
Front. Comput. Sci., 2015, 9(2): 237–252

DOI 10.1007/s11704-014-3358-5

A model-driven approach to semi-structured database design

Amir JAHANGARD-RAFSANJANI , Seyed-Hassan MIRIAN-HOSSEINABADI

Department of Computer Engineering, Sharif University of Technology, Tehran 11365-11155, Iran

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Abstract Recently XML has become a standard for data

representation and the preferred method of encoding struc-

tured data for exchange over the Internet. Moreover it is fre-

quently used as a logical format to store structured and semi-

structured data in databases. We propose a model-driven and

configurable approach for modeling hierarchical XML data

using object role modeling (ORM) as a flat conceptual model.

First a non-hierarchical conceptual schema of the problem

domain is built using ORM and then different hierarchical

views of the conceptual schema or parts of it are specified by

the designer using transformation rules. A hierarchical mod-

eling notation called H-ORM is proposed to show these hier-

archical views and model more complex semi-structured data

constructs and constraints. We also propose an algorithm to

map hierarchical H-ORM views to XML schema language.

Keywords semi-structured database design, object role

modeling, model driven approach

1 Introduction

XML has become a de-facto standard for describing and

interchanging semi-structured data among various systems

and databases on the Internet. Recently XML has been used

by many organizations as a logical format to store data in

databases. This increases the need for well-designed XML

data models and the need for a methodology for designing

XML schemas. Schema definition languages such as XML

schema are used for describing valid XML document struc-

tures. These languages can be seen as logical models for
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XML data. They are not suitable to be used at the concep-

tual level because they force designers to focus on low-level

presentation details.

Semi-structured databases and XML have some properties

that makes conventional data modeling approaches such as

ER and UML unsuitable for designing XML data. Some of

these differences are: hierarchical structure, ordering on ele-

ments and attributes, mixed content and irregular structures.

For example a simple relationship in an ER diagram can be

mapped to multiple hierarchical structures.

In this paper we present a model-driven design methodol-

ogy for XML data using object role modeling (ORM) [1,2] as

the platform independent model (PIM). This allows design-

ers to analyze and model data requirements of the problem

domain without worrying about later presentations.

We have chosen ORM because its data modeling features

are richer than other popular notations such as ER and UML,

allowing more business rules to be captured, its attribute free

models are more stable than attribute based approaches, be-

cause they are free of changes caused by attributes evolving

into other constructs or vice versa [3], and its role-based nota-

tion allows models to be easily validated with domain experts

by verbalization and sample populations [4].

Then we introduce a graphical and hierarchical modeling

notation called H-ORM as the platform specific model (PSM)

that can be used to show hierarchical views over ORM mod-

els. H-ORM supports various semi-structured data properties

such as ordering and irregular structures and mixed content.

Transformation rules are used by database designers to for-

mally specify the desired hierarchical structure over flat ORM

models and generate H-ORM views. Various H-ORM views

can be generated over a single ORM model. Then, using a

mapping algorithm, an XML schema is generated as the log-
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ical model of the XML data. Figure 1 shows an overview of

our approach to XML database design.

Fig. 1 Model-driven approach to XML data

In this approach the PIM (ORM) is not influenced by XML

schema languages and special features of semi-structured

data model. The required XML data model representations

are modeled in H-ORM in a graphical notation readable to

non-technical users. The advantage of H-ORM is that differ-

ent H-ORM schemes that model different XML representa-

tions of the same data, are formally interrelated by the ORM

model and transformation rules. This enables to rapidly un-

derstand the semantics of the XML schemes and trace the lo-

cations of each concept in the XML schemes and vice versa

(traceability).

The rest of the paper is organized as follows. Section 2

presents a brief introduction to ORM. In Section 3 we intro-

duce the transformation rules as a means to specify hierarchi-

cal views over flat ORM models. Then in Section 4, H-ORM

notation is introduced. In Section 5 a mapping algorithm to

generate XML schema from H-ORM models is introduced.

Various criteria of a conceptual model for XML are presented

in Section 6 and our approach is evaluated against these crite-

ria. Related works are studied in Section 7. We conclude the

paper in Section 8.

2 Background on ORM

ORM is a conceptual modeling approach that views the world

in terms of object-types (entities or values), that play roles in

relationships (predicates). It provides graphical and textual

languages for verbalizing and querying information as well

as various design and transformation procedures and it has

semantics based on first-order logic. ORM allows a variety

of data constraints to be defined such as mandatory role, sub-

set, uniqueness, exclusion, cardinality and ring constraints.

Figure 2 shows an ORM diagram that models a “con-

ference paper” universe of discourse. In this diagram, ob-

ject types are represented as named rounded rectangles

and relationship-types as named sequences of adjacent role

boxes. Individual role names are written in square brack-

ets near each role. A bar over/near a role or role sequence

indicates an internal uniqueness constraint, and a circled

Fig. 2 Conference paper ORM schema
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underline or circled double underline denotes an external

uniqueness (or primary uniqueness) constraint. For example

a Person is identified by his/her Email Address and an Institu-

tion is identified by its name and country combination. Value

constraints are represented as a braced list of values, and fre-

quency constraints as a numeric range attached to one or more

roles. For example there is a value constraint on Status object

type which indicates that we have only three Status codes:

undecided, accepted and rejected; and each Paper should be

reviewed by exactly two Persons. Role and relationship sub-

set constraints are shown as arrow with a circled subset no-

tation, exclusion constraints as a circled “x” between the rel-

evant role-sequences, and subtype links as solid arrows be-

tween object types. For example an author of a paper cannot

be the reviewer of the same paper and the presenter(s) of an

accepted paper should be one (some) of the authors of the

paper.

Figure 3 shows another page of the “conference paper”

schema about paper details. The shadow under the Paper en-

tity type shows that it is replicated in another page of the

schema. A paper may have multiple references and a refer-

ence can be from either a journal or a conference proceed-

ings.

