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Abstract In recent years, heterogeneous systems and
cooperative computing have become popular research
directions in the field of high performance computing.
With fast scaling of the size of high performance computer
systems, problems such as power consumption and
reliability come to the forefront. The aim of high
performance computing has thus shifted from merely
seeking peak performance to comprehensively pursuing
high efficiency, which takes into consideration many
factors including performance, cost, power, reliability
and so on. A heterogeneous computing system consisting
of general-purpose CPU(s) and special-purpose accel-
erator(s) features high performance, lower power con-
sumption and low cost, etc. Hence, it has already become
the mainstream in the field of high performance comput-
ing. However, such systems still face many challenges and
problems, for example, programmability and reliability. In
this paper, we firstly analyze the main challenges facing
heterogeneous computing systems. Then, we introduce
the architecture of the first petaflop computing system in
China, the Tianhe-1 (TH-1) heterogeneous system,
including its hardware/software interface and interconnect
network. During development of the TH-1 system, several
challenges were encountered; research into the solutions
of these challenges is subsequently presented.

Keywords heterogeneous systems, cooperative comput-
ing, Tianhe-1(TH-1) system, load balancing, programming
models, low power consumption, fault tolerance

1 Introduction

With the development of accelerator technologies, field-
programmable gate array (FPGA), application specific
integrated circuits (ASIC) and graphic processing units
(GPU) find their applications in many fields. People have
begun to consider how to apply accelerators to scientific
computing, i.e., construction of heterogeneous parallel
computing systems, combining general-purpose proces-
sors with special-purpose accelerators. In 2005, National
University of Defense Technology (NUDT) entered this
field and designed the first high performance 64-bit stream
processor for scientific applications. The processor was
successfully developed and equipped in a high perfor-
mance computing system in 2007 [1]. This research
verified the feasibility of the heterogeneous parallel
architectures for high performance computing.
In June 2008, IBM announced a supercomputer, named

Roadrunner [2], which achieved a practical performance
of over 1 petaflop measured by the Linpack benchmark.
The main characteristic of Roadrunner is its heteroge-
neous parallel architecture. It uses 6480 dual-core AMD
Opteron chips as the main processors, and 12960 IBM
Cell Enhanced Double-Precision (EDP) chips as the
accelerator components (also known as the computing
array). Taking advantage of the novel heterogeneous
parallel architecture, Roadrunner achieves a performance-
per-watt up to 443Mflops/W. The layout of Roadrunner
shows high efficiency in heterogeneous parallel comput-
ing.
In contrast, the earlier IBM Blue Gene/L system

adopted the low-power embedded chip PowerPC 440.
Although the power consumption of each node in Blue
Gene/L is low, its single node performance is also low. In
order to achieve a higher overall system performance,
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Blue Gene/L used a vast number of nodes: the number of
the cores reached one hundred thousand.
In November 2009, Cray updated its Jaguar system by

using six-core AMD processors, and thus promoted
Jaguar's Linpack benchmark performance to 1.759 Pflops.
Yet, the power consumption of the Cray system is
enormous, reaching as high as 1750W per square foot.
Consequently, Cray has to use advanced water-cooling
technology to implement system cooling. Table 1 lists the
performance-per-watt results of several current leading
high performance computers. It can be seen that
heterogeneous parallel systems attain a substantial
increase in energy efficiency through relatively low
integration and low power consumption.
With diverse development of high-efficient computing

architectures, combining general-purpose processors and
special-purpose accelerating components to construct
heterogeneous systems has gained increasing popularity.
On the one hand, general-purpose processors, such as Intel
Xeon, AMD Opteron, and IBM Power, take the
responsibilities of basic computing, system management
and control, etc., which allows heterogeneous systems to
support software inheritance well. On the other hand,
incorporating special-purpose chips, such as Cell, GPUs
and ClearSpeed [3], as the accelerators can provide
extended computing capacity and acceleration of specific
applications, and thus improve the system's efficiency.
Currently, GPUs, as commercially available graphics

accelerator cards, feature high peak double precision
performance and have a great market share. For example,
the theoretical peak performance of AMD HD4870
reaches 240 Gflops, and a measured Linpack perfor-
mance-per-watt of above 1 Gflops/W. Hence, the
performance of GPUs has greatly exceeded that of
general-purpose processors and specific accelerator
ASICs such as Cell and ClearSpeed. Building high-
performance parallel computer systems using GPUs as
accelerators can achieve the goals of low cost and high
energy efficiency. Moreover, the software developing
environment for GPU continues to evolve, which weighs
down other special-purpose accelerators.

