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Abstract This paper provides a short review of some of

the main topics in which the current research in evolution-

ary multi-objective optimization is being focused. The top-

ics discussed include new algorithms, efficiency, relaxed

forms of dominance, scalability, and alternative metaheuris-

tics. This discussion motivates some further topics which,

from the author’s perspective, constitute good potential areas

for future research, namely, constraint-handling techniques,

incorporation of user’s preferences and parameter control.

This information is expected to be useful for those interested

in pursuing research in this area.

Keywords evolutionary multi-objective optimization, evo-

lutionary algorithms, multi-objective optimization, meta-
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Evolutionary algorithms (EAs) are a population-based meta-
heuristic inspired on the “survival of the fittest” principle,
whose use has become increasingly popular over the last
three decades, mainly for optimization and classification
tasks [1,2]. This popularity has given rise to a series of
subdisciplines within the so-called evolutionary computa-
tion area. One of the subdisciplines that has experienced
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1A MOP will have a single solution only if the objectives have no conflict among them, in which case there is no need to use any sort of special approach, since
the sequential optimization of each of the objectives, considered separately, will lead us to this single solution.

2The author maintains the EMO repository, which currently contains over 3400 bibliographical references, plus public-domain software, and a small database
of EMO researchers. The EMO repository is located at: http://delta.cs.cinvestav.mx/˜ccoello/EMOO

one of the fastest growth is evolutionary multi-objective op-
timization (EMO), which refers to the use of EAs for solving
multi-objective problems (MOPs). A MOP has two or more
(usually conflicting) objective functions that we wish to op-
timize simultaneously. Because of their nature, MOPs nor-
mally have several solutions rather than a single one1(like in
global optimization). Thus, the use of the population to con-
duct the search presents the advantage of allowing us to gen-
erate several solutions after a single run. Additionally, be-
cause of their heuristic nature, EAs are less susceptible to the
specific features of a MOP (e.g., continuity) than mathemat-
ical programming techniques, and therefore their increasing
popularity within different domains, mainly during the last
15 years [3−6].

The first implementation of a multi-objective evolutionary
algorithm (MOEA) dates back to the mid-1980s [7,8]. Since
then, many other MOEAs have been proposed, and an im-
portant number of publications have been released.2 Readers
interested in the historical development of this field, should
refer to Ref. [9].

After 23 years of existence, EMO is now experiencing
growing pains. With no doubt, this is a very popular disci-
pline, but at the same time, it seems less friendly to newcom-
ers. Producing original contributions has apparently become

harder (e.g., at the level of a PhD thesis), and a lot of “work
by analogy” is now commonly seen in a number of publica-
tions. This has led to some EMO researchers to raise an im-
portant question: will we continue to do research in EMO



Front. Comput. Sci. China 2009, 3(1): 18–30 19

during the next few years? This is precisely the focus of
this paper, in which we will briefly discuss some of the top-
ics that are currently the main focus of research in EMO and
that, from the author’s perspective, represent promising re-
search venues for the years to come. Thus, the main hypothe-
sis of this paper is that there still exist enough research topics
for both novice and advanced researchers, if one looks care-
fully within the (now overwhelming) EMO literature. The
main goal of this paper is precisely to provide some hints to
get relatively quickly to these promising research topics.

The remainder of this paper is organized as follows. Sec-
tion 2 presents some basic concepts on multi-objective op-
timization, which are provided in order to make this paper
self-contained. The topics that, from the author’s perspec-
tive, are more representative of the current research trends in
the area are discussed in Section 3. Section 4 presents some
additional topics that we believe are worth exploring in the
future. Finally, Section 5 presents our conclusions.

� ��
	 	��	����

We are interested in solving problems of the type3:

minimize �f(�x) := [f1(�x), f2(�x), . . . , fk(�x)] (1)

subject to:

gi(�x) � 0, i = 1, 2, . . . , m (2)

hi(�x) = 0, i = 1, 2, . . . , p (3)

where �x = [x1, x2, . . . , xn]T is the vector of decision vari-
ables, fi : IRn → IR, i = 1, 2, ..., k are the objective func-
tions and gi, hj : IRn → IR, i = 1, 2, ..., m, j = 1, 2, ..., p

are the constraint functions of the problem.
Now, we will provide some definitions that are required

in order to make this paper more understandable.

Definition 2.1 Given two vectors �u,�v ∈ IRk, we say that
�u � �v if ui � vi for i = 1, 2, ..., k, and that �u < �v if �u � �v

and �u �= �v.

Definition 2.2 Given two vectors �u,�v ∈ IRk, we say that �u

dominates �v (denoted by �u ≺ �v) iff �u < �v.

Definition 2.3 We say that a vector of decision variables
�x∗ ∈ F (F is the feasible region) is Pareto optimum if there
does not exist another �x ∈ F such that �f(�x) ≺ �f( �x∗).

