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Abstract In data analysis tasks, we are often confronted to

very high dimensional data. Based on the purpose of a data

analysis study, feature selection will find and select the rele-

vant subset of features from the original features. Many fea-

ture selection algorithms have been proposed in classical data

analysis, but very few in symbolic data analysis (SDA) which

is an extension of the classical data analysis, since it uses

rich objects instead to simple matrices. A symbolic object,

compared to the data used in classical data analysis can de-

scribe not only individuals, but also most of the time a clus-

ter of individuals. In this paper we present an unsupervised

feature selection algorithm on probabilistic symbolic objects

(PSOs), with the purpose of discrimination. A PSO is a sym-

bolic object that describes a cluster of individuals by modal

variables using relative frequency distribution associated with

each value. This paper presents new dissimilarity measures

between PSOs, which are used as feature selection criteria,

and explains how to reduce the complexity of the algorithm

by using the discrimination matrix.

Keywords symbolic data analysis, feature selection, prob-

abilistic symbolic object, discrimination criteria, data and

knowledge visualization.

1 Introduction

In symbolic data analysis, an object is a representation of a

group or a class of individuals. Variables used in symbolic

objects can handle single quantitative values, single categor-

ical values, intervals, and a set of values [1]. We have two

Received September 24, 2013; accepted June 10, 2014

E-mail: dziani@ksu.edu.sa

categories of symbolic objects, boolean symbolic objects

(BSO) and probabilistic symbolic objects (PSO). In BSO,

the variables do not use modal descriptions; for example,

Color = {red, green}; however in PSO, each value is followed

by a probability, for example, Color = {0.7 red, 0.3 green}.
This probability can have different semantics [2, 3]:

• A variation semantic is used to show the variation of in-

dividual properties inside a class. For example, the red

color is very much used (90%) by the class individu-

als [4].

• A typical semantic can have different meanings [5],

such as:

1) Frequency: a property is typical if it is frequent in

the class.

2) Specificity: a property is typical if it is specific to

this class, and not much used in other classes.

3) Scholastic: a property is typical if it represents a

state that matches a given theory model.

The PSOs are rich and complex objects; in literature, we

can find some interesting research treating PSOs. Actually,

we can have decision trees on PSOs, similarities and dis-

similarities, and even distances for special representations

of PSOs [6]. However, until now no feature selection algo-

rithm has been developed on probabilistic symbolic objects.

This gap in this research area motivated us to develop a new

feature selection algorithm on probabilistic symbolic objects

named Minset-Plus. Since the algorithm Minset-Plus has al-

ready been developed to treat BSOs [7], we will see in this

paper how to adapt it for PSOs.

To adapt Minset-Plus for treating PSOs, we should first
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find new feature selection criteria that can deal with PSOs.

The selection criteria used in PSOs should take into consid-

eration not only the descriptive values but also the probability

associated with these values. We will cite in this paper some

existing dissimilarity measures on PSOs, and we will present

our new feature selection criterion, which is an improvement

of an existing dissimilarity measure on PSOs.

Another challenge of feature selection in PSOs is the com-

plexity. Since the PSOs are rich objects, the calculation of a

similarity or dissimilarity measure needs complex operations;

so the new algorithm should use an optimistic and efficient

strategy to process the mandatory calculations and avoid re-

dundant and irrelevant operations. Thus, we will see in the

present paper how Minset-Plus algorithm will be optimized.

2 Symbolic objects

Let us give a formal definition of a symbolic object:

Ω = {w1,w2, . . . ,wp} is the set of elementary objects.

Y = {y1, y2, . . . , yn} is the set of variables. For example,

Y = {age,weight, illness, . . . }
d = (d1, d2, . . . , dn) is the description of the object,

where di is the value taken by the variable yi. For example,

d = ([20, 25], [80, 90], {diabetes, cholesterol}).
L = {true, f alse} (for BSO) or L = [0, 1] (for PSO)

R = {R1,R2, . . . ,Rp} is a set of relations, where Ri is the

relation used by the variable yi. For instance, R1 = ⊆.

A symbolic object is defined as a triplet s = (a,R, d), and

this explanatory expression defines a symbolic object called

an assertion [2]. For BSO, an assertion is represented by a

symbolic expression, defined from Ω to {0, 1}:

a(w) =
∧

i=1,n
[yi(w)Ridi], (1)

where ∧ is the standard logical operator “AND”.

For example, a(w) = [age(w) ⊆ [20, 25]] ∧ [weight(w) ⊆
[80, 90]]∧ [illness(w) ⊆ {diabetes, cholesterol}].

For PSO, an assertion is represented by a symbolic expres-

sion, defined from Ω to [0, 1]:

a(w) =
∧∗

i=1,n

[
yi(w)Ri{p jv j} j=1,m

]
, (2)

where
∧∗

i=1,n =
∏

i=1,n and p j is the probability associated

with the value v j.

To evaluate the expression a(w), we have to define the rela-

tion Ri used in Eq. (2). This relation defines the matching be-

tween values used in the description of object a and the values

used in the description of the individual w. For instance, we

can define the “matching” for two discrete density distribu-

tions r = (r1, r2, . . . , rk) and distributions q = (q1, q2, . . . , qk)

of k values, by [2]:

rRiq =
∑

j=1,k

r jq je(r j−min(r j ,qj)), (3)

where r represents the probabilities used in the symbolic ob-

ject, and q represents the probability of the elementary object

values. If an elementary object value exists in the object a,

the associated probability q will be equal to 1, else the asso-

ciated probability q will be equal to 0.

We define an elementary event of a PSO as:

ei(w) =
[
yi(w)Ri{p jv j} j=1,m

]
; (4)

so,

a(w) =
∧∗

i=1,n
ei(w). (5)

Example 1 Let:

a(w) = [age(w) ⊆ {(0.2)[20, 25], (0.8)[26, 30]}]
∧∗[weight(w) ⊆ {(0.4)[80, 85], (0.6)[86, 90]}]

∧∗[illness(w) = (1) diabetes].

The assertion a represents a cluster and expresses that 20%

of the cluster individuals are aged between 20 and 25 years,

80% are between 26 and 30 years, 40% have a weight be-

tween 80 and 85 kg, 60% between 86 and 90 kg, and all indi-

viduals have diabetes as illness.

The symbolic object a extent is defined referring to Ω, and

represents the set of elementary objects satisfying the follow-

ing condition:

For BSO, extΩ(a) = {wi ∈ Ω/a(wi) = true}, and for PSO,

by giving a threshold α, extα(a) = {wi ∈ Ω/a(wi) � α}.
Example 2 We have an elementary object:

“Alain” = [age = 23]∧ [weight = 82]∧ [illness = cholesterol].