In 2009, NUDT developed Tianhe-1(TH-1), the world’s
first heterogeneous high-performance computer system
built with general-purpose processors and GPUs. TH-1
ranked 5th on the TOP500 list and the 8th on the
Green500 list in November 2009. The success of TH-1
verifies the advantage of the heterogeneous parallel
architecture combining general-purpose processors and
special-purpose accelerators.
Heterogeneous parallel architectures show an unprece-

dented high efficiency and thus open a new era for high
performance computing.
Section 2 analyzes the current challenges facing

heterogeneous computers. Section 3 describes the hard-
ware and software architecture of TH-1. Section 4
presents our research on the TH-1 heterogeneous system.
Conclusions are given in the final section.

2 Challenges for the development of
heterogeneous parallel computers

The heterogeneous parallel architecture composed of
general-purpose processors and special accelerators is
illustrated in Fig. 1. Each computing node contains one or
more general-purpose CPUs and several accelerators, and
can communicate with other nodes through a high speed
network.
Because the structure and performance of general-

purpose CPU is quite different from that of the special
accelerators, the method chosen for collaboration deter-
mines the efficiency of the heterogeneous architecture. In
our perspective, there are five major challenges to the
technology: programming model, task distribution, mem-
ory wall, power consumption and reliability.

2.1 Heterogeneous parallel programming model

It is important to supply a programming model which can
enable effective cooperation between the CPU and
accelerators for the heterogeneous parallel system illu-
strated in Fig. 1. Several current parallel programming
models are aimed at heterogeneous accelerators, such as

Table 1 Performance-per-watt results of three leading supercomputer systems

IBM Blue Gene/L Cray Jaguar IBM Roadrunner

Architecture homogeneous (embedded processor) homogeneous (general processor) heterogeneous (general processor and
special accelerator)

Performance/Pflops 0.478 1.759 1.042

Power/MW 2.33 6.95 2.35

(Mflops/W) 205 253 443
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CUDA [4], Brook+ [5], and OpenCL [6]. However, the
programming capability is limited and far from satisfac-
tory for large scale parallel programming. So far, MPI is
used by most of the parallel systems, and OpenMP is
typically used to improve the communication performance
in an SMP node. Providing support for accelerators
efficiently in the MPI-OpenMP programming environ-
ment is a big challenge for system designers.

2.2 Task distribution

In homogeneous parallel systems, due to the same
performance of each node and each processor, a simple
equal division can meet load balance constraints. But in a
heterogeneous system constructed by general purpose
processors and accelerators, there is a significant perfor-
mance difference between them. Moreover, after introdu-
cing the accelerators, the workload between different
CPUs or different cores in one CPU is also different. Thus,
determining how to distribute the workload between CPU
and accelerator or among the cores in one CPU is critical
to achieve high throughput of heterogeneous system.

2.3 Memory wall

In traditional large scale computer systems, memory
read/write speed within a single node is far below CPU
processing speed. For instance, one clock cycle of typical
memory read/write is 90 ns, but a processor clock cycle
takes only takes 0.3 ns. The huge gap between clock
speeds greatly degrades the system performance, and
hence becomes a bottleneck. Worse still, this performance
gap will widen according the Moore’s Law. The
communication speed between system nodes is also far

below the local memory access speed (the ratio is about
2000 ns/ 90 ns). As a result, the efficiency of remote data
memory access is rather low, and the performance of
parallel computing is greatly reduced. Currently, the
efficiency of parallelism for large scale parallel computers
in real world application is approximately 5%.
In heterogeneous systems, the floating point computing

performance of accelerators is better than general purpose
CPUs so if the CPU communicates with the accelerator
frequently, the cooperative computing application perfor-
mance of CPU and accelerators would be seriously
reduced by the overhead of memory access and commu-
nication. How to solve this memory wall problem in
heterogeneous systems to improve the system usability is
a great technical challenge.