Fig. 3 Conference paper ORM schema-paper details

3 Transformation rules

In order to produce hierarchical representations from flat

ORM schemes a designer needs a tool to specify the required

hierarchical structure. In this section we introduce transfor-

mation rules. These rules are defined on predicates and state

how the hierarchy is made. This makes our approach con-

figurable and using various transformation rules a designer

can define multiple hierarchical views for special applications

over a single ORM schema.

Definition 1 Given predicate R, a transformation rule τ on

R is an expression of form:

τ = (R : S (RS )→ T (RT ), 〈C〉).

In which:

• S and T are objects participating in R. S or T can be R

itself or its objectified entity type.

• RS and RT are roles of S and T in R respectively (if S

and T are not R itself). If a player plays one role in the

predicate then this parameter can be omitted.

• C is a sequence of form 〈C1(R1),C2(R2), . . . ,Ck(Rk)〉
that each Ci is a player of R and Ri is the role played

by Ci.

• S is called parent, T is called child and C is called con-

text of the transformation rule.

Let S and T be different from R, at the instance level

a transformation rule τ defines a set τi of triples (s, t, c) in

which s ∈ (RS )I , t ∈ (RT )I and c is a sequence c1, c2, . . . , cn,

ci ∈ (Ri)I so that:

∃ row : RI · (row.RS = s ∧ row.RT = t ∧ (∀i : N|0 < i

� n · row.Ri = ci)).

Let S be R and the transformation rule will be (R : R →
T (RT ), 〈C〉) then at the instance level a transformation rule

defines a set of triples (r, t, c) in which r ∈ RI , t ∈ (RT )I and c

is a sequence c1, c2, . . . , cn, ci ∈ (Ri)I so that:

r.RT = t ∧ (∀i : N|0 < i � n · r.Ri = ci).

Let T be R and the transformation rule will be (R :

S (RS ) → R, 〈C〉) then at the instance level a transformation

rule defines a set of triples (s, r, c) in which r ∈ RI , s ∈ (RT )I

and c is a sequence c1, c2, . . . , cn, ci ∈ (RCi)I so that:

r.RS = s ∧ (∀i : N|0 < i � n · r.Ri = ci).

We show the function of the rule by an example. Consider

the ternary predicate Review shown in Fig. 4(a). Review has

three player entity types Person, Paper and Rating and mod-

els the rating a person gives to a paper. A person can give

at most one rating to a paper. Different hierarchical repre-

sentations of Review may be required. For example one may

require a list of persons and for each person the list of papers

he/she reviews and for each paper the rating given by the per-

son. The hierarchical structure can be specified formally by

the following transformation rules:

τ1 : (Review : Person(r1)→ Paper(r3)),

τ2 : (Review : Paper(r3)→ Rating(r2), 〈Person(r1)〉).
These transformation rules define the hierarchical view of

the ORM model which is shown in Fig. 4(b). Rule τ1 is read
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as “Person is the parent of Paper in predicate Review” and

rule τ2 is read as “Paper is parent of Rating in the context of

Person in predicate Review”.

Fig. 4 (a) ORM model for paper review and various; (b), (c), (d) hierarchi-
cal views on it

At the instance level τ1 and τ2 define the following sets:

τ′1 = {(person, paper, 〈〉)|∃r : ReviewI ·
(r.r1 = person ∧ r.r3 = paper)},

τ′2 = {(paper, rating, 〈person〉)|∃r : ReviewI · (r.r3

= paper ∧ r.r2 = rating ∧ r.r1 = person)}.
The above sets organize data in a hierarchical structure in

which instances of Person, Paper and Rating are nodes and

edges are defined by τ′1 and τ′2. Each edge connects parent

node to the child node. This hierarchical structure can be eas-

ily transformed into XML representations. For example an

XML representation defined by τ1 and τ2 with sample data is

shown in Fig. 5(a).

The transformation rules τ3 and τ4 define a hierarchical

view of the ORM sample which is shown in Fig. 4(c). At the

instance level a structure similar to XML representation of

Fig. 5(b) is defined:

τ3 : (Review : Paper(r3)→ Person(r1)),

τ4 : (Review : Person(r1)→ Rating(r2), 〈Paper(r3)〉).

And the transformation rules τ5, τ6 and τ7 specify a hierar-

chical view of the ORM sample which is shown in Fig. 4(d).

At the instance level a structure similar to XML representa-

tion of Fig. 5(c) is defined:

τ5 : (Review : Paper(r3)→ Review),

τ6 : (Review : Review→ Person(r1), 〈Paper(r3)〉),
τ7 : (Review : Review→ Rating(r2), 〈Paper(r3)〉).

The transformation rules allow us to specify the required

hierarchy but are not usable for specifying more structural

requirements of XML data. H-ORM is used to model these

specific requirements.

With transformation rules it is possible to specify a hier-

archical structure from which the original data cannot be re-

constructed. For example the transformation rules:

Fig. 5 Various XML representations of ORM schema of Fig. 3
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(Review : Person(r1)→ Paper(r3)),

(Review : Person(r1)→ Review),

specify that for each person there is a list of papers reviewed

by the person and there is a list of reviews made by the per-

son. However there is no connection between reviews and

papers, i.e., for a given Review instance we cannot determine

the corresponding Paper instance form the specified hierar-

chical structure. Therefore we introduce some guidelines on

specifying transformation rules to prevent these situations.

Suppose a predicate R with players (participants)

O1,O2, . . . ,On. Among various possible configurations for

specifying transformation rules, two are preferred:

• R is specified as the root. This is specified by transfor-

mation rules (R : R→ O1), (R : R→ O2), . . . , (R : R→
On). An instance r of R is represented as a root in the

hierarchical structure and each r.O1, r.O2, . . . , r.On is a

child of r, so the original instance of r can be recon-

structed from this structure.

