a

reasonably large percentage of the TCP based sessions on the

Internet (e.g., YouTube streaming of a single piece of content,

synchronizing emails, refreshing one web page, etc.).

The throughput variation and average comparison of differ-

ent TCP variants over ChinaUnicom WCDMA network are

shown in Fig. 14. As shown in the figures, the throughput of

FAST-FIT was always higher than the other TCP algorithms



436 Front. Comput. Sci., 2014, 8(3): 426–439

during the 7-hour test period. TCP-FIT had a similar through-

put as TCP Vegas which was higher than Reno and CUBIC.

The variation of packet loss rate and RTT is plotted in Fig.

15. The average RTT and packet loss rate were 508 ms and

5.4%. Such poor network condition resulted in larger FAST-

FIT performance gains.

Fig. 14 CDF and average throughput of ChinaUnicom WCDMA network.
(a) Throughput variation; (b) average throughput

Fig. 15 PLR and RTT variation of ChinaUnicom WCDMA network

The throughput variation and average comparison of dif-

ferent TCP variants over ChinaMobile TD-SCDMA network

are shown in Fig. 16. Similar to the experiment results of

WCDMA networks, FAST-FIT achieved higher throughput

than other TCP variants. The variation of packet loss rate and

RTT is plotted in Fig. 17. The average RTT and packet loss

rate are 345 ms and 3.4%.

The results for ChinaMobile were similar. However, the

results for ChinaTelecom CDMA 2000 were different, and

are shown in Fig. 18. The variations of packet loss rate and

RTT are plotted in Fig. 19. The average packet loss and RTT

were 0.07% and 360 ms respectively. This was better than

both China Mobile and China Unicom, especially the ran-

dom packet loss rate (Fig. 18). In this case, TCP-FIT achieved

Fig. 16 CDF and average throughput of ChinaMobile TD-SCDMA net-
work. (a) Throughput CDF; (b) average throughput

Fig. 17 PLR and RTT variation of ChinaMobile TD-SCDMA network

Fig. 18 CDF and average throughput of ChinaTelecom CDMA2000 net-
work. (a) Throughput CDF; (b) average throughput



Jingyuan WANG et al. Achieving high throughput and TCP Reno fairness in delay-based TCP over large networks 437

higher throughput than other TCP algorithms, whereas FAST-

FIT was similar to TCP Reno but lower than CUBIC. The

relations of TCP throughput and Network Status Factor over

the 3G networks are plotted in Fig. 20, which has similar vari-

ation trend to the Fig. 4 of emulator experiments.

Fig. 19 PLR and RTT variation of ChinaTelecom CDMA2000 network

Fig. 20 Throughput performance comparison of TCP variants with differ-
ent network status factor over 3G networks

The throughput improvement of FAST-FIT and TCP-FIT

are summarized in Table 5. The gain for FAST-FIT was up to

3x.

Table 5 Throughput improvements of FAST-FIT and TCP-FIT on 3G Net-
works

ChinaUnicom to Vegas/% to Reno/% to CUBIC/%

FAST-FIT 38 93 55

TCP-FIT 2 42 15

ChinaMobile

FAST-FIT 67 340 183

TCP-FIT 19 214 101

ChinaTelecom

FAST-FIT 16 6.8 –20

TCP-FIT 55 42 6

6 Conclusions

In this paper, we analyze existing TCP CA algorithms from

a TCP throughput model perspective. The analysis shows

that delay based TCP CA algorithms such as TCP Vegas and

FAST TCP have the potential of fully utilizing the band-

width for both wireless and high speed networks, but they

tend not to be fair when sharing bandwidth with other TCP

algorithms such as Reno. To overcome the fairness problem

of delay based CA algorithm, a novel TCP CA algorithm,

named FAST-FIT, is proposed. Experiments results using

the Linktropy emulator, the planetlab testbed and commer-

cial 3G mobile wireless network show that the FAST-FIT

achieves good performance in both throughput and fairness.

Compared with TCP-FIT, the performance of FAST-FIT is

better for high packet loss and/or long delay network envi-

ronments.