2.4 Power consumption

High power consumption influences a large-scale parallel
system in several aspects, such as system stability,
availability and reliability. The cost of system cooling
and running will also increase. Hence, a new list,
Green500 [7], has been put forward, in which high
performance computers are ranked by their power
consumption. It gives another view for examining the
objectives a high performance computer should pursue.
When a heterogeneous system, consisting of general
purpose CPUs and accelerators, achieves an extremely
high peak performance, it also brings new challenges to
system power management. In homogeneous systems, the
computing capability and power efficiency of all proces-
sors are the same, so it is easier to analyze the time gap and
reduce the power consumption with DVFS technology
[8]. However, in heterogeneous systems, processors have
different computing capabilities and power efficiencies, so
we need to provide overall consideration to the hetero-
geneous processors to make judicious power optimization
[9].
Although generally the accelerators have high effi-

ciency, their performance depends on many factors, such
as the computing density, the problem size, the memory
access pattern and so on. One breakthrough point in
system power optimization is to dynamically select
execution units for a particular application, so that we
can achieve the greatest efficiency of the whole system.
On the other hand, with the development of manufactur-
ing technologies, the ratio of static power consumption in
the total power consumption of the chip increases steadily.

Fig. 1 Heterogeneous parallel architecture
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For example, the static power consumption of modern
GPUs is around 40W. Finding an optimization to reduce
static power consumption is also very important to the
whole system.

2.5 Reliability

With increasing system integration, system performance is
improved; however, system reliability problems become
more and more severe. American Los Alamos National
Lab (LANL) monitored 22 high performance computers
from 1996 to 2005, and statistics showed that the failure
rate is approximately once in 512 hours and with average
system down time of approximately 2 hours. Through
analysis, they found that the storage overhead for
repairing the failure is 0.2 hours. If the system is
constructed by thousands of nodes, to ensure we obtain
the correct result from the system, the cost of fault
tolerance will be huge.
Besides the same problem, namely the huge fault

tolerance cost, with the homogeneous systems, hetero-
geneous systems meet new problems because of the
introduction of new accelerators. For example, a GPU
contains many more integrated computing units than a
traditional CPU. An extremely high temperature may be
reached during execution which will definitely degrade
the reliability of the heterogeneous systems. Whether
the traditional fault tolerance methods can be used
directly in the heterogeneous system needs to be
studied further.

3 Introduction to the TH-1 heterogeneous
system

In November 2009, School of Computer Science, NUDT,
announced the first petaflop computing system in China,
TH-1. The peak performance of TH-1 reaches 1.206
Pflops. The peak performance of TH-1 system involved in
the LINPACK test, including the computing array and
accelerator array, is 1.157 Pflops, and the Linpack
performance is 563.1 Tflops. The computation
efficiency reaches 48.67%, and performance-per-watt is
379.24 Mflops/W. In the TOP500 list published in
November 2009, TH-1 ranked No.5 (No.1 in Asia), and
in the Green500 list published in November 2009, TH-1
ranked No.8.
TH-1 is a multi-array, configurable, cooperative parallel

system, composed of high performance general-purpose
microprocessors, GPUs, and a high-speed Infiniband
network. The TH-1 is an important development we
have made in heterogeneous system and cooperative
computing.

3.1 Hardware system

The hardware system of the TH-1 includes multiple
arrays. Each array has different computation resources,
and can provide high performance computing services
through flexible configuration. The system framework is
shown in Fig. 2.
The system is made up of the computation array, the

Fig. 2 Hardware system
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accelerator array, the server array, the I/O storage system,
and the monitoring and diagnosis system. The subsystems
are connected by an interconnect network. The detailed
specification is listed as follows.
1) The computation array includes 2560 nodes, each of

which has two Intel Xeon CPUs and 32 GB memory.
2) The accelerator array includes 2560 GPUs (ATI

Radeon HD4870x2), which are used to accelerate
scientific computation applications.
3) The server array consists of 512 nodes, each

including two Intel CPUs. The server array provides a
variety of user services such as login, programming and
compilation, resource management, and task distribution.
4) The interconnect network subsystem is a two-level

Infiniband QDR network. The bandwidth and latency of a
single communication link are 40 Gbps and 1.2 μs
respectively.
5) The I/O storage system uses global distributed shared

I/O architecture with a total capacity of 1PB.
6) The monitoring and diagnosis system adopts

centralized management architecture, and provides the
security monitoring, system control, and hardware
diagnosis services.

3.2 Interconnect network

The interconnect network uses an Infiniband QDR
network. The link bandwidth is 40 Gbps with a speed of
10 Gbps per line. The network latency is 1.2 μs. The
Infiniband network supports the communication of
computation tasks, I/O access, system management, and
has the characteristics of high bandwidth, low latency, and
high scalability. The network supports collective commu-
nication operations.
The interconnect network of TH-1 is shown in Fig. 3.