• Some of the players of R are specified as parents (an-

cestors) of R and the others are specified as children

of R. For example assume O1,O2, . . . ,Ok be ancestors

of R and Ok+1,Ok+2, . . . ,On be represented as its chil-

dren. If we have an instance r of R we can determine

r.O1, r.O2, . . . , r.On from the corresponding ancestors

and Ok+1,Ok+2, . . . ,On can be determined from corre-

sponding children. For example in transformation rules

τ5, τ6 and τ7, Review is represented as child in τ5 and is

represented as parent in τ6 and τ7.

• R is not present in the hierarchy and is replaced by

parent-child-context relationship between its partici-

pants. For example in transformation rules τ1 and τ2,

Review is not present and is replaced by parent child re-

lationship between Person/Paper and then parent child

relationship between Paper/Rating in the context of

Person.

4 H-ORM

H-ORM is a hierarchical data model and H-ORM models can

be considered as hierarchical views on ORM schemes. An

H-ORM schema is a directed graph. Its nodes are called ob-

ject types and edges are called relationships. Object types are

similar to object types in ORM. An object type in H-ORM

represents an object or a predicate from an ORM schema. Re-

lationships represent the nesting of the object types in a hier-

archy defined by transformation rules. Formally an H-ORM

model derived from and ORM schema ORM consists of four

components:

• A set of nodes (object types) O, representing objects or

predicates from ORM.

• A set of directed edges (relationship types) R represent-

ing nesting relationships between the objects.

• A set of constraints C, defined over nodes or edges.

• A reference to the ORM model ORM, on which the

H-ORM view is defined.

These concepts are defined formally in Sections 4.1 and

4.2.

4.1 Object types

An object type (a node) in an H-ORM model is a represen-

tation of an object or relationship type from ORM. Similar

to ORM there are two kinds of object types: Value types and

Entity types. A value type cannot have any edges emanating

from it (except in one case described in Section 4.3.6) and it

has a predefined data type. Value types are shown by dashed

soft rectangles and are representation of value types of the

ORM model. An entity type can have edges emanating from

it and is shown by a solid soft rectangle. For example in Fig.

6, Paper, Author and Section are entity types and the other

object types such as Title, Abstract and Name are value types

of type string.

Let E ⊆ O andV ⊂ O be the set of entity types and value

types, respectively, then E ∩V = ∅ and E ∪V = O.

An entity type e ∈ E is defined by a triple

(eorm, elabel, econtent) in which eorm is a concept (object or predi-

cate) fromORM and elabel is a string called label of the object

and econtent is the content of the entity which can be a set or a

sequence of edges based on ordering on the entity type.

A value type v ∈ V is a triple (vorm, vlabel, vtype) in which

vorm is a value type from ORM, vlabel is a string called label

of the value type and vtype is the type of the value type.

4.2 Relationship types

In H-ORM we distinguish among three kinds of relation-

ships: nesting, reference and inheritance. Nesting and ref-

erence relationships are direct results of transformation rules.

Inheritance relationships are inherited from the correspond-

ing ORM model.

• A nesting relationship type is a triple (OP,OC, τ) in
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which OP ∈ E is an entity type and OC ∈ O is an object

type from the H-ORM model called parent and child

respectively, and τ is a transformation rule from which

the relationship is derived.

• A reference relationship type is a pair (OF ,OR) where

OF ∈ E is the referrer entity type and OR ∈ E is the

reference entity type. The two entity types should rep-

resent the same concept from the ORM model.

• An inheritance relationship type is a pair (Osup,Osub)

where Osup ∈ O is the super object type and Osup ∈ O is

the sub object type.

A nesting relationship is shown by a directed edge from

parent to child. A reference relationship is shown by adding

the name of the reference entity type with a “↑” to the box

of the referrer entity type. For example in Fig. 6, Author, Ref-

eree and Presenter entity types refer to Person entity type. An

inheritance relationship type is shown by a triangle pointing

to the super object type on an edge between sub and super

object types. If there is not enough space on the diagram or

drawing the edge makes the diagram complicated we can add

the name of the super object type with a “⊂” symbol to the

box of the sub entity type. For example in Fig. 6, Accepted

Paper is a sub-entity of Paper entity-type.

Fig. 6 An H-ORM view over ORM model of Fig. 3

Roles are limited to parent or child, referrer or reference

and super-object or sub-object based on the relationship type.

Similar to ORM we do not use attributes in order to produce

more stable models.

The following transformation rules were used to generate

the hierarchical structure of the H-ORM model of Fig. 6. The

name of the transformation rule for each edge is written near

the edge in the figure.

T1 : (hasT itle : Paper → Title)

T2 : (hasS tatus : Paper→ S tatus)

T3 : (re f reed : Paper→ Review)

T4 : (authors : Paper→ Author(↑ Person))

T5 : (hasReview : Review→ Re f eree(↑ Person))

T6 : (re f reed : Review→ Rating, < Paper >)

T7 : (presents : AcceptedPaper→ Presenter(↑ Person))

T8 : (hasPages : AcceptedPaper→ NrPages)

T9 : (hasEmail : Person→ Email)

T10 : (hasPName : Person→ Pname)

T11 : (isFrom : Person→ Institution)

T12 : (hasPhone : Person→ Phone)

T13 : (hasIName : Institution→ InsName)

T14 : (isBasedIn : Institution→ Country)

4.3 Additional H-ORM constructs and constraints

The proposed graph model in the previous section is used as

backbone of modeling semi-structured data, but in practice

more additional and complex constructs and constraints are

needed. In this section we introduce various H-ORM con-

structs and constraints used to model various semi-structured

data concepts and irregularities.

