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Abstract The construction process for a similarity
matrix has an important impact on the performance of
spectral clustering algorithms. In this paper, we propose a
random walk based approach to process the Gaussian
kernel similarity matrix. In this method, the pair-wise
similarity between two data points is not only related to
the two points, but also related to their neighbors. As a
result, the new similarity matrix is closer to the ideal
matrix which can provide the best clustering result. We
give a theoretical analysis of the similarity matrix and
apply this similarity matrix to spectral clustering. We also
propose a method to handle noisy items which may cause
deterioration of clustering performance. Experimental
results on real-world data sets show that the proposed
spectral clustering algorithm significantly outperforms
existing algorithms.

Keywords spectral clustering, random walk, probability
transition matrix, matrix perturbation

1 Introduction

Spectral clustering has recently become one of the most
popular clustering algorithms. Compared with traditional
clustering techniques, spectral clustering exhibits many
advantages and is applicable to different types of data set.
Though spectral clustering algorithms are simple and
efficient, their performance is highly dependent on the
construction of a similarity matrix.

In an ideal similarity matrix, the entries between intra-
cluster data points are assigned 1, while the entries
between inter-cluster data points are assigned 0, we call
this the ideal matrix. The use of such an ideal matrix will
enable the spectral clustering algorithm to find the exact
real clusters. According to Ref. [1], we can obtain better
clustering performance if the similarity matrix is closer to
the ideal matrix. Therefore, the generation of a similarity
matrix that is closer to the ideal matrix is critical to the
success of spectral clustering.
There have been numerous methods proposed to

improve the similarity matrix [2–5]. In general, these
methods can be categorized into two classes: unsupervised
and semi-supervised. In unsupervised methods, no labeled
or constraint information is known, whereas semi-
supervised methods try to work with labeled or constraint
information for the construction of similarity matrix. In
this paper, we propose an approach which belongs to the
unsupervised class.
Though many studies [6,7] have mentioned the

relationship between spectral clustering and random
walk, they don't consider the problem of how to obtain
a good similarity matrix. In Ref. [6], they reveal how
random walk can be related to spectral clustering and
also give the condition under which MNCut [6] can be

optimized (MNCut ¼
X

i¼1,::,k
cut Ai,AiÞ=volðAiÞ
�

, we

will discuss this further in Section 2). In Ref. [7], they
give a more concrete analysis, and provide a method to
automatically determine the number of clusters as well as
the parameter � of Gaussian kernel function.
In this paper, we apply random walk theory to process

the Gaussian kernel similarity matrix. We view the
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normalized similarity matrix as a stochastic matrix, and
then begin a random walk process based on the matrix.
This has the effect of emphasizing intra-cluster similarity
and lightening inter-cluster similarity, thus the processed
matrix is closer to the ideal matrix. To minimize MNCut
[6–8], we make further efforts to process the probability
transition matrix. As a result, the performance of the
spectral clustering algorithm is improved. We give a
theoretical analysis of the similarity matrix and apply this
similarity matrix to spectral clustering. Experimental
results on real-world data sets show that the proposed
spectral clustering algorithm can achieve much better
clustering performance than existing spectral clustering
methods.
We give a brief review of spectral clustering in Section

2. In Section 3, we give some theoretical analysis of the
preprocess procedure. Finally we provide experimental
results in Section 4 and conclude this paper in Section 5.

2 Overview of spectral clustering

In this section we give a brief review of spectral clustering
algorithms. We focus on graph cut theory and its
relationship to spectral clustering.
The objective of clustering is to divide data points into

different clusters, where data points in the same cluster are
similar to each other. We can construct a graph from the
similarity matrix, where the vertexes represent the data
points, and the edge weights represent similarities
between data points. With this representation, the
clustering problem is equivalent to the corresponding
graph's cut problem. Given a weighted graph G, we want
to find a cut of the graph, such that the cut will be
minimized. In this paper we denote Δ ¼ fA1,A2,:::,AKg as
a clustering result, where Ai includes all the data points
that belong to cluster i.
According to spectral graph theory, there can be many

different objective functions for cluster analysis, such as
MNCut [9], RatioCut [10], NCut [9], and MinCut [11]. In
this paper, we focus on MNCut, where the objective is to
achieve a rational minimum cut. Given a graph with
similarity matrix W , where wij denotes the i,j-th entry of