The network uses a photo-electric hybrid multi-level
switch system, which is made up of 64 switching modules
(embedded in cabins), 10 first-level switches, and 4
second-level switches. The computing nodes and I/O
storage system are connected to the first-level switches.
The sever nodes are connected by the switching modules
embedded in cabins. All first-level switches and switching
modules are connected to the second-level switches by
Infiniband QDR uplinks.
The interconnect network of TH-1 forms a logical

Infiniband subnet. The subnet uses a centralized route
management mechanism, in which one single Subnet
Manager (SM) takes charge of subnet configuration,
subnet activation, and fault tolerance. The process of the

subnet management is divided into four stages: topology
discovery, path computation, path dispatch, and route
reconfiguration. The Subnet Manager is the kernel of the
interconnected network and plays a critical role in
improving network performance and reliability.

3.3 Software system

The software infrastructure of TH-1 includes the operating
system, compilation system, resource management sys-
tem, and parallel programming environment.
1) The operating system of TH-1 is a 64-bit Linux,

supporting high-performance parallel computing, energy
management, virtualization, and security insulation.
2) The compilation system is made up of multiple

programming languages, including heterogeneous pro-
gramming languages for GPUs. The system can obtain
high computation efficiency through several optimiza-
tions, such as dynamic task partitioning, streaming load/
store, software pipelining, and affinity scheduling.
3) The resource management system provides a uniform

global view of the entire system to users, and realizes
several strategies of resource assignment and job
scheduling, which can efficiently improve the resource
utilization and system throughput.
4) The parallel programming environment provides an

integrated graphical user interface, facilitating debugging
and performance analysis.

4 Key technologies of high-efficiency
heterogeneous systems

The TH-1 heterogeneous system supports high efficient

Fig. 3 Interconnect network
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cooperating computing. During the prophase research and
development of the TH-1 system, we achieved a series of
technical breakthroughs in heterogeneous programming
models, task scheduling, low-power optimization and
fault-tolerance computation.

4.1 Heterogeneous programming model

Hybrid programming models including MPI and OpenMP
are widely adopted on large-scale parallel computing
systems. These systems are generally made up of several
homogeneous nodes connected by the message passing
network. MPI is used to exploit coarse-grained parallelism
across multiple nodes and OpenMP is used to exploit fine-
grained parallelism within a single node. The MPI-
OpenMP hybrid programming model has become the
industry standard and a huge number of applications have
been developed with this model.
GPUs introduce a new problem to programming within

a node. It is a big challenge to port traditional OpenMP
programs onto CPU-GPU heterogeneous nodes quickly
and efficiently. In order to inherit from existing OpenMP
applications, we extend OpenMP with a group of GPU-
oriented compiler directives, so as to explicitly map the
most time-consuming computing fragments of the pro-
grams onto the GPU. The OpenMP directives are mainly
used to denote those parallelizable loops; which means the
OpenMP programs can be naturally translated to GPU
programs. We call the extended OpenMP OpenStream.
Programming with OpenStream requires only a small
modification to original OpenMP programs, and thus
significantly reduces the cost of program porting. The
extended directives and clauses are listed in Table 2.
An OpenStream compiler for AMD’s high performance

GPUs is implemented based on GCC 4.2, which already

supports OpenMP. The compiler performs a source-to-
source translation of the GPU-mapped program fragments
into Brook+programs. The framework of the compiler is
shown in Fig. 5.
We extend two kinds of node in GCC’s abstract syntax

tree system to present the stream region and kernel region
qualified by the directives. Using these clauses, the
compiler performs stream transformation on the array
references, scalar references and loop variables respec-
tively, then generates the kernel function.
Besides the basic translation, the compiler also per-

forms several optimizations, including stream and kernel
optimizations as well as the optimizations of data
communication between the CPU and the GPU.
The optimizations of stream and kernel include: long

stream tiling based on the loop tiling technique, which
resolves the long stream problem and hides the transfer
latency; kernel fusion, based on the loop fusion technique,
is used to increase the computing density of the kernel and
transform memory level locality into register level
locality; kernel splitting, based on the loop distribution
technique, splits a large kernel into several smaller ones to
reduce the number of general purpose registers each
kernel needs, thus improving the parallelism under limited
resources.
Optimizations of off-chip data communication are used