4.3.1 Ordering

Various types of ordering can be captured in semi-structured

data like XML. For example in XML an ordering on elements

is considered. We consider two types of ordering in H-ORM:

• Ordering on a set of object type instances related to an-

other object type instance, e.g., ordering on authors of

a paper. We simply say that the edge/relationship be-

tween two object types is ordered and denote it by a

“<” symbol on the edge. For example in the H-ORM

view of Fig. 6, there is an ordering on the edge between

Paper and Author Object types. This indicates that there

is an ordering on the authors of a paper which should be

preserved.

• Ordering on edges emanating from an entity type (its

content), e.g., ordering on parts of a paper such as title,

authors, abstract and chapters. We simply say that an

object type is ordered and show this by a “<” symbol af-

ter the label of the object type. If an entity type e ∈ E is
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ordered then econtent is a sequence of edges, otherwise it

is a set of edges. This ordering must be preserved when

translating this object type to other representations such

as XML schema.

The H-ORM view in Fig. 7 contains three ordered object

types, namely, Paper, Author and Section. For example, or-

dering on Section models that for each section first comes the

SecTitle and then the one or more paragraphs.

4.3.2 Participation

A participation constraint can be defined on a nesting rela-

tionship. It specifies the number of instances of child object

type that may be nested in a single instance of the parent

object type. This constraint is of the form (min,max) where

min and max are the minimum and maximum participation of

the child object type in relationship, respectively. The default

participation is (1, 1). The usual shorthand can also be used to

represent the participation constraints, “?” represents (0, 1),

“∗” represents (0, n) and “+” represents (1, n). A minimum

value larger than zero in a participation constraint, indicates

a mandatory relationship between parent and child.

The participation constraints are derived from the ORM

model. If the parent object type plays an optional role in the

predicate of the transformation rule of the edge then the min-

imum is “0”, and if there is a multi-role uniqueness constraint

on the predicate of the transformation rule then the maximum

will be “n”.

For example in H-ORM view of Fig. 6, there is an implicit

(1, 1) participation constraint between Paper and Title mean-

ing that each paper has exactly one title and each title belongs

to one paper. The (1, n) participation constraint between Pa-

per and Author indicates that a paper has one or more than

one authors.

4.3.3 Choice

Choices are used to model irregular structures in semi-

structured data. A choice constraint can be defined on a set

of relationship types having a single parent. In this case an

instance of the parent object can only participate in one of

the relationships. A choice construct may have participation

constraint to represent the minimum and maximum occur-

rence of the entire choice. In H-ORM a choice is represented

by a diamond with a vertical bar. The direction of the edges

is from parent to the diamond and from the diamond to the

child object sets. The default participation is (1, 1).

For example in Fig. 7, there is a choice constraint on edges

emanating from Reference entity type meaning that a refer-

ence can be from a Conference or a Journal but not from both

at the same time. This is a representation of the exclusive-or

constraint on Reference roles from ORM schema of Fig. 3.

Fig. 7 H-ORM view over ORM model of Fig. 3

4.3.4 Value

A value constraint can be defined on a value type and it de-

termines the domain of the object instances. A value con-

straint may be defined by declaring its set of possible values

as one or more enumerations or ranges enclosed in braces

(curly brackets). In an H-ORM diagram, a value constraint

on a value type is declared by displaying the extension next

to the value type. Value constraints are inherited from ORM

schema.

If we list or enumerate all the possible values, this is an

enumeration, If the values may be ordered in a continuous

list from first to last, we can simply list the first and last with

“..” between, since we know how to fill in the intermediate

values. This is called a range. If a range is unbounded at one

end, no value appears at that end.

For example in Fig. 6, there is an enumeration value con-

straint on values of Status code which restricts its values to

“undecided”, “accept” and “reject”; and there is a range value

constraint on RateNo values restricting its values to a range

between 1 and 10 inclusive.

4.3.5 Uniqueness constraints

Because H-ORM models are hierarchical, uniqueness con-

straints are defined in the context (scope) of the entity type.

Two kinds of uniqueness constraints can be defined in H-

ORM:

• An entity type can have a reference scheme which is

written in parentheses near its label. For example in

each Paper has a paper number which is unique within

paper context; and because in Fig. 6 and Fig. 7, Paper is

a root node then paper number is unique globally within

the matching XML document.
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• For some entity types it is needed to use its content

(children) to define keys. In this case the key is shown

by a line on the edge connecting a parent to its key child.

If the key is compound then a notation similar to ORM

external uniqueness constraint (a circle with a horizon-

tal line inside it connecting key components) is used

to show key components. For example in the H-ORM

view of Fig. 6, Email is unique for Person meaning that

there are no two persons having the same email; But in

the H-ORM view of Fig. 7 Email is unique for Author

in the scope of Paper meaning that no two authors of a

paper can have similar email addresses.

Key constraints can be derived from uniqueness constraints

which play the identifier role of the object types in ORM

model. If there is more than one uniqueness constraint on a

single entity type then one of them is chosen as the primary

reference scheme (key) and is shown by a double line instead

of a single line. For example in Fig. 6, the combination of

person name and institution is unique and is the primary key

of the person.

4.3.6 Mixed content

Another useful feature that a conceptual model should be able

to provide for semi-structured data is the ability to represent

mixed content. For example XML schema provides a mixed

attribute that can be set to true. Setting mixed to true enables

character data to appear between the child elements of the

mixed element in a compatible XML document. In order to

model mixed content in H-ORM we use a value type for the

object type with mixed content. In this case the value type can

have edges emanating from it. In H-ORM we do not explicitly

specify how text in mixed with child elements. If the pattern

matters the designer must model nodes explicitly rather than

using the generic mixed type.

Formally a mixed type is like creating a relationship to a

value type of type string. The string associated with a mixed

object instance may be scattered among direct child object

types.

5 Mapping H-ORM to XML schema

Having modeled the desired hierarchical structure of the

XML data in an H-ORM model, in this section we provide

the mapping algorithm from H-ORM to the XML schema. In

translation from H-ORM to XML schema we should consider

the following challenging issues:

• Translation to valid XML-schema instance sometimes

need extra artifacts to satisfy XML schema’s require-

ments (e.g., a sequence among concepts when the

model has no requirement for a sequence).