The symbolic object:

a(w) = [age(w) ⊆ {(0.2)[20, 25], (0.8)[26, 30]}]
∧∗ [weight(w) ⊆ {(0.4)[80, 85], (0.6)[86, 90]}]

∧∗ [illness(w) = (1) diabetes].

Using a threshold α = 0.80, we will check if Alain belongs

to the extent of the PSO a:

a(Alain) = [age(Alain) ⊆ {(0.2)[20, 25], (0.8)[26, 30]}]
∧∗ [weight(Alain) ⊆ {(0.4)[80, 85], (0.6)[86, 90]}]

∧∗ [illness(Alain) = (1) diabetes]

Using the matching function defined in (3), we will have:
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a(Alain) = 0.2 × 1 e(0.2−min(0.2,1))

+ 0.4 × 1 e(0.4−min(0.4,1)) + 1 × 0 e(1−min(1,0)),

a(Alain) = 0.2 × 1 + 0.4 × 1 + 0 = 0.6.

a(Alain) < 0.8, so in this case Alain does not belong to the

extent of the PSO a.

Since Alain does not have diabetes as illness, his proba-

bility to belong to the extent of the PSO a is not bigger than

0.8.

3 Review of dissimilarity measure on PSO

All feature selection algorithms use a similarity or dissimilar-

ity measure in order to select the features. The quality of the

feature selection is highly dependent on the properties of the

selection criteria used by the algorithm.

3.1 Dissimilarity properties

A dissimilarity measure D should satisfy some properties in

order to be meaningful and strong. Let us define A as the set

of symbolic objects.

A dissimilarity measure D is defined A × A → [0, 1] [8],

with:

• D(a, b) � 0 ∀a, b ∈ A (non-negativity);

• D(a, a) = 0 ∀a ∈ A (reflexivity);

• D(a, b) = D(b, a) ∀a, b ∈ A (symmetry);

• D(a, b) � D(a, c) + D(c, b) ∀a, b, c ∈ A (triangle in-

equality);

• D(a, a−1) = 1 ∀a ∈ A (opposition),

where a−1 is the opposite object of a. We can formalize an

opposite object as follows:

∀(p j, v j) in a, ∃ (p′j, v j) in a−1, where p j × p′j = 0.

It means, if p j � 0, then p′j = 0 and if p j = 0, then p′j � 0.

To understand the opposition property, let us have a small

example:

a(Alain) = [age(Alain) ⊆ {(0.2)[20, 25], (0.8)[26, 30],

(0)[31, 40], (0)[41, 60]}]∧∗ [illness(Alain)

= {(1)diabetes, (0)cholesterol, (0)hypertension}].

We define a dissimilarly measure D as:

D(al, ak) =
∏

i=1,n

∑

v j∈Oj

∣∣∣p ji(l) − p ji(k)
∣∣∣

2
,

where p ji(l) and p ji(k) are the probabilities associated to the

value v j for the variable yi in the PSO al respectively ak.

We can have many opposition objects of the symbolic ob-

ject a, for example the object a1 and a2:

a1(w) = [age(w) ⊆ {[(0)[20, 25], (0)[26, 30],

(1)[31, 40], (0)[41, 60]}]∧∗ [illness(w) = {(0)diabetes,

(1)cholesterol, (0)hypertension}].

a2(w) = [age(w) ⊆ {[(0)[20, 25], (0)[26, 30],

(0)[31, 40], (1)[41, 60]}]∧∗ [illness(w) = {(0)diabetes,

(0)cholesterol, (1)hypertension}].

D(a, a1) =
(|0.2 − 0| + |0.8 − 0| + |0 − 1| + |0 − 0|)

2

× (|1 − 0| + |0 − 1| + |0 − 0|)
2

= 1.

D(a, a2) =
(|0.2 − 0| + |0.8 − 0| + |0 − 0| + |0 − 1|)

2

× (|1 − 0| + |0 − 0| + |0 − 1|)
2

= 1.

The dissimilarity measure of our algorithm should satisfy

the following criteria: definition domain, reflexivity, symme-

try and opposition. The triangle inequality property is a plus;

in this case, the measure will be a metric. Also, some experts

can give importance to the length of values taken by the vari-

ables; in this case, the dissimilarity measure should compute

the Boolean part (the description space based on the values

taken by the variables) and the probabilistic part of the ob-

jects.

The following will formalize the description space: Let us

have: a(w) = [y1 = v1]∧· · ·∧[yn = vn], O = O1×O2×· · ·×On

is the Cartesian product of all variable values, where Oi rep-

resents the set of values that the variable yi can take.

A = {a1, a2, . . . , am} is a set of probabilistic symbolic ob-

jects.

On is a vector of the values of O. On = (O1,O2, . . . ,On).

The description space is defined by the function μ [4], and

represents a vector of the values taken by a symbolic object:

μ : A→ On, μ(ai) = (vi1, vi2, . . . , vin). (6)

where vi j is the value taken by the variable y j in the proba-

bilistic symbolic object ai.

Example 3 Suppose we have the following PSO:

a1(w) = [age(w) ⊆ {(0.2)[20, 25], (0.8)[26, 30]}]
∧[weight(w) ⊆ {(0.4)[75, 80], (0.6)[81, 95]}]
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Figure 1 shows the description space of the object [4]; it is

the Cartesian product of values taken by the variables in the

object a1. We can see that this Cartesian product consists of

4 parts E11, E21, E31, and E41. E41 is the biggest part; it is

12 times bigger than E11. Therefore, an expert can introduce

in his dissimilarity measure this kind of appreciation.

Fig. 1 Description space of the PSO a1

3.2 Some existing dissimilarity measures on PSO

In literature, we can find very few dissimilarity measures on

PSO, but we can find some dissimilarity coefficients that can

be used to build a dissimilarity measure. A dissimilarity co-

efficient is calculated for one elementary event, and then ag-

gregated for the whole object. It means that a dissimilarity

coefficient is defined as a function on A × A→ [0, 1].

The following list gives some dissimilarity coefficients that

were not defined on PSOs, but can be used as dissimilarity on

PSOs:

• Rényi’s divergence is defined as [9]:

m(s)
r (ei, e

′
i) = − log

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

v j

p
′s
j · p1−s

j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

where ei, e′i are 2 elementary events of the PSO ai re-

spectively, a′i; v j is a value used in ei and e′i ; and p j, p′i
are the probability distributions associated with v j in ei

respectively e′i .
We can note that this coefficient is not defined in [0, 1],

it is not reflexive, it is not symmetric, and does not re-

spect the opposite property.

• The Kullback–Leibler divergence is based on the differ-

ence of two probability distributions [10]:

mKL(ei, e
′
i) =
∑

v j

p′j log

⎛⎜⎜⎜⎜⎝
p′j
p j

⎞⎟⎟⎟⎟⎠ .