to eliminate unnecessary data transfer between the CPU

Fig. 4 Software system

Table 2 Extended directives and clauses in OpenStream

Name Syntax Clauses

SB !$omp stream begin
streamout, if

SE !$omp stream end

KB !$omp kernel begin
depth, reduction gather, scatter, if

KE !$omp kernel end
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and the GPU; otherwise this is prone to become an
execution bottleneck since the chips are connected by a
peripheral bus. In the basic transformation step, the
compiler inserts data transfer statements before and after
each kernel invocation. For optimization, the compiler
performs data flow analysis on a special control flow
graph which treats each kernel as a basic block. The
definition information of each basic block is transferred
along the flow graph. Once the definition information on
the incoming edge of one node conflicts with the operation
in the node, a proper data transfer statement will be
inserted according to the definition information. In this
manner, the data transfer inside a loop will be scheduled
outside the loop if possible.
So far, our compiler has succeeded in handling a series

of applications, including two standard benchmarks
(Swim and Mgrid from SPEC OMP2001) and several
typical application kernels (FFT, Gemm, Jacobi and
Laplace) in the field of scientific computing on a
heterogeneous system incorporating an Intel Xeon
E5405 CPU and an AMD FireStream 9250 GPU. The
experimental results show that programming with the
extended directives deviates from programming with
OpenMP by less than 11% modification, and achieves
significant speedup ranging from 3.1 to 17.3 on the
heterogeneous system over the Xeon CPU alone. Fig. 6
gives the performance speedup results.
The results in Fig. 6 show that the compiler can

efficiently accelerate the program execution on CPU-GPU
heterogeneous platforms. For some computationally
intensive applications such as gemm and jacobi, the
performance of the compiler-generated version is even
close to that of the hand-written version.

4.2 Task partitioning and dynamic load-balancing

In order to increase the parallel efficiency of CPU-GPU
heterogeneous systems, we need to partition the tasks

between the CPU and GPU as well as onto different cores
of the multi-core CPU. Task partition is very important to
the efficiency of the heterogeneous system. Since the
computing ability varies greatly between CPU and GPU,
the tasks should be partitioned dynamically according to
the computing ability and varying dynamic load.
To avoid load imbalance between CPU and GPU as

well as different cores of CPU, we propose a dynamic,
two-level task partitioning method, including CPU-GPU
partitioning and core-core partitioning, so as to improve
the overall performance of the TH-1 system.
The key problem of CPU-GPU task partitioning is that

each task block size is different (possibly by a large
factor), which means that the partitioning strategy of one
task block cannot be reused for the next. Assume Gsplit is
the proportion of GPU workload to total workload. We
assign Gsplit with different values according to different
data sizes and keep updating the value based on the
measured performance of CPU and GPU, so as to reach
the load-balance point. We first initializeGsplit under each
data size with an experiential value according to
parameters including data size, CPU peak performance,
and GPU peak performance. Then we update the Gsplit
according to the actual performance of CPU and GPU
during execution, which will be used to guide the
partitioning strategy for the next task block. As for the
task partition across CPU cores, a static method is not
efficient. Some cores tend to exchange data with GPUs
which weakens their computing ability. The dynamic task
partitioning method for CPU cores is similar to that for
CPU-GPU except that the computing ability of a CPU
core is not as sensitive to data size; so we do not need to
maintain a respective proportional value for each data
size. Assume Cspliti is the proportion of the ith CPU core
workload on the CPU workload. Initially, we distribute the
CPU workload across all cores equally. Then we update
Cspliti according to the actual performance of each core

Fig. 5 OpenStream compiler framework
Fig. 6 Performance speedups
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during execution, which will be used to guide the
partitioning strategy for the next task block.
Formally, let S be the computing workload, N be the

number of CPU cores,Gsplit be the proportion of the GPU
workload to the total workload, Cspliti be the proportion
of the ith CPU core workload on the CPU workload, Scpu
and Sgpu be the workload of the CPU and GPU
respectively, and Scpu[i] be the workload for the ith CPU
core. Initially, we have

Sgpu ¼ S � Gsplit,

Scpu ¼ S – S � Gsplit,

and

Scpu½j� ¼ ðS – S � GsplitÞ � Csplitj:

After the tasks are finished on the heterogeneous
system, we collect the execution time

ðTgpu,Tc½0�,Tc½1�,:::,Tc½N – 1�Þ,
where Tgpu denotes the GPU execution time and Tc[j]
denotes the jth CPU core execution time. We denote