W . Then the problem of minimizing MNCut is defined as
[8]

MNCutðΔÞ ¼
Xk
i¼1

cut Ai,Ai

� �
volðAiÞ

, (1)

where Ai refers to the complement of A, cut Ai,Ai

� � ¼
1

2

X
j2Ai,k2Ai

wjk , and volðAiÞ represents the total weights
of Ai.
It was shown in Ref. [9] that the minimization of Eq. (1)

is NP-hard. According to Rayleigh-Ritz theory, it is
possible to find an approximate solution of Eq. (1). In
solving MNCut, we need to define Laplacian matrix

L ¼ I –D – 1W , where I denotes the entity matrix and D is

a diagonal matrix with Dii ¼
X

j
wij. Then, the approx-

imate solution can be derived from the leading eigenvec-
tors of L. The use of a Laplacian matrix eigenvector for
approximating the graph minimum cut is called spectral
clustering, as described in Algorithm 1 [12].

In spectral clustering, the pair-wise similarities are first
computed through a similarity function. The Gaussian
kernel function is one of the most popular used similarity
functions. Denote wij as the similarity between two points

si and sj, then

wij ¼ exp
– d2ðsi,sjÞ

�2

 !
, (2)

where dðsi,sjÞ denotes the Euclidean distance between two
points, si and sj, the parameter � controls the width of the

neighborhood [8]. The method for choosing an appro-
priate � is also critical in spectral clustering. In general,
one can choose � in the order of the mean distance of a
point to its k-th nearest neighbor (k~log(n)+ 1) [8]. Zelnik
proposed an alternate method for selecting � in [13],
where � is not a fixed value

�i ¼ dðsi,sKÞ, (3)

where sK is the K-th nearest neighbor of si, and �i is said to
be the local scale of data point si. How to choose an

Algorithm 1　Spectral clustering

Input A set of points, S ¼ fs1,s2,:::,sng, cluster number K.

Output A partition, Δ ¼ fA1,A2,:::,AKg.
1. Compute similarity matrix W .

2. Compute Laplacian matrix L ¼ D –W .

3. Compute Normalized Laplacian matrix L ¼ I –D – 1W

4. Compute the first K eigenvectors of L, denote as U .

5. Consider the rows of U as data points, and use k-means to cluster
them into K clusters.

6. Assign si to cluster Aj if and only if row i of the matrix U was
assigned to cluster Aj.
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optimal parameter � is beyond the scope of this paper. We
adopt the method in (3) to choose parameter �. On the one
hand, such a local scale method can improve the
applicability of spectral clustering. On the other hand, it
may encounter problems on some data sets. For instance,
it generates incorrect clustering results on the spiral data
set in Fig. 1. Our proposed algorithm in the next section is
capable of handing such cases.

3 Improved spectral clustering algorithm

Before the discussion of the proposed algorithm, we first
give a brief review of random walk theory. Given a graph
G ¼ ðV ,EÞ, a random walk on G can be defined as:
randomly choose a vertex s0, with some probability p0i a
random walker will jump to one of its neighbors si, and at
vertex si, the random walker will jump to one of its
neighbor sj with some probability pij. After time t, we get a

chain ðs0,si,:::,smÞ, and the chain is a Markov chain.
Definition 1 (Stochastic Matrix [14]) A row stochastic
matrix is a square matrix whose rows consists of
nonnegative real numbers, with each row summing to 1,

while a column stochastic matrix is a square matrix whose
columns consists of nonnegative real numbers, with each
column summing to 1.