This coefficient is reflexive, but like Rényi’s divergence

coefficient, it is not symmetric, and does not respect the

opposite property.

• The χ2 divergence is defined as follows [11]:

χ2(ei, e
′
i) =
∑

v j

|p j − p′j|2
p j

.

This coefficient is reflexive, but it is not symmetric, and

does not respect the opposite property.

• The variation distance is defined as follows:

m1(ei, e
′
i) =
∑

v j

|p j − p′j|.

This coefficient is reflexive and symmetric, but it is not

respecting the opposite property.

The following list gives some dissimilarity measures de-

fined on symbolic objects:

• Diday similarity coefficient [3]: Diday has defined a

coefficient based on classical cosines similarity coeffi-

cient:

comp(ei, e
′
i) =

∑
v j

p j · p′j√∑
v j

p2
j ·
∑

v j
p
′2
j

.

Hence, the dissimilarity coefficient will be:

cd(ei, e
′
i) = 1 −

∑
v j

p j · p′j√∑
v j

p2
j ·
∑

v j
p
′2
j

.

This coefficient is not reflexive, it is symmetric and it

respects the opposite property.

• Discrimination measure of Ziani [12]. Ziani has de-

fined a discrimination (dissimilarity) measure between

2 PSOs. On elementary events, this measure is defined

as follows:

g(ei, e
′
i)

= 1 −
⎛⎜⎜⎜⎜⎝

card(vi ∩ v′i)
card

(vi ∪ v′i) ×
∑

v jinvi∪v′i 1 − |p j − p′j|
r

⎞⎟⎟⎟⎟⎠

where vi and v′i are the values taken in the elementary

event ei respectively e′i . p j and p′j represent the prob-

abilities associated to the value v j respectively v′i , r is

the number of different values which have a none null

probability in the elementary event ei and e′i .
This measure is reflexive, symmetric, and it takes into

consideration the description space. However, this mea-

sure does not respect the opposite property.
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• Probabilistic dissimilarity based on De Carvalho dis-

tance [13]: this dissimilarity between 2 PSOs is cal-

culated using a distance between 2 elementary events,

which is defined as follows:

δ(ei, e
′
i) =

∑

v j∈vi∪v′i

(γ j p j + γ
′
j p
′
j)

2,

where γ j =

⎧⎪⎪⎨⎪⎪⎩
1, if v j ∈ vi and v j � v′i ;
0, otherwise,

and γ′j =

⎧⎪⎪⎨⎪⎪⎩
1, if v j � vi and v j ∈ v′i ;
0, otherwise,

This dissimilarity is reflexive, symmetric, but this mea-

sure does not respect the opposite property.

Since all the dissimilarity measures that we found in literature

do not respect all the properties that we want, we decided to

introduce new dissimilarity measures on PSOs.

4 New dissimilarity measures on PSO

Before defining the new dissimilarity measures, we will first

define the probabilistic space. The probabilistic space for a

PSO is the description space of this object, where each vector

element of this space is associated with a probability.

Let us have the description space μ(ai) = (vi1, vi2, . . . , vin),

we define v a subset of description space Erl ⊆ μ(ai) as

Eri = (v
(r)

i1 , v
(r)

i2 , . . . , v
(r)

in) , where ∀v
(r)

i j ⊆ vi j (see the Example

4).

We will define two important functions θ and π.

θ : On → [0, 1]n

θ(Er) = (p
(r)

i1 , p
(r)

i2 , . . . , p
(r)

in), (7)

where p
(r)

li is the probability associated with v
(r)

li .

v
(r)

li is the value taken in the description space Er by the

variable yi in object al.

π : [0, 1]n → [0, 1]

π(θ(Er)) =
n∏

j=1

p
(r)

i j . (8)

If Ei = {Eli, . . . , Eli} is a description space of the PSO ai,

we calculate the probabilistic space of the PSO ai as follows:

ρ : On → [0, 1]n

ρ(Ei) =
(
π
(
θ(E1i)

)
, π
(
θ(E2i)

)
, . . . , π

(
θ(Eni)

))
. (9)

We calculate the probability that an individual w belongs

to a description space Ei = {Eli, . . . , Eli} is a description space

of the PSO ai, we calculate the probabilistic space of the PSO

ai as follows:

∑

Eri∈Ei

π
(
θ(Eri)

)
=
∑

Eri∈E

n∏

j=1

p
(r)

i j . (10)

Example 4 Using the object a1 of the Example 3, we will

have the following probabilistic space (see Fig. 2).

μ(a1) = ({[20, 25], [26, 45]}, {[75, 80], [81, 95]}).

We want to calculate the probability that an individual w

belongs to the description space weight ⊆ [75, 80]. This

means: E = {([20, 25], [26, 45]), ([75, 80], [81, 95])}, and

P(w ∈ E = {E11, E31}) = 0.20 × 040 + 0.80 × 0.40 = 0.40.

Fig. 2 Probabilistic space of the PSO a1

We will introduce two new dissimilarity measures on

PSOs. The first one is calculated using only the probabilities

associated with the values; it is named a probabilistic dis-

similarity measure. The second will take into consideration

the description space of the values; it is named a description

space probabilistic dissimilarity measure. Both dissimilarity

measures should be reflexive, symmetric and respect the op-

posite property.

4.1 Probabilistic dissimilarity measure

The probabilistic dissimilarity measure, named da, is defined

between 2 PSOs, as follows:

da : A × A→ [0, 1]

da(a j, ak) =
1
2

∣∣∣∣π
(
θ
(
μ(a j)

) − θ(μ(ak)
))∣∣∣∣ . (11)

Eq. (11) will be easily written as follows:

da(a j, ak) =
1
2

sumEr∈μ(aj)∪μ(ak)

∣∣∣∣∣∣∣

n∏

i=1

p
(r)

i j −
n∏

i=1

p
(r)

ik

∣∣∣∣∣∣∣ . (12)
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By using the projection of the symbolic object description

on one variable, defined in Eq. (12), we can define a dissim-

ilarity measure between two elementary events. The projec-

tion function is defined as follows:

Proj: On × Y → O

Proj
((

v
(r)

i1 , . . . , v
(r)

in
)
/yi

)
= v

(r)

li . (13)

The dissimilarity measure between two elementary events

is defined as follows:

dp : ε × ε→ [0, 1]

dp(ei j, eik) =
1
2

∣∣∣∣∣π
(
θ
(
Proj
(
μ(a j)/yi

)) − θ
(
Proj
(
μ(ak)/yi

)))∣∣∣∣∣ ,
(14)

where ε is the set of elementary events, and ei j, eik are ele-

mentary events of the PSOs a j respectively ak, described by

the variable yi.