• In some cases multiple translations are possible. In our

mapping algorithm we point out alternatives and we

propose a default translation.

• There are some features in ORM that are not available

in XML schema, e.g., multiple inheritance, disjunctive

mandatory constraints, ring constraints. These limita-

tions should be considered during translation and are

discussed in the algorithm.

The mapping algorithm consists of three steps which are

described in the following three sub-sections.

5.1 Generating simple type definition for H-ORM value

types

For a value type we can easily map it to a built-in simple

type in XML schema. XML schema has a rich built-in type

system. For example Email is mapped to:

<xs:simpleType name="Email">

<xs:restriction base="xs:string"/>

< /xs:simpleType>

In order to enforce value constraints we can use the “re-

striction” mechanism for type creation provided by XML

schema. We can derive a new simple type by restricting an ex-

isting simple type through various restrictions. For example

inclusive range restrictions can be expressed by “minInclu-

sive” and “maxInclusive” and enumeration value constraints

can be implemented using the “enumeration” restriction.

For example RateNr value type from Fig. 6 which has a

range value constraint {[1..10]} is mapped to:

<xs:simpleType name="RateNr">

<xs:restriction base="xs:integer">

<xs:minInclusive value="1"/>

<xs:maxInclusive value="10"/>

< /xs:restriction>

< /xs:simpleType>

and StatusCode is mapped to:

<xs:simpleType name="StatusCode">

<xs:restriction base="xs:string">

<xs:enumeration value="undec"/>

<xs:enumeration value="accept"/>

<xs:enumeration value="reject"/>

< /xs:restriction>

< /xs:simpleType>
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5.2 Generating complex type definitions for H-ORM entity

types

In mapping H-ORM entity types to XML schema complex

type definitions we distinguish between three kinds of entity

types:

• Referrer: An entity type that refers to another entity

type, i.e., is the referrer object type in a reference rela-

tionship type. For example, Presenter and Author refer

to Person in Fig. 6.

• Sub-entity: An entity type that is the sub object type in

an inheritance relationship type such as AcceptedPaper

which is a sub-type of Paper in Fig. 6.

• Normal: An entity type that is neither referrer nor In-

herited.

For a normal entity type we create a complex type in XML

schema and we represent all its content as XML schema sub-

elements and attributes.

In order to map content of the H-ORM entity types sub-

elements and attributes are used. If a child of the entity type

is an entity type then it is mapped to a sub-element and if it

is a value type it is mapped to a sub-element or an attribute

based on other constraints.

For a referrer entity type, a complex type is created and

only elements and attributes that construct the primary ref-

erence scheme (primary key) of the referenced entity type is

added as sub-elements and attributes. If an entity type has an

inline primary key it will be mapped to an attribute.

For a sub-entity type a complex type is created and only

elements and attributes that construct the primary reference

scheme (primary key) of the super-entity type is added as

sub-elements and attributes.

Various factors have influence on mapping the content of

an entity type here we discuss these factors and describe how

to map various H-ORM constraint and structures:

5.2.1 Order

If the content of an entity type is ordered, it is mapped us-

ing XML schema sequence structure, and if the order is not

important, it is mapped using XML schema all structure.

Because of various restrictions in XML schema using these

structures is not straightforward.

Using all structures in XML schema imposes various

(likely unwanted) restrictions. For example it allows its chil-

dren to appear at most one time within the all structure and

secondly using extension mechanism is not possible for two

elements if all structure is used in any of them.

Only in the one case we will use all structure to map an

unordered entity type: when all the child types in the content

of the entity type have maximum participation of “1”.

Another solution for the cases in which participation of a

child type is more than “1” is to introduce a container ele-

ment. The child type is defined in the content of the container

element instead of being defined in the content of the parent

type and the container element is added to the content of the

parent type with “maxOccures=1”. The name of the container

element is generated by pluralizing the name of the child el-

ement (adding “s” to its name).

For example two possible ways to map Paper contents (see

Fig. 6) is shown in Fig. 8. In Fig. 8(a) its content is mapped

using container elements and all structure. For example in

line 3 a container element is introduced for Review element

Fig. 8 Two options in mapping entity type contents. (a) using container
elements and all structure; (b) using sequence structure
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named Reviews because Review has “maxOccurs=2” and in

line 10 a container element named Authors is introduced for

Author element because it has “maxOccurs=unbounded”. In

Fig. 8(b) a sequence structure is used instead. This makes

schema simpler but it introduces an unwanted order on sub-

elements in the corresponding XML document.

5.2.2 Participation

For sub-elements, participation constraints are mapped to

“minOccurs” and “maxOccurs” attributes. Because sub-

elements are mandatory and functional there is no need

to explicitly state (1, 1) participation constraint for them.

If the maximum participation is “n” then the “maxOc-

curs=unbounded” is used.

For example in Fig. 8(b) line 3, Review entity is mapped to

a sub-element in the content of Paper having “minOccurs=0”

and “maxOccurs=2” meaning that each paper can have at

most two reviews. In line 4 of Fig. 8(b), Author is mapped to a

sub-element in the content of Paper having “maxOccurs= un-

bounded” which means that a paper can have unlimited num-

ber of authors.

If a value type child has a max participation of “1” and the

content of the parent type is not ordered, it can be mapped

to an attribute. Attributes are by default optional in XML

schema so if it is mandatory in H-ORM it should be explicitly

stated by a “use=required” attribute.

For example in Fig. 8(b) line 8 an attribute is introduced

for Title value type; and because its minimum participation is

“1”, a “use=required” attribute is defined on it.

5.2.3 Choice

Choices in content of an entity type will be mapped to XML

schema choice structure. If there is a choice constraint in the

content of an entity type, the only choice is to map its con-

tent is XML schema sequence structure even if the entity type

is not ordered because XML schema does not allow choices

inside all structure.