According to the definition, P ¼ D – 1W is a row
stochastic matrix. P can also be considered a transition
probability matrix, where the entry pij gives the probability

that the random walker jumps from vertex si to vertex sj. If

we define vector sðtÞ as the probability distribution of the
random walk at time t, where siðtÞ represents the random
walk to point i at time t. Then we get [15]:

siðt þ 1Þ ¼
X

j
sjðtÞpji: (4)

Eq. (4) is equivalent to

sðt þ 1Þ ¼ ðPTÞsðtÞ: (5)

This implies that the probability siðtÞ is related to all of

its neighbors. And PM will be the transition probability
matrix of a random walker after M steps.
According to the definition above, the largest eigenva-

lue of a stochastic matrix is 1. This indicates the spectral
radius of the matrix is 1, namely �ðPÞ ¼ 1. The Perron-
Frobenius theorem [16] ensures that the absolute value of
any other eigenvalue is strictly smaller than �ðPÞ. Let li,vi
be the i-th eigenvalue and eigenvector, and then it's known

that lMi ,vi will be the i-th eigenvalue and eigenvector of

matrix PM [8]. IfM is big enough, then lMi will be close to
zero (if jlij is strictly less than 1). With this observation

[7], provided an analysis of the properties of matrix PM .
Their main results are stated below. Fig. 2 gives an

intuitive illustration of the matrix PM . We can see that the
clustering structure is clearly revealed by the transition
probability matrix after random walk.

Fig. 1 Clustering results on spiral set. (a) Self-tuning spectral
clustering result; (b) traditional spectral clustering result

Fig. 2 Example of similarity matrix (white point means bigger similarity). (a) Data points with different colors represent different
clusters; (b) the original similarity matrix; (c) the similarity matrix after random walk
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3.1 When does spectral clustering perform well?

The similarity matrix plays a key role in the performance
of the spectral clustering algorithm. In Refs. [1,17], the
authors use matrix perturbation theory to analyze spectral
clustering. They show that if the affinity matrix is close to
an ideal matrix then spectral clustering will perform well
[7]. In Refs.[6,8], the random walk is to exploited to
obtain the following results.
Lemma 1 (Multicut lemma [8]) Let W be an n� n
symmetric matrix with nonnegative elements, and let P be

the stochastic matrix, with P ¼ D – 1W . Assume that P has
K piecewise constant eigenvectors with regard to a
partition Δ ¼ ðA1,A2,:::,AKÞ. Assume also that P has n
distinct eigenvalues and that the K largest eigenvalues of
P are all nonzero. Then the minimum of MNCut for W is
given by the partition Δ.
Definition 2 (Piecewise constant eigenvectors (PCE) [6–
8]) Let v be an eigenvector of P and Δ ¼ ðA1,A2,:::,AKÞ be
a partition of a data set S. Then v is said to be a piecewise
constant eigenvectors of P with regard to Δ, if
vðiÞ ¼ vðjÞ 8i,j 2 Ak and k 2 1,2,:::,K.
According to Lemma 1, spectral clustering will be

successful, even the similarity matrix is far from ideal. As
long as the eigenvectors of P are PCE, spectral clustering is
guaranteed to give a partiton which will minimize MNCut.

3.2 Using random walk to reduce MNCut

According to Lemma 1 if the K leading eigenvectors are
PCE, then the spectral clustering is guaranteed to perform
well. However, eigenvectors are usually not PCE. Thus
we need to generate eigenvectors that are at least quasi-
PCE.
It was shown in Ref. [8] that the objective function of

MNCut can be reformulated as

MNCutðΔÞ ¼ K –
XK
k¼1

Pr ½Ak ↕ ↓Ak jAk �, (6)

where Δ ¼ ðA1,A2,:::,AKÞ is an arbitrary partition and Pr
denotes the conditional probabilities. In other words, the
MNCut can be equally interpreted as to minimize the
probability that a random walk jumps to another cluster.
Ideally, the conditional probability is equal to 1, thus
MNCut is minimized.
Using the above insights, the minimization of MNCut is

equivalent to maximizing the conditional probability.
Pr ½Ak ↕ ↓Ak jAk � is related to the items belonging to cluster
Ak . Thus, if we can increase the conditional probability for

each item in Ak , the MNCut can be reduced. We express
the statement in the following form:

PRðΔÞ ¼
XK
k¼1

Pr ½Ak ↕ ↓Ak jAk �

¼
XK
k¼1

Pr ½r1 2 Ak jr0 2 Ak �

¼
XK
k¼1

X
si2Ak

Pr ½r1 2 Ak jr0 ¼ si�

¼
XK
k¼1

X
si2Ak

X
sj2Ak

Pr ½r1 ¼ sjjr0 ¼ si�, (7)

where ri gives the position of a random walk at time i.
Definition 3 (Principal matrix component [7]) We refer

to the matrix Tn ¼
vnv

T
nD

vTnDv
as the n-th principal matrix

component of PM , and lMn as its weight. fln,vng is the
eigensystem of P.

Then PM can be written as

PM ¼
XN
n¼1

lMn Tn: (8)

Notice that jlnj£1, with a large enoughM , only if ln is
close to 1, then Tn survives after the random walk. So

PMC reveals structure in multiscales, with lMn as an
indicator of component stability [7]. This explains why we
choose the K leading eigenvectors for clustering in the
spectral clustering algorithm.

As mentioned above, PM ði,jÞ is the probability that a
random walker reaches j after M steps when it starts from
item i. Similarly, we have

PRM Δð Þ ¼
XK
k¼1

X
si2Ak

X
sj2Ak

Pr rM ¼ sjjr0 ¼ si
� �

:

From Fig. 2, we know that a random walk of M steps
leads to a similarity matrix that is close to a block diagonal
matrix. This indicates that the transition probability
between two items will increase after a random walk if
these two items belong to the same cluster , i.e., there is a
good path that connects them [18]. Here a good path
means the weight of each edge in the path should not be
too small. We also notice that a bad path will have the
opposite effect. The transition probability that an item
jumps into another cluster is supposed to be a very small

value. If we ignore these small values, then PRM is
supposed to be increased. Thus we can improve the
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performance of spectral clustering. We formulate the idea
here in the following theorem.

Theorem 1 Let PM denote the transition matrix after M
steps random walk, and if we ignore the small values of

PM ðset PM ði,jÞ ¼ 0Þ, then MNCut will be reduced.

Proof　Let PRM ðΔÞ0 denote the transition probability if

we ignore the small values of PRM ðΔÞ. Then we have

MNCutðΔÞ ¼K –PRM

¼
XK
k¼1

1 –
X
si2Ak

X
sj2Ak

Pr½rM ¼ sjjr0 ¼ si�
0
@

1
A

¼
XK
k¼1

X
si2Ak

X
sj =2Ak

Pr½rM ¼ sjjr0 ¼ si�: (9)

Note, after we ignore the small values, we will normalize

the transition matrix. Let MNCutðΔÞ# denote the new

multiway normalized cut and Ω ¼ ½ω1,ω2,:::,ωN �T denote
the sum of small values of each row we ignored.

As we need to normalize the new transition matrix PM ,

we let D# ¼ ½d1,d2,:::,dN �T, with di ¼
XN

j¼1
PM#ði,jÞ.

Since we discard some small values, so di£1. Then,

MNCutðΔÞ# ¼K –PRM ðΔÞ#

¼
XK
k¼1

1 –
X
si2Ak

X
sj2Ak

Pr ½rM ¼ sjjr0 ¼ si�
0
@

1
A=di

0
@

1
A

£
XK
k¼1

1 –
X
si2Ak

X
sj2Ak

Pr ½rM ¼ sjjr0 ¼ si�
0
@

1
A

¼MNCutðΔÞ: (10)

As we will at least ignore the smallest values of

PRM ðΔÞ, so the equation will not hold. Thus we have

MNCut ðΔÞ# < MNCutðΔÞ.
Here we provide an easy method to determine the

threshold � for discarding small values. The threshold is
used to reduce the effect of outliers and inter-cluster
transmission. One can choose � as the smallest gap of all
the biggest gaps within each row