Using Eq. (10), dp(ei j, eik) will be calculated as follows:

dp(ei j, eik) =
1
2

∑

Er∈μ(ei j∪μ(eik)

|p(r)

i j − p
(r)

ik |, (15)

where p(r)
i j , p(r)

ik are the probabilities associated with the value

v(r)
i j and v(r)

ik in the PSOs a j respectively ak.

This measure satisfies the following properties:

• Reflexivity since: dp(ei j, ei j) = 0∀ei j ∈ ε
• Symmetry since: dp(ei j, eik) = dp(eik, ei j)∀eik, ei j ∈ ε
• dp(ei j, e−1

i j ) = 1∀ei j ∈ ε (opposition)

Since it is easy to prove that this measure is reflexive, sym-

metric, and holds the opposition property, we will not write

the proof in this paper.

4.2 Description space probabilistic dissimilarity measure

The description space probabilistic dissimilarity measure

takes into consideration both probability and length of the

value sets (cardinality of sets, or the length of interval). This

dissimilarity measure is based on the dissimilarity measure

dp defined by Eq. (14). First, we will define the dissimilarity

between two PSOs:

dav : A × A→ [0, 1]

dav(a j, ak)

=
1
2

∑

Er∈μ(ei j∪μ(eik)

∣∣∣∣∣∣∣

n∏

i=1

length(v(r)
i j )

cap(μ(ei j))
p(r)

i j −
n∏

i=1

length(v(r)
ik )

cap(μ(eik))
p(r)

ik

∣∣∣∣∣∣∣
,

(16)

where ∩(ei j) =
∑m

r=1 length(vr
i j).

vr
i j is the rth value taken in the elementary event ei j in the

PSO a j.

The dissimilarity measure between two elementary events

is defined as follows:

dpv : ε × ε→ [0, 1]

dpv(ei j, eik) =
1
2

∑

Er∈μ(ei j∪μ(eik)

∣∣∣∣∣∣∣
length(v(r)

i j )

cap(μ(ei j))
p(r)

i j

length(v(r)
ik )

cap(μ(eik))
p(r)

ik

∣∣∣∣∣∣∣ .

(17)

Example 5 Using the following PSOs, we will calculate

defined dissimilarity measures.

a1(w) = [age(w) ⊆ {(0.2)[20, 25], (0.8)]25, 45]}]
∧[weight(w) ⊆ {(0.4)[75, 80], (0.6)]80, 95]}].

a2(w) = [age(w) ⊆ {(0.6)[20, 25], (0.4)]25, 45]}]
∧[weight(w) ⊆ {(0.7)[75, 80], (0.3)]80, 95]}].

Then,

dav(a1, a2) = 1
2 (|0.2 × 0.4 − 0.6 × 0.7|

+|0.2 × 0.6 − 0.6 × 0.3|
+|0.8 × 0.4 − 0.4 × 0.7|
+|0.8 × 0.6 − 0.4 × 0.3|) = 0.4.

dav(a1, a2) =
1
2

(∣∣∣∣∣
5

25
0.2 × 5

20
0.4 − 5

25
0.6 × 5

20
0.7
∣∣∣∣∣

+

∣∣∣∣∣
5

25
0.2 × 15

20
0.6 − 5

25
0.6 × 15

20
0.3
∣∣∣∣∣

+

∣∣∣∣∣
20
25

0.8 × 5
20

0.4 − 20
25

0.4 × 5
20

0.7
∣∣∣∣∣

+

∣∣∣∣∣
20
25

0.8 × 15
20

0.6 − 20
25

0.4 × 15
20

0.3
∣∣∣∣∣
)
= 0.12.

dp(e11, e12) =
1
2

(|0.2 − 0.6| + |0.8 − 0.4|) = 0.4.

dpv(e11, e12) =
1
2

(| 5
25

0.2 − 5
25

0.6| + |20
25

0.8 − 20
25

0.4|).
dpv(e11, e12) = 0.2.

Note To simplify the notation, we will use in the next sec-

tions only dp dissimilarity measure, instead of dav or dpv.

5 Selection criteria

The feature selection algorithm that we developed is named

Minset-Plus [7] and needs two criteria:

• The discriminant power used as stopping criteria,
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• The original discriminant power used as selecting cri-

teria.

5.1 Discrimination power

A is a set of assertions, q is a number of assertions in A, Y is a

set of variables, and K is the set of assertion pairs K = A× A.

The discriminant power of a variable yl on the set K, noted

by DP(yl,K), quantifies how much the variable yl contributes

in the discrimination of the assertion pairs.

DP : Y × P(K)→ N

DP(yl,K) =
m−1∑

i=1

m∑

j=i+1

dp(eli, elk), (18)

with (ai, a j) ∈ K.

The discriminant power of a subset of variables Yd is de-

fined as follows:

DP : P(Y) × P(K)→ N

DP(Yd,K) =
m−1∑

i=1

m∑

j=i+1

max
yl∈Yd

dp(eli, elk). (19)

5.2 Original discrimination power

The original discrimination power, noted ODP, of a variable

yl referred to a set of variable Yd, quantifies how much the

variable yl contributes to the discrimination of the assertion

pairs which are not discriminated by any variable in Yd.

ODP : Y × P(Y) × P(K)→ N

DP(yl, Yd,K) =
m−1∑

i=1

m∑

j=i+1

max
(ai ,aj)∈K

dp(eli, elk) max
yp∈Yd

dp(epi, epk).

(20)

Example 6 Let us calculate DP and ODP on the following

set of objects:

a1(w) = [age(w) ⊆ {(0.2)[20, 25], (0.8)]25, 45]}]
∧[weight(w) ⊆ {(0.4)[75, 80], (0.6)]80, 95]}].

a2(w) = [age(w) ⊆ {(0.6)[20, 25], (0.4)]25, 45]}]
∧[weight(w) ⊆ {(0.7)[75, 80], (0.3)]80, 95]}].

a3(w) = [age(w) ⊆ {(0.8)[20, 25], (0.2)]25, 45]}]
∧[weight(w) ⊆ {(0.9)[75, 80], (0.1)]80, 95]}].

DP({age,weight},K) = max
(
dp(e11, e12), dp(e21, e22)

)

+max
(
dp(e11, e13), dp(e21, e23)

)

+max
(
dp(e12, e13), dp(e22, e23)

)

= 0.4 + 0.6 + 0.2 = 1.2.

ODP(age, {weight},K)

= max(dp(e11, e12) − dp(e11, e12) − dp(e21, e22), 0)

+max(dp(e12, e13), 0) = 0.1 + 0.1 + 0 = 0.2.