Acknowledgements This work was supported by the National Nat-
ural Science Foundation of China (Grant Nos. 61202426, 61272350),
the National Science Fund for Distinguished Young Scholars of China
(61125102), the State Key Program of National Natural Science of China
(61133008), the National High Technology Research and Development Pro-
gram of China (2011AA010502), the National key Technology R&D Pro-
gram (2012BAK26B02).

References

1. Wang J Y, Gao F, Wen J T, Li C, Xiong Z, Han Y X. Achieving TCP

reno friendliness in fast TCP over wide area networks. In: Proceedings

of the 2014 International Conference on Computing, Networking and

Communications. 2014, 100–109

2. Allman M, Paxson V, Stevens W. TCP congestion control. RFC 2581,

1999

3. Wei D X, Jin C, Low S H, Hegde S. FAST TCP: motivation, architec-

ture, algorithms, performance. IEEE/ACM Transactions on Network-

ing, 2006, 14(6): 1246–1259

4. Mascolo S, Casetti C, Gerla M, Sanadidi M Y, Wang R. TCP west-

wood: Bandwidth estimation for enhanced transport over wireless

links. In: Proceedings of the 7th Annual International Conference on

Mobile Computing and Networking. 2001, 287–297

5. Mascolo S, Grieco L A, Ferorelli R, Camarda P, Piscitelli G. Perfor-

mance evaluation of westwood+ TCP congestion control. Performance

Evaluation, 2004, 55(1-2): 93–111

6. Fu C P, Liew S C. TCP veno: TCP enhancement for transmission over

wireless access networks. IEEE Journal on Selected Areas in Commu-

nications, 2003, 21(2): 216–228

7. Floyd S. Highspeed TCP for large congestion windows. RFC 3649,

2003

8. Kelly T. Scalable TCP: improving performance in highspeed wide

area networks. SIGCOMM Computer Communication Review, 2003,

33(2): 83–91

9. Tan K, Song J, Zhang Q, Sridharan M. A compound TCP approach

for high-speed and long distance networks. In: Proceedings of the 23rd

Annual Joint Conference of the IEEE Computer and Communications

Societies. APRIL 2006

10. Ha S, Rhee I, Xu L. Cubic: a new TCP-friendly high-speed TCP vari-

ant. ACM SIGOPS Operating Systems Review, 2008, 42(5): 64–74

11. Wang J Y, Jiang Y X, Ouyang Y, Li C, Xiong Z, Cai J X. TCP conges-

tion control for wireless datacenters. IEICE Electronics Express, 2013,

10(12): 1–11



438 Front. Comput. Sci., 2014, 8(3): 426–439

12. Fang W, Liang X, Li S, Chiaraviglio L, Xiong N. Vmplanner: Opti-

mizing virtual machine placement and traffic flow routing to reduce

network power costs in cloud data centers. Computer Networks, 2013,

57(1): 179–196

13. Brakmo L S, O’Malley S W, Peterson L L. TCP Vegas: new techniques

for congestion detection and avoidance. SIGCOMM Computer Com-

munication Review, 1994, 24(4): 24–35

14. Low S H, Peterson L L, Wang L. Understanding TCP vegas: a duality

model. Journal of the ACM, 2002, 49(2): 207–235

15. Tang A, Wang J, Hegde S, Low S. Equilibrium and fairness of networks

shared by TCP Reno and Vegas/FAST. Telecommunication Systems,

2005, 30(4): 417–439

16. Budzisz Ł, Stanojević R, Schlote A, Baker F, Shorten R. On the fair

coexistence of loss-and delay-based TCP. IEEE/ACM Transactions on

Networking (TON), 2011, 19(6): 1811–1824

17. Wang J, Wen J, Zhang J, Han Y. TCP-FIT — a novel TCP congestion

control algorithm for wireless networks. In: Proceedings of the 2010

IEEE Globecom Workshop on Advances in Communications and Net-

works. 2010, 2133–2137

18. Wang J, Wen J, Zhang J, Han Y. TCP-FIT: an improved TCP conges-

tion control algorithm and its performance. In: Proceedings of the 30th

IEEE International Conference on Computer Communications, 2010,

2065–2069

19. Wang J, Wen J, Han Y, Zhang J, Li C, Xiong Z. CUBIC-FIT: A high

performance and TCP CUBIC friendly congestion control algorithm.