For example the Reference entity type from Fig. 7 is

mapped to:

<xs:complexType name="Reference">

<xs:sequence>

<xs:element name="RefTitle"

type="RefTitle"/>

<xs:choice>

<xs:element name="Journal"

type="Journal"/>

<xs:element name="Conference"

type="Conference"/>

< /xs:choice>
< /xs:sequence>

< /xs:complexType>

5.3 Creating root element and defining keys and references

Each XML schema instance must have a single root element

so we create a root element to represent the whole H-ORM

view. A sub-element will be created for each root entity type

in H-ORM view. For example the root element definition for

H-ORM view of Fig. 6 is:

<xs:element name="ConferencePapers">
<xs:complexType>

<xs:sequence>
<xs:element name="Paper" type="Paper"

maxOccurs="unbounded"/>
<xs:element name="Person" type="Person"

maxOccurs="unbounded"/>
<xs:element name="AcceptedPaper"

type="AcceptedPaper"
maxOccurs="unbounded"/>

< /xs:sequence>

< /xs:complexType>
< /xs:element>

Then the primary key of root entity types will be mapped

to XML schema keys. Because the root element is the only el-

ement definition in our mapping algorithm all key, keyref and

uniqueness constraints are defined in this level. For example

the primary key of Person from Fig. 6 is mapped to:

<xs:key name="PersonKey">
<xs:selector xpath="Person"/>
<xs:field xpath="@PName"/>
<xs:field xpath="Institution/InsName"/>
<xs:field

xpath="Institution/Country/CName"/>

< /xs:key>

Uniqueness constraints on non-root entity types and sec-

ondary uniqueness constraints on entity types are mapped

to XML schema unique definitions. For example uniqueness

constraint on Emails in Fig. 6 is mapped to:

<xs:unique name="EmailUnique">

<xs:selector xpath="Person"/>
<xs:field xpath="@Email"/>

< /xs:unique>

The uniqueness constraint defined on Referee sub-entity of

Review entity in the scope of a Paper, meaning that a review

can be done by a single reviewer on a single paper, is mapped

to the following unique definition in the definition of Paper

element:

<xs:unique name="ReviewUnique">
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<xs:selector xpath="Review"/>

<xs:field xpath="Referee/@PName"/>

<xs:field

path="Referee/Institution/InsName"/>

<xs:field

xpath="Referee/Institution/Country/CName"/>

< /xs:unique>

Reference and inheritance relationship types are mapped

to KeyRef definitions in XML schema. For example the refer-

ence between Presenter and Person in Fig. 6 is mapped to:

<xs:keyref name="PresenterPersonRef"

refer="PersonKey">

<xs:selector

xpath="AcceptedPaper/Presenter"/>

<xs:field xpath="@PName"/>

<xs:field xpath="Institution/InsName"/>

<xs:field

xpath="Institution/Country/CName"/>

< /xs:keyref>

Table 1 summarizes the mapping between H-ORM con-

cepts and XML schema constructs done by the transforma-

tion algorithm. Having multiple options on the right-hand

side indicates various choices on mapping an H-ORM con-

cept.

Table 1 H-ORM concepts and the resulting XML-schema constructs

H-ORM concept XML-schema

Value type Simple type/Element/Attribute

Value constraints Restriction mechanism

Normal entity type Complex type (Full content model)

Referrer entity type Complex type (Key content model)

Sub-entity type Complex type (Key content model)

Ordered content Sequence

Unordered content All/Sequence/Container Element

Participation constraints minOccurs/maxOccurs

Choice Choice

Primary key/uniqueness constraints Key/Unique

Reference/inheritance relationships KeyRef

For the complete XML schema definition generated from

the H-ORM schemas of Fig. 6 and Fig. 7, please refer to Ap-

pendix A.

6 Evaluation

For evaluating conceptual modeling languages in general, the

following criteria are introduced in [5]: expressibility, clar-

ity, simplicity and orthogonality, semantic stability, semantic

relevance, validation mechanisms, abstraction mechanisms,

and formal foundation. In Chapter 3 of [5] ORM is compared

with ER and UML with these criteria and since we use ORM

as the platform independent model, the same discussion is

applicable here.

In [6,7] lists of requirements for conceptual models for

XML are presented. Some of these requirements cover gen-

eral goals of the XML conceptual modeling and the others

are specific to XML modeling constructs. Here we evaluate

our approach with these criteria for XML conceptual models:

• Graphical Notation We have presented a graphical no-

tation called H-ORM which will be used along ORM.

• Formal Foundation ORM has a solid formal founda-

tion in first-order logic[5]. Transformation rules and H-

ORM constructs and constraints are formally specified.

• Structure Independence By choosing a model-driven

approach the designer can model hierarchical aspect of

XML in PSM (H-ORM) but the PIM (ORM) is inde-

pendent from these structural properties.

• Logical Level Mapping There should be algorithms

for mapping of the conceptual modeling constructs to

the XML logical level. We presented a mapping algo-

rithm to map H-ORM views to XML schema.

• Views It should be possible to present different hier-

archical views of the same data. A designer can define

various H-ORM views over a single ORM model.

• Ordering H-ORM supports two types of ordering. Or-

dering on a set of object type instances related to an-

other object type instance and ordering on the content

of an entity type.

• N-ary Relationship Types ORM supports N-ary rela-

tionship types.

• Irregular and Heterogeneous Structure Irregular struc-

ture is modeled using various conceptual constructs

specially exclusion constraint in ORM and choice in H-

ORM.

• Cardinality for All Participants In addition to the cardi-

nalities defined in ORM, cardinality constraints can be

defined on parent and child relationships in the H-ORM

model.

• Document-centric Data In order to model mixed con-

tent in H-ORM we use a value type for the object type

with mixed content.