� ¼ min
i¼1���n

max
wij,j¼1���ðn – 1Þ

ðwij –wiðjþ1ÞÞ
� �

: (11)

3.3 Robustness to noise

In this section we propose a simple method to detect noisy
data points from the data set. Each column of a transition
matrix P represents the probability of a random walk

jumping to the corresponding item. It is evident that there
will be little chance for other items to jump to a noisy item.
In other words, there is no good path for connecting items
to a noisy item.
Based on above observations, we can check whether an

item is noisy using the sum of transition probabilities from

other items. Let PNi ¼
XN

j¼1
PM
ji denote the probability.

It is straightforward to consider an item si as an outlier if
PNi is less than a threshold Θ. To find a proper threshold,
here we adopt a similar strategy to that used in the
determination of �.
If an item si is a noisy item, then PNi will have a big gap

to other item transition probabilities. Thus we can find
such gap to determine noisy items by sorting the transition
probability. Formally, we have

k ¼ arg maxiðPNiþ1 –PNiÞ,
Θ ¼ PNk :

(12)

To reduce the impact of noisy items on other items, we
will temporarily ignore those items and cluster the
remaining items. After we get the partition Δ ¼
fA1,A2,:::,AKg of non-noisy items, we use Eq. (13) to
determine the cluster number of a given outlier vi.

k ¼ arg maxkð
X

sj2Ak
PM
ji Þ: (13)

Then we set si 2 Ak . From Eq. (6), we know this will
minimize MNCut.
We summarize our results in Algorithm 2.

The complexity of Algorithm 2 is comparable to
spectral clustering. The increased computational complex-
ity is mainly in step 4. In fact, it's not necessary to

calculate PM directly. Note that if Px ¼ lx, then we have

Algorithm 2　Spectral clustering based on random walk

Input Data S ¼ fs1,s2, � � � ,sNg, number of clusters K, number of
steps for random walk M

Output A partition with Δ ¼ fA1,A2, � � � ,AKg.
1. Compute local scale �i of each si 2 S with (3).

2. Compute similarity matrix P according to (2) using local scale.

3. Compute threshold � according to (11).

4. Set PM
ij ¼ 0 where PM

ij < �, then after the normalization we get

PM#.

5. Compute threshold Θ according to (12), and ignore the
corresponding rows and columns of the noisy items. We get PM$.

6. Call steps 2–5 of algorithm 1 to cluster the non-noisy items. We
get partition Δ$

7. Use (13) to determine the correct cluster for each noisy item.
Then we get final cluster results Δ.
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PMx ¼ lMx. Thus PM can be calculated by PM ¼X
i¼1,���,nx

Tx. This will greatly reduce the complexity.

In the proposed algorithm, the number of clusters is
given. In Ref. [7], they proposed a method which would

search the maximal eigengap of matrix PM to determine

the desired cluster number, i.e., KðMÞ ¼ arg maxkðlMk –

lMkþ1Þ. This can also be used in algorithm 2 to determine

the cluster number automatically. However, the method
has to search a huge space, which will reduce the speed of
spectral clustering. Therefore, the number of clusters is
given by the user in Algorithm 2. In the next section, we
will compare our algorithm with other algorithms over a
wide range of data sets.

4 Experiments

We implement the proposed spectral clustering algorithm
with random walk (SCRW) and compare with the
traditional spectral clustering (SC) [1], local scale spectral
clustering (LSSC) [13] and k-means clustering. We test the
performance of these algorithms on some benchmark data
sets.
We use both error rate and the normalized mutual

information (NMI) [19] as our evaluation metric. The
normalized mutual information is defined as follows.
Given the true label of a data set fC1,C2,:::,Ccg and
jCij ¼ ni, suppose the clustering result is fS1,S2,:::,Skg
and jSij ¼ níi , then NMI can be written as Eq. (14) where

nij ¼ jCi\Síj
��:

NMI ¼

Xc

i¼1

Xk

j¼1
nijlog

nnij
nin

í
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXc

i¼1
nilog

ni
n


 � Xk

j¼1
níj log

níj
n

� �s : (14)

According to the definition, we get 0£NMI£1. And a
larger NMI implies a better clustering result. If the
clustering result is exactly the same as the true label, then
NMI equals 1.