Tcpu ¼ maxðTc½0�,Tc½1�,:::,Tc½N – 1�Þ,
to be the CPU execution time.
We can calculate the GPU performance factor,

PΔ
gpu ¼ Sgpu=Tgpu ¼ S � Gspliti=Tgpu,

and the CPU performance factor,

PΔ
cpu ¼ Scpu=Tcpu

¼ ðS – S � GsplitiÞ=maxðTc½0�,Tc½1�,:::,Tc½N – 1�Þ:

Then we update the Gsplit value with the formula

GsplitΔi ¼ PΔ
gpu

PΔ
cpu þ PΔ

gpu
,

and the Csplitj value with the formula

CsplitΔj ¼ PΔ
cpu½j�=

XN – 1

k¼0

PΔ
cpu½k�:

The updated value is used to guide the task partitioning
strategy for the next task block.
Compared with the existing task partitioning method,

our method has the following advantages:
1) During the execution of large-scale scientific

applications, it chooses an appropriate partition strategy
according to data size and provides a good load-balance
between CPU and GPU.

2) In view of the different computing capabilities of
CPU cores, the dynamic partitioning method can
sufficiently exploit the computing ability of all cores and
provide good load-balancing.
In order to verify the effect of our dynamic task

partitioning method, we perform several experiments on a
CPU-GPU heterogeneous platform, which includes 2 Intel
Xeon 5540 CPUs and 2 ATI Radeon HD4870 GPUs. The
CPU works at 2.53 GHz and the GPU works at 625MHz.
We implement the Linpack benchmark using the AMD
CAL programming model. The peak performance and
measured performance under different platform config-
urations are shown in Fig. 7. With the dynamic task
partitioning method, the computing efficiency reaches
70.27% under 1CPU-1GPU, 70.46% under 2CPU-1GPU,
and 66.5% under 2CPU-2GPU configuration.

4.3 Integrated power management framework

Fig. 8 shows the integrated power management frame-
work for TH-1 system. The integrated framework mainly
consists of a power consumption sampling module, a
power utilization status detecting module, a multi-level
low-power optimization module and a power control
module. According to statistics on resource utilization
provided by the processor sampling unit or QoS provided
by the operating system, and the system events provided
by external sensors, the power consumption detection
module calculates the system power consumption, based
on a pre-defined relationship between events and power
information. After that, the module sends the CPU
utilization data to the power utilization status detection
module. Based on this information, the power utilization
status detection module determines the appropriate power
optimization strategy, and notifies the required multi-level
power optimization modules. The power optimization

Fig. 7 Peak performance and Linpack performance under
different configurations
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modules include a low power job scheduling module, a
distributed DVS module in kernel and a task scheduling
module. The low power optimization module carries
special optimization method according to the low power
strategy. Finally, the power control module implements
processor DVS control and device control through ACPI.
The integrated power management framework provides

an application-transparent power management strategy.
Under this framework, the compiler provides specific
power optimizations for an application. The compiler can
analyze the program behavior, and tune the processor’s
power utilization through DVFS operation in a finer
granularity manner. In the CPU-GPU heterogeneous
system, the GPU deals with computing-intensive tasks,
while the CPU commonly controls the GPU and finishes
residual computation. Owing to this difference, there
commonly exists an unbalanced task distribution. So we
can utilize the slack time to lower the frequency of the
lightly loaded processor.
Fig. 9 gives a typical case of CPU-GPU cooperative

computation. Before calling the kernel on GPU, the CPU
has to load the input data to the GPU space; when the GPU
finishes the kernel execution, the CPU will save back the
output data.
The total execution time is

T ¼ max TC ,TR þ
XN
i¼1

TGi þ TW

 !
,

where TC denotes the CPU execution time, which is a
function of CPU’s frequency, denoted as TC ¼ gCðfCÞ.
TGi is the execution time of the ith kernel on GPU, and

also a function of the GPU’s frequency, denoted as

TG ¼ gGðfCÞ:
The symbol TR is the data transfer time from CPU to

GPU, while TW represents the inverse data transfer time.
According to the difference in workloads for the CPU and
GPU, we can divide the problem into two cases:

If TC < TR þ
XN
i¼1

TGi þ TW , it means that the CPU has

a relatively light workload, then we should scale down the
CPU frequency to TC=T of the original one.