7 Related works

There are various approaches to model XML data. At the log-

ical level schema languages such as XML schema and Re-
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lax NG are used to specify XML structures. Several com-

mercial tools provide support for graphically representing

XML schema structures. For example XML spy1) and sty-

lus studio2) have their own proprietary notations to represent

XML structures graphically. These products provide a graph-

ical visualization of XML schema but they do not provide a

higher level of abstraction.

Another approach to model XML data at the conceptual

level is using existing modeling methods such as ER and

UML. But XML data has some features that are not easily

captured in traditional conceptual methods. These features in-

clude: ordering on concepts, irregular structure, hierarchical

nature and mixed content. For example ER does not support

views, ordering, irregular and heterogeneous structure and

document centric data criteria for XML conceptual models.

So in order to use the traditional conceptual modeling meth-

ods researchers had to extend them. For example Badia in [8]

proposed a minimal extension to ER to make it suitable for

DTD. The author suggested choice attribute to model choice

between attributes and marking attributes as required or op-

tional. The proposed method does not support hierarchical

structures explicitly and modeling of ordering and document-

centric data is not possible. Mani in [9] proposed an extension

to ER called EReX by introducing ordering constraints on

participants of relationship types, coverage constraints on en-

tity types and roles. Again the author does not introduce any

special kind of relationship type to model hierarchical struc-

tures and modeling of document-centric data is not possible

too and ordering is only possible on the participants of the

relationship type. Sengupta et al. [10] proposed another ex-

tension to ER called XER by adding ordering on entities and

mixed entities. In XER only binary relationship types with-

out attributes and with the cardinality type 1 : N is supported.

Modeling of irregular structure is not supported. Psaila in

[11] introduced ERX, extending ER by binary relationship

types with alternatives, containment relationship type, order-

ing attributes and interfaces. The author does not propose any

algorithm for mapping ERX schema to logical level in the pa-

per and only binary relationship types without attributes are

supported. Necaský in [12] proposed XSEM in which ER is

extended by adding order on attributes of entity and relation-

ship types, data node types, outgoing and incoming cluster

types. Then a method to define various hierarchical views on

the model is proposed.

In UML-based approaches such as [13,14] usually a UML

profile that is composed of UML stereotypes for modeling

constructs of a certain XML schema language is proposed.

Dobbie et al. in [15] propose a hierarchical modeling lan-

guage called ORA-SS that is especially designed for semi-

structured data. Using this approach one can model hier-

archical structures easily but a problem for non-hierarchical

structures arises. Furthermore, the hierarchical nature of this

approach forces designers to make decisions about the hier-

archical structure of the model too early in the modeling pro-

cess. Al-Kamha et al. in [16] propose C-XML by extending

OSM [17] adding choice, sequence, mixed content and gen-

eral co-occurrence constraints. C-XML does not provide con-

cepts to model hierarchical structure, document centric data

and irregular data explicitly.

There are comprehensive surveys on conceptual model-

ing for XML such as [6,7,18] that many details about above

works and their strengths and weaknesses are discussed.

In case of using ORM as a conceptual model for XML

to our knowledge only one work exists in which Bird et al.

[19] propose an algorithm to automatically generate an XML-

schema for an ORM conceptual model. Their goal is to re-

duce redundancy and increase connectivity in the resulting

XML instances. But their approach is not configurable and

the designer has no control over the generated schema.

8 Conclusion and future works

In this paper we introduced a model-driven and configurable

approach to XML database design. In our approach we used

ORM as the platform independent model and we introduced

H-ORM as the platform specific model for XML data. Then

we introduced an algorithm to map H-ORM models to XML-

schema. By dividing the design process to two levels the

designer do not need to focus on hierarchical structure of

the data in early stages of the design process. We are now

working on implementing our approach in NORMA [20].

NORMA is a free and open source plugin for Visual Studio.

Currently the tool supports entry of ORM2 schemas, verbal-

ization of most constraints and code generation to a variety of

database management systems. We are extending the tool by

adding a “Transformation Rule Editor” window in which the

designer can enter transformation rules and then the H-ORM

schema is generated based on the transformation rules. We

also are adding additional H-ORM concepts to the ORM de-

signer toolbox in order to allow the designer to further specify

H-ORM constraints on the generated model. Figure 9 sum-

1) XML spy. http://www.altova.com/xmlspy.html: Altova
2) Stylus studio. http://www.stylusstudio.com/xml_schema_editor.html: Progress Software Corporation
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marizes the main components of NORMA. The components

that we are adding to the tool are shown in dashed rectangles.

Fig. 9 Main components of NORMA

Another feature that we are currently working on, is trans-

formation rule suggestion. For example by considering re-

ducing redundancy as a goal we can suggest a transformation

rule set on a given ORM model to the database designer. We

are working on these suggestions in our implementation and

it will be included in the final tool.

Recently the new edition of XML schema called XML

schema 1.1 [21] has been introduced which has more flexi-

bility than XML schema 1.0 [22]. Among the new features,

three of them are more promising to help us in producing bet-

ter mapping algorithms:

• Assertions allow us to specify constraints using XPath

2.0 expressions. Using assertions can help us in map-

ping more ORM and H-ORM constraints to XML

schema. This can help us to better map some complex

business rules defined in ORM model that where not

possible to specify in XML schema 1.0.

• Type Alternatives allow a type to be dynamically as-

signed to an element based on the values of its at-

tributes. This can help us to better map constraints like

exclusion constraints and choices.

• All Group The all element allows elements with mul-

tiple occurrence. This can help us to better map un-

ordered entities to XML schema.

We are considering these features to enhance our mapping

algorithm to include more constraints and produce a better

XML schema.