4.1 Results on synthetic data sets

We use three widely used synthetic data sets (FourLine,
ThreeCircle, and CirclePoints) to evaluate the proposed
algorithm. The steps of the random walk is set to 50. The
clustering results are shown in Fig. 3. Different colors
refer to different clusters. The leftmost column shows the
correct cluster results. The right four columns are the
results of different algorithms (SCRW, LSSC, SC, k-

means). Since the data sets are not convex, the results of k-
means clustering are poor. In the SC algorithm, the delta
of the Gaussian kernel function is chosen from a wide
range of intervals. The results of SC algorithm in Fig. 3
show the best performance. But SC algorithm still fails to
cluster the CirclePoints data set correctly.
As the proposed algorithm adopts the same strategyas

LSSC, using Eq. (3) to choose the Gaussian kernel
parameter σ, for the construction of similarity matrix, the
proposed algorithm, SCRW, and LSSC correctly cluster
all of the three data sets. But as noted in Section 3.3, the
random walk will enlarge the eigengap which provides a
method to determine the cluster number automatically.
Figure 4 shows the top 20 smallest eigenvalues of the

Laplacian matrix in both algorithms. From Fig. 4 we can
see the eigengap is almost the biggest, between the K-th
and the (K+ 1)-th eigenvalues of SCRW, where K is the
desired cluster number: K = 4, 3, 3 respectively. Thus, in
SCRW the correct cluster number can be evaluated. We
can calculate the eigengaps and try the peaks of the
eigengaps which the correct cluster number can be.

4.2 Results on real data sets

Here we give some description of the data sets used in our
experiment.

● Iris Iris data set contains 150 instances from three
classes. Each class has 50 instances, and each class refers
to a type of iris plant. Each instance has 4 attributes.

● Wine The wine data set comes from a chemical
analysis of wines grown in the same region in Italy but
derived from three different cultivars. The data set has three
types of wines. Compared with Iris, the Wine data set has
more attributes. Thus theWine data set is more challenging.

● USPS USPS data set contains 7291 training
instances and 2007 test instances. Each instance contains
256 attributes of the handwritten information. We choose
digits{1,7}, {8, 9}, {0, 8} and {1, 2, 3, 4} as subsets for
experiment separately.

● Ionosphere Ionosphere data set contains 351
instances. Each instance contains 34 attributes of some
radar data.

● Glass Glass data set contains 214 instances. Each
instance contains 10 attributes.
In spectral clustering we choose � from 1 to 200, and then

use the best one as final result. In LSSC, we choose the
distance to its 7-th nearest neighbor, as the local scale.While
in SCRW, we choose the random walk steps M to be 101.
The clustering results of SCRW, SC, LSSC and k-means
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are summarized in Table 1 and Fig. 5. In Table 1, error rate
is used to evaluate the performance of different clustering
methods. Compared to other algorithms, the proposed
algorithm has a lower error rate and is more robust for
clustering.
The results in Fig. 5 show the clustering results when

NMI is used as the evaluation measure. We see that SCRW
provides better clustering results. Especially on two
challenging USPS subsets {0,8} and {8,9}, SCRW
substantially outperforms other algorithms. Based on the
above observation, we conclude that the SCRW is robust
and stable.