6 Minset-Plus algorithm

The Minset-Plus algorithm is formalized as follows [7]: ini-

tially we have a knowledge base (Y,O, A). The objective of

the algorithm is to find another knowledge base (Y′,O′, A)

such as Y′ ⊆ Y with DP(Y′,K) = DP(Y,K), where Y and Y′

represent two sets of variables, O and O′ represent the values

taken by the variables of the set Y respectively Y′, K repre-

sents the set of assertion pairs.

The following represents the algorithm Minset-Plus:

1) Find the indispensable variables that allow to discrimi-

nate couples of objects not discriminated by other vari-

ables. This means that we select all variables which

have their ODP against all other variables not null:

ODP(yi, Y − yi,K) � 0.

Set Y′ = Y.

Set Yd = set of selected variables

While DP(Yd,K) < DP(Y,K)

2) Select in each step the variable yl that has the highest

ODP against all none selected variables.

Y′ = Y′ − Yd

Yd = Yd ∪ {yl/yl maximizes

ODP(yi, Y
′ − yi,K)∀yi ∈ Y′}.

3) Eliminate in each step the variables which become re-

dundant.

Yd = Yd − {yl ∈ Yd where ODP(yl, Yd − yl,K) = 0}.

As you can see, the algorithm has three principal steps:

First, the algorithm selects the indispensable variables. A

variable is considered as indispensable, if when you take it

off from the set of variables, the DP of this set of variables

will be less than the DP of all variables.

In the second step, the algorithm selects, in each iteration a

variable with the biggest value in discriminating the parts of
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symbolic objects, which are not discriminated yet by the se-

lected variables. This step is performed by selecting the vari-

able with the highest ODP against all none selected variables.

The purpose of the third step is to eliminate a variable that

becomes redundant, it means that the part of discrimination

brought by this variable has been covered by a combination of

the other selected variables. This step is performed by elimi-

nating any selected variable with a null ODP against all other

selected variables.

7 Algorithm optimization

The calculation of the stopping criterion DP(Yd,K) and the

calculation of the selection criterion ODP(yi, Y′ − yi,K), are

time consuming. In order to calculate the ODP(yi, Y′ − yi,K),

the algorithm must execute k × (1 + p) times the function dp,

where k = card(K) and p = card(Y′ − yi). DP(yl,K) is calcu-

lated with k × p executions of the function dp. To reduce the

complexity of our algorithm, we optimized the calculation of

the stopping criterion, by using a mathematical property, and

we used the concept of discrimination matrix [7] to avoid un-

necessary and redundant calculations.

7.1 Use of mathematical properties to reduce complexity

The following property allows us to calculate the discrimi-

nation power of a variable set, by adding the discrimination

power of the old selected variables, with the original discrim-

ination power of the current selected variable. The benefit of

this property is to avoid calculating in each ) step the discrim-

ination power of the selected variables.

DP(YP ∪ yi,K) = DP(YP,K) + ODP(yi, YP,K). (21)

You will find the proof of this property in [7].

7.2 Discrimination matrix

We notice that the calculation of the DP and ODP functions

is based on the calculation of dp(eli, elk). This is done repeti-

tively in each step. Furthermore, we know that if we use the

description space probabilistic dissimilarity measure, it in-

volves the use of the operations ∪ and ∩ between sets of val-

ues; and these operations are not simple. To avoid executing

the same complex operations many times, we saved the old

calculations in order to reuse them in further algorithm steps.

This idea has been completed by the introduction of the dis-

crimination matrix.

The discrimination matrix allows us to calculate only one

time dp(eli, elk); and during all the algorithm steps, we will

use the matrix to do all the necessary operations. This is a

great complexity optimization. Also, we want to emphasize

that this matrix size is not big, it is: k × n, where k = card(K)

and n = card(Y), and K is not a big number, since we are deal-

ing with objects that represent concept or individuals’ classes.

Example 7 Let Y = {y1, y2, y3, y4, y5} is the set of vari-

ables, A = {a1, a2, a3, a4}, A = {a1, a2, a3, a4}. So: K =

{(a1, a2), (a1, a3), (a1, a4), (a2, a3), (a2, a4), (a3, a4)}.
The discrimination matrix is represented in Table 1.

Table 1 Discrimination matrix

(a1 , a2) (a1, a3) (a1, a4) (a2, a3) (a2, a4) (a3 , a4)

y1 0.7 0 0.3 0.1 0 0.1

y2 0 0.6 0.1 0.7 0 0.4

y3 0 0.6 0.5 0.3 0.6 0.3

y4 0 0.2 0.4 0.2 0.5 0.5

y5 0 0.3 0.4 0.3 0.6 0.3

Max Yd 0.7 0 0.3 0.1 0 0.1

During the calculation of DP(Y,K) for the algorithm stop-

ping criterion, the algorithm fills the discrimination ma-

trix (only one time). Thus, in the case corresponding to

row of yl and the column (ai, a j), the algorithm puts the

value of dp(eli, elk). The Max Yd row is used to save all

maxyp∈Yd(dp(epi, epk)).

At the beginning all the cases of Max Yd row are empty,

and they will be updated with the maximum values of the

indispensable variables’ cases.

In this example, y1 is indispensable, so the algorithm up-

dates Max Yd row with the values saved in the row of y1 (it

means all of dp(e1i, e1k) values).

7.3 Operating with discrimination matrix

The discrimination matrix is used in the three important algo-

rithm steps: selecting the indispensable variables, selecting a

new variable, and finding redundant variables.

• Selecting the indispensable variables will be done by

doing this test: yl is indispensable if

∃(ai, a j) ∈ K, where dp(eli, el j) � 0

and max
yp∈Y−yl

(dp(epi, epk)) = 0. (22)

This means that a variable is indispensable, if we find

a pair of objects discriminated by this variable and not

discriminated at all by any other variable. When using

the discrimination matrix, we can find indispensable

variables without doing complex operations; we only

have to check if the discrimination values of yl, stored
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in the discrimination matrix, is greater than the discrim-

ination values of all other variables (they are also stored

in the discrimination matrix).

• Selecting a new variable in each step is done by

calculating for each unselected variable the value

ODP(yl, Yd,K). Based on Eq. (19) and by using the

discrimination matrix, the new variable’s selection is

done as follows: we know that all values dp(epi, epk)

are saved in the case corresponding to the row yl and

the column (ai, a j) of the discrimination matrix. And

we also know that maxyp∈Yd(dp(epi, epk)) is saved in row

Max Yd’s case. Thus, to calculate of ODP(yl, Yd,K) the

algorithm will do, for each couple of objects (ai, a j),

only one subtraction between two numbers (the value

saved in the case corresponding to the row yl and the

column (ai, a j), and the case of the same column in row

Max Yd), and it also needs one comparison between the

calculated value and zero.