Appendix Generated XML schema from algorithm

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="ConferencePapers">
<xs:complexType><xs:sequence>

<xs:element name="Paper" type="Paper" maxOccurs="unbounded">
<xs:unique name="ReviewUnique"><xs:selector xpath="Review"/>
<xs:field xpath="Referee/@PName"/>
<xs:field xpath="Referee/Institution/InsName"/>
<xs:field xpath="Referee/Institution/Country/CName"/>

< /xs:unique>
< /xs:element>
<xs:element name="Person" type="Person" maxOccurs="unbounded"/>
<xs:element name="AcceptedPaper" type="AcceptedPaper" maxOccurs="unbounded">
<xs:unique name="PresenterUnique">
<xs:selector xpath="Presenter"/><xs:field xpath="@PName"/>
<xs:field xpath="Institution/InsName"/>
<xs:field xpath="Institution/Country/CName"/>

< /xs:unique>
< /xs:element>

< /xs:sequence>
< /xs:complexType>
<xs:key name="PaperKey"><xs:selector xpath="Paper"/><xs:field

xpath="@PaperNo"/></xs:key>
<xs:keyref name="AcceptetPaperRef" refer="PaperKey">
<xs:selector xpath="AcceptedPaper"/><xs:field xpath="@PaperNo"/>

< /xs:keyref>
<xs:key name="AcceptedPaperUnique">
<xs:selector xpath="AcceptedPaper"/><xs:field xpath="@PaperNo"/>
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< /xs:key>
<xs:key name="PersonKey">

<xs:selector xpath="Person"/>

<xs:field xpath="@PName"/><xs:field xpath="Institution/InsName"/>
<xs:field xpath="Institution/Country/CName"/>

< /xs:key>

<xs:unique name="EmailUnique"><xs:selector xpath="Person"/><xs:field xpath="@Email"/>
< /xs:unique>

<xs:keyref name="PresenterPersonRef" refer="PersonKey">

<xs:selector xpath="AcceptedPaper/Presenter"/>
<xs:field xpath="@PName"/><xs:field xpath="Institution/InsName"/>

<xs:field xpath="Institution/Country/CName"/>

< /xs:keyref>
< /xs:element>

<xs:complexType name="Paper2"><xs:all>

<xs:element name="Reviews" minOccurs="0"><xs:complexType>
<xs:sequence><xs:element name="Review" type="Review" minOccurs="0" maxOccurs="2"/>

< /xs:sequence></xs:complexType>

< /xs:element>
<xs:element name="Authors"><xs:complexType>

<xs:sequence><xs:element name="Author" type="Author" maxOccurs="unbounded"/>

< /xs:sequence></xs:complexType>
< /xs:element>

< /xs:all>

<xs:attribute name="Title" type="Title" use="required"/>
<xs:attribute name="PaperNo" type="PaperNo"/>

< /xs:complexType>

<xs:complexType name="Paper"><xs:sequence>
<xs:element name="Review" type="Review" minOccurs="0" maxOccurs="2"/>

<xs:element name="Author" type="Author" maxOccurs="unbounded"/>

< /xs:sequence>
<xs:attribute name="Title" type="Title" use="required"/>

<xs:attribute name="PaperNo" type="PaperNo"/>
< /xs:complexType>

<xs:complexType name="Person">

<xs:all><xs:element name="Institution" type="Institution"/></xs:all>
<xs:attribute name="PName" type="PName" use="required"/>

<xs:attribute name="Email" type="Email" use="required"/>

<xs:attribute name="Phone" type="Phone"/></xs:complexType>
<xs:complexType name="Rating">

<xs:sequence><xs:element name="RateNo" type="RateNo"/></xs:sequence>

< /xs:complexType>
<xs:complexType name="Review"><xs:all>

<xs:element name="Referee" type="Referee"/><xs:element name="Rating" type="Rating"/>

< /xs:all></xs:complexType>
<xs:complexType name="Institution"><xs:all>

<xs:element name="InsName" type="InsName"/><xs:element name="Country" type="Country"/>

< /xs:all></xs:complexType>
<xs:complexType name="Country">

<xs:sequence><xs:element name="CName" type="CName"/></xs:sequence> </xs:complexType>

<xs:complexType name="AcceptedPaper">
<xs:sequence><xs:element name="Presenter" type="Presenter" minOccurs="0"

maxOccurs="unbounded"/></xs:sequence>

<xs:attribute name="PaperNo" type="PaperNo"/>

< /xs:complexType>
<xs:simpleType name="RateNo">

<xs:restriction base="xs:byte">
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<xs:minInclusive value="1"/>
<xs:maxInclusive value="10"/>

< /xs:restriction>
< /xs:simpleType>
<xs:simpleType name="Email"><xs:restriction base="xs:string"/></xs:simpleType>
<xs:simpleType name="Phone"><xs:restriction base="xs:string"/></xs:simpleType>
<xs:simpleType name="PName"><xs:restriction base="xs:string"/></xs:simpleType>
<xs:simpleType name="PaperNo"><xs:restriction base="xs:int"/></xs:simpleType>
<xs:simpleType name="PageNr"><xs:restriction base="xs:int"/></xs:simpleType>
<xs:simpleType name="Title"><xs:restriction base="xs:string"/></xs:simpleType>
<xs:simpleType name="InsName"><xs:restriction base="xs:string"/></xs:simpleType>
<xs:simpleType name="CName"><xs:restriction base="xs:string"/></xs:simpleType>
<xs:complexType name="Author">
<xs:all><xs:element name="Institution" type="Institution"/></xs:all>
<xs:attribute name="PName" type="PName" use="required"></xs:attribute>

< /xs:complexType>
<xs:complexType name="Presenter">
<xs:all><xs:element name="Institution" type="Institution"/></xs:all>
<xs:attribute name="PName" type="PName" use="required"/></xs:complexType>

<xs:complexType name="Referee">
<xs:all><xs:element name="Institution" type="Institution"/></xs:all>
<xs:attribute name="PName" type="PName" use="required"/></xs:complexType>

< /xs:schema>
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