Fig. 4 Top-20 eigenvalues of Laplacian matrix in both SCRW and LSSC algorithms. (a) FourLine; (b) ThreeCircle; (c) CirclePoints

Fig. 3 Results on three synthetic data sets. (a) FourLine; (b) ThreeCircle; (c) CirclePoints
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Spectral clustering algorithms can also be applied to
image segmentation [5,20,21]. It is noted that applying
literal spectral clustering to image segmentation is

generally infeasible [20]. In Ref. [5], they actually adopt
a technique to reduce the image to a small size (in their
implementation, the images are resized to 160 � 160),
whose results are not quite satisfactory. In this paper, we
adopt a sample based method, NSC, proposed in Ref. [21],
for image segmentation. We simultaneously start a
random walk on the similarity matrix of the sampled
points, and the similarity matrix between the sampled and
the unsampled points.
The similarities between image pixels are computed

using the χ2 -distance proposed in Ref. [22]. Before the
construction of the similarity matrix, a color quantization
operation should be applied to the images. In the
experiments, we apply the technique proposed in Ref.

Table 1 Error rate of each clustering algorithm

Data SCRW LSSC SC k-means

Iris 0.093330 0.093330 0.32000 0.11333

Wine 0.275280 0.452510 0.38547 0.46980

{1, 7} 0.026760 0.038930 0.01945 0.00973

{0, 8} 0.030470 0.190460 0.18667 0.01714

{8, 9} 0.023320 0.160350 0.17492 0.07871

{1, 2, 3, 4} 0.038640 0.655790 0.09299 0.10024

Glass 0.457944 0.500000 0.50000 0.514019

Ionosphere 0.210826 0.264957 0.54700 0.293447

Fig. 5 Clustering results for different clustering methods and using NMI as a metric to evaluate the performance. (a) Iris. (b) Wine; (c)
subset {1, 7} of USPS; (d) subset {0, 8} of USPS; (e) subset {8, 9} of USPS; (f) subsets {1, 2, 3, 4} of USPS; (g) Glass; (h) Ionosphere
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[23], spatial color quantization1), for decreasing the color

depth of the images. The χ2 -distance considers both the

locally-windowed color and texture histogram which has

been shown to be a very robust measure [21]. The χ2 -

1) http://www.cs.berkeley.edu/~dcoetzee/downloads/scolorq/

Fig. 6 Image segmentation results. (a) Railings; (b) tie; (c) man
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distance between pixels i and j is given by

χ2ij ¼
1

2

XS
s¼1

hi sð Þ – hj sð Þ� �2
hi sð Þ þ hj sð Þ , (15)

where hiðsÞ and hjðsÞ is the normalized histograms of

pixels i and j individually, and S controls the number of
colors considered in the quantization operation.
The similarity between pixels i and j is defined as

Wij ¼ e – χ
2
ij , and it is proven that this kernel is positive and

definite [21]. We compare the algorithms on three 481 �
321 images1), and the results are shown in Fig. 6. For each
of the subfigures, the leftmost column is the original color
image (top) and the corresponding image after quantiza-
tion (bottom) and the right three columns are respectively
the second and third eigenvectors, and segmentation
results where the top row represents without and bottom
row with random walk. In the experiments, the cluster
number is set to 3 and the number of sampled pixels is set
to 100. The clustering error cannot be evaluated in this
case [20]. Thus, the clustering results are given using
different colors (the right most column of Fig. 6).
Different colors represent different meaningful compo-
nents.
We also give the eigenvectors corresponding to the

second smallest and the third smallest eigenvalues of the
Laplacian matrix. It is interesting to notice that the
proposed algorithm will give more detailed segmentation
compared with the methods in Ref. [21] (spectral
clustering with Nyström extension). For example, the
proposed algorithm successfully finds the railings in Fig. 6
(a), the man’s tie in Fig. 6(b) and the man in Fig. 6(c),
whereas the NSC fails to find these segments. This seems
to imply again that the proposed algorithm could be
superior for image segmentation.

5 Conclusion

In this paper, we have proposed a novel approach to
improving spectral clustering by applying random walk
theory to processing the Gaussian kernel similarity matrix.
Experimental result shows the improved spectral cluster-
ing algorithm outperforms traditional and other improved
spectral clustering algorithms. The method used here can
also be applied to other clustering techniques based on
similarity matrices.
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