• Finding the redundant variables in each step is gen-

erally done by checking if the selected variables are

redundant when selecting a new variable; this means

ODP(yl, (Yd ∪ ys) − yl,K) = 0, where ys is the new se-

lected variable. Using Eq. (20), we will calculate this

as follows:

DP((Yd ∪ ys) − (yl − ys),K) = DP(Yd ∪ ys,K). (23)

This test is not complex when using the discrimination

matrix, since to compute the expression DP(Yd ∪ys,K),

the algorithm calculates, for each couple (ai, a j), the

maximum between the value saved in the case corre-

sponding to the row ys and the column (ai, a j), and the

value saved in Max Yd for the same column:

m−1∑

i=1

m∑

j=i+1

Max(Maxi, jYd, dp(esi, es j)).

Therefore, DP((Yd∪ys)− (yl−ys),K) will be calculated

as follows:

m−1∑

i=1

m∑

j=i+1

Max(Max(max
yl∈Yd

dp(eli, esl), dp(esi, es j))

−Max(dp(eli, esl) − dp(esi, es j)), 0)

On the other hand, we know that when every time

the algorithm selects a variable ys, it calculates

Max(maxyl∈Yd dp(eli, esl), dp(esi, es j)), and its value is

saved in the discrimination matrix in row Max Yd. This

means that the algorithm have to compute, for each

object pair (ai, a j), only the subtraction of the case

value (ai, a j), yl and the case value (ai, a j), ys, and then

it compares the substation value with the value found

in Max Yd which correspond to the same object pair

(ai, a j) .

8 Application

8.1 PSO data format

The data format is a critical and very important aspect to take

into consideration before doing the feature selection. If the

data are not well formatted, this will lead to an incorrect re-

sult. For this purpose, we begin our study in the symbolic

objects generation’s process, a step before the feature selec-

tion phase, in order to establish rules for generating objects

with the right format.

The most important rule we used for PSO generation is the

following: all elementary events of PSO assertions using the

same variables and belonging to the same data set should use

the same values, in order to be able to compare their proba-

bility distributions correctly.

To ensure that all PSOs of a dataset are using the same val-

ues, we introduced the notion of split value. The split value is

the initial value used by a symbolic object (BSO or PSO) that

will be split to a set of values, by including the values used

by other objects.

Example 8 We have two BSOs a1 and a2 and we will for-

mat them in order to have the same values.

a1 = [age ⊆ {[20, 65]}].a2 = [age ⊆ {[10, 25], [46, 65]}].

When we process a1 taking into consideration a2, the split

value is [20, 65]; this value will be split to: [10, 20[, [20, 25],

[25, 46] and [46, 65].

During the PSO generation phase, three options can be

used by experts for full-filing the cited rule:

1) The probability of the split value should be equally dis-

tributed among the values resulting from this split.

2) The probability of the split value should be distributed

among the values resulting from this split, accordingly

to their length.

3) The probability of the split value should be affected to

the values resulting from this split.

Option 1 and 2 ensure that the sum of the probability dis-

tribution among the elementary events is always equal 1.
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Example 9 We have two PSOs a1 and a2, and we will for-

mat them in order to have the same values:

a1 = [age ⊆ {(0.2)[20, 45], (0.8)[46, 65]}].
a2 = [age ⊆ {(0.4)[20, 25], (0.6)[26, 65]}].

• If we use the split option 1, we will have:

a1 = [age ⊆ {(0.1)[20, 25], (0.1)[26, 45], (0.8)[46, 65]}].
a2 = [age ⊆ {(0.4)[20, 25], (0.3)[26, 45], (0.3)[46, 65]}].

• If we use the split option 2, we will have:

a1 = [age ⊆ {(0.2 × r1)[20, 25],

(0.2 × r1)[20, 25], (0.8)[46, 65]}].

a2 = [age ⊆ {(0.4)[20, 25],

(0.6 × r3)[26, 45], (0.6× r4)[46, 65]}].

r1 =
length([20, 25])
length([20, 45])

=
(25 − 20) + 1
(45 − 20) + 1

= 0.23.

r2 =
length([26, 45])
length([20, 45])

=
(45 − 26) + 1
(45 − 20) + 1

= 0.77.

r3 =
length([26, 45])
length([26, 65])

=
(45 − 26) + 1
(65 − 26) + 1

= 0.5.

r4 =
length([46, 65])
length([26, 65])

=
(65 − 46) + 1
(65 − 26) + 1

= 0.5.

a1 = [age ⊆ {(0.046)[20, 25], (0.154)[26, 45],

(0.8)[46, 65]}].
a2 = [age ⊆ {(0.4)[20, 25], (0.3)[26, 45], (0.3)[46, 65]}].
• If we use the split option 3, we will have:

a1 = [age ⊆ {(0.2)[20, 25], (0.2)[26, 45], (0.8)[46, 65]}].

a2 = [age ⊆ {(0.4)[20, 25], (0.6)[26, 45], (0.6)[46, 65]}].

8.2 Validation

After each selection process, it is necessary to validate the

results. The validation process used can be divided into two

categories: the validation without test data and the validation

with test data.

8.2.1 Validation process without test data

In the validation without test data, the expert can assess the

feature selection result by analyzing the selected variables’

list, generated by Minset-Plus algorithm. The list includes

some information which help him to evaluate the selected

variables’ quality: name of the variable, type of the variable

(quantitative, qualitative, status of the variable (indispensable

or not), and selection step (algorithm step, the discrimina-

tion power of the selected variables during this step, and the

original discrimination power of this variable referring to the

selected variables).

Also by using the flexibility provided by Minset-Plus al-

gorithm, the expert can force the selection, and can discard

the selection of some variables. Furthermore, the expert can

set the level when the algorithm will stop (what percentage

of discrimination power to reach). Thus, the expert can re-

peat the selection process until he gets satisfactory results,

by using either the initial objects or the objects generated by

Minset-Plus algorithm after selection.

The validation process without test data is shown by

Fig. 3.

Fig. 3 Validation process without test data

8.2.2 Validation process with test data

In our study, the validation process with test data is done

based on object extent calculation. The extent of the PSOs

after feature selection should not be far from the extent of the

PSOs before the feature selection. If the objects’ extent using

the selected variables is bigger than the objects’ extent before

selection, it means that the individuals will have, after fea-

ture selection, more chances to be in the intersection of the

object extents. In this case, we can say that the objects were

not well discriminated using the selected variables. The vali-

dation, using object extents, needs individuals test data. This
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test data are provided by the expert or generated automati-

cally using the symbolic object generator program, developed

for this purpose.

The validation process with test data is shown by Fig. 4.