Otherwise, if TC > TR þ
XN
i¼1

TGi þ TW , we should

scale down the GPU’s frequency. That is scaling down

the execution frequency for the kernel subset N# to
minimize the following expressionX

i2N#
EGi þ 2jN#jEtran,

which satisfies the following scheduling length constraint

Fig. 8 Integrated power management framework

Fig. 9 CPU-GPU cooperative computation
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XN
i¼1

TGi þ 2jN#jTtran£TC – TR – TW ,

where Etran and Ttran represent energy and time overheads
during the running level transition, and EGi denotes the
energy consumption of the ith kernel execution.
In order to evaluate the effect of the proposed power

optimization method, we extract a parallel computation
section from a real job. In this program, the CPU and GPU
respectively deal with matrix reduction and matrix
multiplication operations. There exists a synchronization
statement after their individual computation. In different
processing stages, the problem size for each processor is
variable. When the ratio of the problem size is 2048∶512,
the CPU has the lighter workload. When the ratio is
3072∶512, the GPU has the lighter workload. For each
problem size, we tune the frequency for the lighter
workload processor according to the proposed method,
and reduce the system power without sacrificing the
performance, as listed in Table 3.

4.4 Fault tolerance

Compared to homogeneous systems the reliability of
heterogeneous architecture is also different. As an
accelerator, a GPU is designed for high performance,
but the working temperature of a GPU is very high
because of its high density of functional units and
execution of computing-intensive programs, so its
reliability is poorer than that of traditional CPUs. In
traditional fields of graphics processing, due to the
particularity of applications, defective GPUs are accep-
table. In this case, the designer does not need to consider
any fault-tolerance technique for GPU. But in the field of
general-purpose computing, especially scientific comput-
ing, the reliability of the applications must be guaranteed
[10].
When a GPU becomes faulty, it does not return any

information to the CPU, so it is difficult to detect the fault
and perform fault-tolerance. To improve the reliability of
the TH-1 system, we propose a fault tolerance mechanism
of dual modular detection and checkpoint-recovery.
There is no ECC in the memory system of a GPU, so

when the TH-1 system is running, some transient faults
may cause silent error data, which is a non-fail-stop
transient fault. We introduce a new fault tolerance
mechanism to address it. Using this mechanism, we use
time dual modular redundancy to detect fault and
checkpoint-recovery to recover from faults for each
kernel.
A non-fail-stop transient fault does not influence the

state of program execution and is usually detected by
redundancy [11]. Redundancy methods can be categorized
into time redundancy and space redundancy. In the TH-1
system, we design a time redundancy fault detection
mechanism for the kernels. First, the memory system of
GPU is not reliable, so all GPU data is duplicated. There
are two copies of each data of GPU: one is called the
original version and the other the redundancy version.
Second, we invoke each kernel twice continuously, and all
GPU data of the second kernel calls are the redundancy
version. Finally, when the execution of the two kernels is
finished, both results are written back to a CPU, and
compared. If the two copies of results are not consistent, a
fault recovery process is performed.
In the model of a transient fault, a simple and efficient

fault recovery method is checkpoint-recovery [12]. Upon
detecting a fault, the checkpoint-recovery method rolls
back the program to the previous checkpoint, recovers the
context, and recomputes the operation. When using the
above fault detection mechanism for kernels, the results of
each kernel are written back to the CPU, so there are GPU
data on CPU. We call the GPU data on the CPU the
shadow data. To perform checkpointing efficiently,
instead of deleting the shadow data immediately after
data comparison, we save the shadow data until the
corresponding GPU data are deleted. But when a kernel
uses GPU data as simultaneous input and output, we still
require a duplicate copy prior to kernel execution so as to
exactly recover the GPU context. We call this copy of data
the backup data. The flow chart of one kernel execution is
illustrated in Fig. 10.

5 Conclusions

Heterogeneous parallel systems integrating general pur-
pose CPUs and special purpose accelerators have several
advantages such as: high performance, low power, and
low cost; which brings them into the mainstream in the
high performance computing field. In this paper, we
discuss the technical challenges that the heterogeneous

Table 3 Power optimization result

Prob. size (CPU:GPU) Orig/watt Opt/watt

2048 ∶ 512 308 288

3072 ∶ 512 308 279
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parallel systems face, including: programming model, task
distribution, system memory wall, and power optimiza-
tion. We also provide an introduction to the hardware and
software architecture of the TH-1 system, and present
several pivotal technical breakthroughs during the
research and development of the system.
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