IEEE Communications Letters, 2013, 17(8): 1664–1667

20. Tang A, Wang J, Low S H, Chiang M. Equilibrium of heterogeneous

congestion control: existence and uniqueness. IEEE/ACM Transac-

tions on Networking, 2007, 15: 824–837

21. Low S. A duality model of TCP and queue management algorithms.

IEEE/ACM Transactions on Networking, 2003, 11(4): 525–536

22. Kelly F, Maulloo A, Tan D. Rate control for communication networks:

shadow prices, proportional fairness and stability. Journal of the Oper-

ational Research Society, 1998, 49(3): 237–252

23. Padhye J, Firoiu V, Towsley D, Kurose J. Modeling TCP throughput: A

simple model and its empirical validation. In: Proceedings of the 1998

ACM SIGCOMM Conference on Applications, Technologies, Archi-

tectures, and Protocols for Computer Communication. 1998, 303–314

24. Ha S, Rhee I, Xu L. CUBIC: a new TCP-friendly high-speed TCP vari-

ant. ACM SIGOPS Operating Systems Review, 2008, 42(5): 64–74

25. Zhou B, Fu C P, Chiu D M, Lau C T, Ngoh L H. A simple throughput

model for TCP veno. In: Proceedings of the 2006 IEEE International

Conference on Communications. 2006, 5395–5400

26. Grieco L, Mascolo S. Mathematical analysis of Westwood+ TCP con-

gestion control. IEEE Proceedings: Control Theory and Applications,

2005, 152(1): 35–42

27. Samios C, Vernon M. Modeling the throughput of TCP Vegas. In: Pro-

ceedings of the 2003 ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems. 2003, 31(1): 71–81

28. Xu L, Harfoush K, Rhee I. Binary increase congestion control (BIC)

for fast long-distance networks. In: Proceedings of the 23rd Annual

Joint Conference of the IEEE Computer and Communications Soci-

eties. 2004, 2514–2524

Jingyuan Wang received the PhD de-

gree in 2011 from the Department of

computer science and technology, Ts-

inghua University, China. He is cur-

rently an Assistant Professor of School

of Computer Science and Engineer-

ing, Beihang University, China. His re-

search interest is multimedia commu-

nication, datacenter networks, and TCP

congestion control.

Jiangtao Wen received the BS, MS, and

PhD degrees(with honors), all in elec-

trical engineering, from Tsinghua Uni-

versity, Beijing, China in 1992, 1994,

and 1996, respectively. From 1996 to

1998, he was a Staff Research Fellow

at the University of California, Los An-

geles (UCLA), USA, where he con-

ducted cutting-edge research on multi-

media coding and communications. Many of his inventions there

were later adopted by international standards such as H.263, MPEG,

and H.264. Since 2009, he has been a Professor at the Department

of Computer Science and Technology, Tsinghua University. He is a

fellow of IEEE.

Yuxing Han received a BE in electrical

engineering at Hong Kong University

of Science and Technology (HKUST),

China in 2006 and obtained her PhD

degree at University of California, Los

Angeles, USA, in 2011 with research

interests in next generation cellular sys-

tems, cognitive radio systems, network

modeling and compressive sensing al-

gorithms. She is currently at Flora Production Inc., where she is

working on next generation network optimization products.

Jun Zhang received the BS degree in

computer science and technology from

Tsinghua University, China in 2010. He

is currently working toward the MS and

PhD degrees in computer science and

technology in Tsinghua University.



Jingyuan WANG et al. Achieving high throughput and TCP Reno fairness in delay-based TCP over large networks 439

Chao Li received his BS and PhD de-

grees in computer science and technol-

ogy from Beihang University, China in

1996 and 2005, respectively. Now he is

an associate professor and MS supervi-

sor in the School of Computer Science

and Engineering, Beihang University.

Currently, he is working on data vital-

ization and computer vision.

Zhang Xiong received his BS degree

from Harbin Engineering University in

1982. He received his MS degree from

Beihang University, China in 1985. He

is a professor and PhD supervisor in

the School of Computer Science and

Engineering, Beihang University. He is

working on computer vision, wireless

sensor networks, information security,

and data vitalization.