The quality assessment of the selected variables is done

using two criteria:

Fig. 4 Validation process with test data

• Real discrimination power variation (RDPV) criterion:

defined as follows:
∣∣∣∣∣
RDP(Yd,K) − RDP(Y,K)

RDP(Yd,K)

∣∣∣∣∣ � β, (24)

where

RDP(Yd,K) = 1 −
m−1∑

i=1

m∑

j=i+1

card(extα(a′i) ∩ extα(a′j))

card(extα(a′i) ∪ extα(a′j))
,

and

RDP(Y,K) = 1 −
m−1∑

i=1

m∑

j=i+1

card(extα(ai) ∩ extα(a j))

card(extα(ai) ∪ extα(a j))
.

a′i and a′j are the PSOs describing ai and a j using only

the selected variables Yd.

We know that extα(a) = {wl ∈ Ω/a(wl) � α}, and α

is a defined threshold. This threshold plays an impor-

tant role in the extent calculation. The bigger is α, the

smaller is the extent; and the smaller is α, the bigger is

the extent. β is the threshold tolerance error.

• Cluster discrimination difference (CDD): this criterion

shows to the expert the difference between the discrim-

ination of individual clusters and the discrimination

reached by the selected variables on the PSO represent-

ing these clusters. This criterion is defined as follows:
∣∣∣∣∣
RDP(Yd,K) − RDP(Y,K)

RDP(Yd,K)

∣∣∣∣∣ � β, (25)

where

CD(C) = 1 −
q−1∑

i=1

q∑

j=i+1

card(extα(ci) ∩ extα(c j))

card(extα(ci) ∪ extα(c j))
.

C: is the set of q clusters built on individuals, ext(ci): is

the set of individuals that belong to the cluster ci.

If the cluster discrimination difference is bigger than the

threshold defined by the expert, it means that the PSOs

do not describe well the clusters. Thus, the feature se-

lection will also be affected.

Since the threshold α has a very important role to de-

termine the length of object extents, and it is hard to

the expert to provide this threshold without any help,

thus, Minset-Plus algorithm provides for the expert

some quality indicators, helping him to set correctly the

threshold α and then validate the result of feature selec-

tion, using RDPV and CDD quality indicators. These

threshold quality indicators are calculated before and

after the selection. Four indicators have been defined

for this purpose:

Let us have m PSOs, and each object is described by n

variables.

• The minimum threshold: gives the minimal condition

allowing an individual to belong to the extent of an ob-

ject.

AVG_Min_α(al) =
1
m

m∑

i=1

Min_α(al)), (26)

where Min_α(al) = 1
n

∑n
i=1 minr(pr

il) and (pr
il) � 0.

• The maximum threshold: gives the maximal condition

allowing an individual to belong to the extent of an ob-

ject.

AVG_Max_α(al) =
1
m

m∑

i=1

Max_α(al)), (27)

where Max_α(al) = 1
n

∑n
i=1 maxr(pr

il).
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• The average threshold: gives the average condition al-

lowing an individual to belong to the extent of an object.

AVG_AVG_α(al) =
1
m

m∑

i=1

AVG_α(al)), (28)

where AVG_α(al) = 1
2 Min_α(al) + Max_α(al).

• The length of threshold: using this indicator the expert

can know which object have larger extent.

AVG_Length_α(al) =
1
m

m∑

i=1

Length_α(al)), (29)

where Length_α(al) = Max_α(al) − Min_α(al).

8.3 Testing

8.3.1 Test on real data

8.3.1.1 IRIS three clusters test

We did a feature selection on the known Fisher dataset, pub-

lished in the UCI machine learning repository [14]. The data

consist of 150 irises, described by four numerical variables:

Sepal Length, Petal Length, Sepal Width, and Petal Width.

The irises are clustered on three clusters, by using the vari-

able species, which describe three categories (Setosa, Versi-

color and Virginica, denoted as 1, 2, 3). We used our sym-

bolic object generator program to generate the description of

these clusters by using three probabilistic symbolic objects.

The cluster discrimination of this dataset is equal to 100%;

it means there is no intersection between the clusters (all in-

dividuals belong to only one cluster at the same time). Also,

the real discrimination power value before selection is equal

to 100%, this means that, using all variables, the symbolic

objects are completely discriminated.

Using the probabilistic dissimilarity measure, the algo-

rithm Minset-Plus revealed two variables: Petal Length with

DP of 2.84 and Petal Width with DP of 2.68. But the algo-

rithm selected only Petal Length variable, since all the dis-

crimination part of the variable Petal Width is already in-

cluded in the discrimination for the variable Petal Length

(ODP({Petal Width}, {Petal Length},K) = 0).

We compared our result to the result obtained by the fol-

lowing feature selection methods and algorithms:

• Rough set data analysis (RSDA) method of Browne

[15]. RSDA is a non-numeric method of data analy-

sis, enhancing the traditional rough set data analysis by

three procedures: significance testing, data filtering and

uncertainty measuring.

• Feature selection for clustering algorithm of Dash [16].

Dash et al. use as feature selection criterion a new en-

tropy measure that is low if the individuals have distinct

clusters and high otherwise. Using this measure the al-

gorithm should select the most important subset of fea-

tures, because the result is affected only by the quality

of the clustering.

• Feature selection for unsupervised learning algorithm

of Dy [17]. Dy and Brodley proposed a feature sub-

set selection method using expectation-maximization

(EM), by applying a cross-projection normalization

scheme.

To validate and compare the feature selection on Iris data,

we created, after feature selection, sets of PSOs describing

the variables selected by each algorithm. For calculating the

quality criteria, we used the average threshold generated by

the algorithm that was 0.139.

The result of this experimentation is shown in Table 2.

All algorithms have found out that the most discriminant

variables are: Petal Length and Petal Width. Minset-Plus al-

gorithm has selected Petal Length, the variable selected by all

other algorithms.

Table 2 Feature selection on probabilistic symbolic object datasets

Algorithm Selected variables RDP after CDD RDPV

Browne Petal Length, Petal Width 100% 0.000 0.000

Dash Petal Length, Petal Width 100% 0.000 0.000

Dy Petal Length, Petal Width 100% 0.000 0.000

Minset-Plus Petal Length 100% 0.000 0.000

The real discrimination power using the variables selected

by the fourth algorithms (RDP after column) is for all al-

gorithms equal to 100%; this means that all algorithms se-

lected the discriminant variables. Also, the cluster discrim-

ination difference value (CDD column) is equal to 0 for all

algorithms; it means that there is no difference between the

discrimination of individual clusters and the discrimination

reached by the selected variables by all algorithms. And fi-

nally, the real discrimination power variation (the column

RDPV) is equal to zero for all algorithms, since the real

discrimination power before and after the selection did not

change, this proofs that the variables selected by all algo-

rithm discriminate well the objects. We can also notice that,

Minset-Plus, by selecting only one variable, got the same

quality results as other algorithms. This means, we need only

Petal Length variable to discriminate the PSOs, so we can

conclude that Minset-Plus algorithm selected the minimum

subset of variables to discriminate the PSOs.
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Other datasets: all the datasets used in this experimenta-

tion come from the UCI machine learning repository [14].

We used our symbolic object generator program in order to

create the symbolic objects that represent the individual clus-

ters of these datasets. Table 3 describes the datasets.

The result of the experimentation is shown in Table 4. We

can notice, by looking on CDD criterion “cluster discrimina-

tion difference”, that all datasets are well represented by the

probabilistic symbolic objects. The result of feature selection

was good, since the algorithm has reduced the total number

of features from 61% to 78%. To assess the quality of fea-

ture selection, we calculated the RDPV “real discrimination

power variation”, and we used the average threshold in the

calculation of all datasets’ extent. The RDPV varied from 0

to 0.012; this is an indicator of a very good feature selection

quality result, and this means that the PSOs described by the

selected variables are discriminated like the PSOs before the

selection.

We compared the feature selection on probabilistic sym-

bolic objects to the feature selection on Boolean symbolic

objects; the result is shown in Table 5.

We can notice that most of the time, the reduction percent-

age using feature selection on Boolean symbolic objects is

greater than the reduction percentage using feature selection

on probabilistic symbolic objects. But, based on CDD, we no-

tice that the objects’ quality is better when using probabilistic

representation. Finally, we notice also that the feature selec-

tion quality is better when using probabilistic objects; since

when using Boolean objects the RDPV varied from 0 to 0.05,

and when using probabilistic objects the RDPV varied from

0 to 0.012; the difference in the best cases reaches the ratio of

2.4.

8.3.2 Simulated test data

In order to create simulated test data, first we generated in-

dividuals using our individual generator program; and by us-

ing the symbolic object generator program, we created prob-

abilistic symbolic objects for the clusters that we made on

these individuals. The individual file has been used in another

step to validate the feature selection. We made four categories

of experiences: real discrimination power test, percentage of

discrimination versus percentage of reduction, time execu-

tion, and value criteria versus probabilistic criteria.

• Discrimination power test

We tested our algorithm on many generated data sets,

and we calculated for each test the clusters discrim-

ination difference (CDD) and the real discrimination

power variation (RDPV). You can notice in Fig. 5, that

the CDDs were good (from 0.3% to 1.7%); this means

that the PSOs are representing well the clusters from

a discrimination side. The RDPVs are also good (from

1.7% to 2.5%); this means that the selected variables

still discriminating well the PSOs. Note that the extents

of PSOs have been calculated using the average thresh-

old defined in Eq. (28).

• Complexity test

The complexity is a critical part to any algorithm, thus

we tested the complexity of our feature selection algo-

rithm on PSOs data. For this, we generated ten datasets,

Table 3 Dataset description

DataSet Attribute number Individual number SO number Type of data

Audiology (Standardized) 69 226 24 Categorical

Dermatology 33 366 6 Categorical, Integer

Heart disease 13 303 5 Categorical, Integer, Real

Cardiotocographic 22 2 126 10 Categorical, Integer, Real

Table 4 Feature selection on probabilistic symbolic object datasets

DataSet Cluster discrimination RDP before % of Reduction RDP after CDD RDPV

Audiology (Standardized) 100% 100% 78.26% 100% 0.000 0.000

Dermatology 100% 100% 78.78% 100% 0.000 0.000

Heart disease 100% 100% 61.53% 98.80% 0.012 0.012

Cardiotocographic 100% 100% 68.18% 100% 0.000 0.000

Table 5 Feature selection on Boolean symbolic object datasets
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DataSet Cluster discrimination RDP before % of Reduction RDP after CDD RDPV

Audiology (Standardized) 100% 100% 84.05% 100% 0.000 0.000

Dermatology 100% 98.0% 81.81% 94.10% 0.020 0.039

Heart disease 100% 83.2% 69.23% 77.60% 0168 0.050

Cardiotocographic 100% 100% 68.18% 100% 0.000 0.000

by increasing each time the number of symbolic ob-

jects, since the complexity is based on the couples of

symbolic objects.

We compared the time execution of Minset-Plus on BSOs,

with the time execution on PSOs using probabilistic criterion

defined in Eq. (11) and description space probabilistic crite-

rion defined in Eq. (16), named PROBA-VALUE in Fig. 6.

Fig. 5 Discrimination power test

Fig. 6 Complexity test

We can notice in Fig. 6, that the time execution of Minset-

Plus on the three categories of test data was good. Since

for 100 symbolic objects, we had 550 milliseconds on PSOs

using probabilistic criterion, 600 milliseconds on PSOs us-

ing value probabilistic criterion, and 2 000 milliseconds on

BSOs. Also, you can notice that Minset-Plus algorithm is

much faster when it is using PSOs than when using BSOs;

this is due to the fact that the criterion used to select features

on BSOs is based on the union and intersection between vari-

able values (which is complex computation), but on PSOs the

criterion is based on the calculation of value probabilities.

9 Conclusions

In this paper, we presented the feature selection on proba-

bilistic symbolic objects, using the algorithm Minset-Plus.

The probabilistic symbolic objects are a rich and complex

representation of data, they represent clusters of individuals

using multi-valuated attributes (set of values, intervals) with

probabilities associated to the values; these probabilities can

have different semantics. We have seen in this paper that the

choice of strong and suitable feature selection criteria is very

important to ensure the quality of the feature selection result,

this is why we dedicated a whole section for this purpose, and

we used many mathematics formulas to define the feature se-

lection criteria.

Another aspect that we developed in this paper is the com-

plexity; since the data are complex, a big effort has been done

in order to improve the algorithm’s complexity. Based on the

application of some mathematical properties on ODP and DP

functions, and based also on the use of the discrimination

matrix, we did an important improvement on the algorithm’s

complexity.

In order to validate the result of feature selection, we de-

veloped an entire system including several programs such as:

dataset simulator, symbolic object generator, symbolic object

quality, and symbolic feature selection. We proposed a vari-

ety of parameters and validation criteria to help the experts to

interact with the system and assess the feature selection result

quality.

The experimentations done on real and simulated data

showed and proved that Minset-Plus algorithm can reduce

considerably the number of features without damaging the

discrimination between symbolic objects. We also noticed

that the feature selection using probabilistic symbolic objects

obtains better results than the feature selection on boolean
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symbolic objects. The experimentations also showed that the

algorithm’s time execution on probabilistic symbolic objects

is far much better than the time execution on boolean sym-

bolic objects.
Based on all these experimentation results, we can con-

clude that it is preferable to use feature selection on proba-

bilistic symbolic objects instead of using feature selection on

boolean symbolic objects. Because the probabilistic symbolic

objects are rich objects, we obtain better results of feature se-

lection, and we gain a lot in the complexity of the algorithm.
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