Definition 2.4 The Pareto optimal Set P∗ is defined by:

3Without loss of generality, we will assume only minimization problems.
4Elitism is an operator that retains the best solution from the population of an EA and passes it intact to the next generation. In EMO, elitism, however,
involves ALL the nondominated solutions from the population, and is normally implemented using an external archive that filters solutions, such that only
solutions that are nondominated with respect to all the previously evaluated populations are retained.

P∗ = {�x ∈ F|�x is Pareto optimum}.
The vectors �x∗ corresponding to the solutions included in

the Pareto optimal set are called nondominated.

Definition 2.5 The Pareto front PF∗ is defined by:

PF∗ = {�f(�x) ∈ IRn|�x ∈ P∗}.
We thus wish to determine the Pareto optimal set from the
set F of all the decision variable vectors that satisfy Eqs. (2)
and (3).

� ���� �� ��� 	������ �����	� ������

Based on an analysis of a sample of the specialized literature,
we have selected the following list of topics, which seem
to be representative of the main current research trends in
EMO:

1) New algorithms
2) Efficiency
3) Relaxed forms of dominance
4) Scalability
5) Alternative metaheuristics

Each of these topics will be briefly discussed next.

3.1 New algorithms

In the early days of EMO, the design of new algorithms was
a hot topic. However, from the many MOEAs that have
been proposed in the specialized literature since Schaffer’s
Vector Evaluated Genetic Algorithm (VEGA) [8] (published
in 1985), few have become widely used in the EMO com-
munity. The most popular nonelitist4 MOEAs were: Multi-
Objective Genetic Algorithm (MOGA) [10], Niched-Pareto
Genetic Algorithm (NPGA) [11], and Nondominated Sort-
ing Genetic Algorithm (NSGA) [12].

Although some notions of elitism had already been con-
templated by some EMO researchers since the mid-1990s
(see for example [13,14]), it was until the publication of
the Strength Pareto Evolutionary Algorithm (SPEA) [15] in
the late 1990s, that elitist MOEAs became common. Al-
though several elitist MOEAs exist, few have become widely
used (see for example [16,17]), and from them, one has be-
come extremely popular: the Nondominated Sorting Genetic
Algorith-II (NSGA-II) [18]. In fact, the popularity of this
algorithm has created a new trend within EMO to propose
mechanisms that improve (e.g., for a certain class of prob-
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lems) its performance (see for example [19−22]).
It is important to note that MOEAs normally modify EAs

in two ways: (1) they incorporate a selection mechanism
based on Pareto optimality, and (2) they adopt a diversity
preservation mechanism that avoids that the entire popula-
tion converges to a single solution (as would normally occur
because of the stochastic nature of EAs). Diversity preser-
vation mechanisms have also evolved over the years, from
naive fitness sharing schemes in which an individual is pe-
nalized for sharing the same “niche” with other individuals
from the population (a niche is defined either in decision or
in objective function space by adopting a certain niche ra-
dius from each individual, whose value is normally defined
by the user) [23,24]. Over the years, other (more elaborate)
schemes have been proposed: clustering [16,25], the adap-
tive grid [18], the crowded-comparison operator [15], and
entropy [26−28], among others.

In spite of the previously indicated trends within this area,
the design of algorithms is still an active area of research, al-
though it is now much less popular than before. One of the
current trends within this area is to adopt a selection mech-
anism based on some performance measure. For example,
the Indicator-Based Evolutionary Algorithm (IBEA) [29] is
intended to be adapted to the user’s preferences by formal-
izing such preferences in terms of continuous generaliza-
tions of the dominance relation. This is a nice idea, since
it avoids the need to provide an explicit diversity preserva-
tion mechanism. In order to achieve this, the optimization
goal of IBEA is defined in terms of a binary performance
measure (e.g., the additive ε-indicator [30]). Recently, the
same authors introduced the Set Preference Algorithm for
Multiobjective Optimization (SPAM) [31], which consists
of a hillclimber based on the same idea of IBEA, but which
turns out to be more general, since it is not restricted to a
single binary performance measure (several of such perfor-
mance measures can be used in sequence, and any type of
set preference relation is acceptable). Within a similar line
of thought, but without explicitly considering the incorpora-
tion of user’s preferences, the S Metric Selection Evolution-
ary Multiobjective Optimization Algorithm (SMS-EMOA)
[32,33] adopts a selection operator based on the hypervol-
ume measure (also known as S metric [34,35]). There have
also been multi-objective extensions of successful single-
objective evolutionary optimizer, such as CMA-ES [36,37],
which is invariant to rotation in its two versions (single- and
multi-objective).

Obviously, other types of MOEAs may also be developed
inspired, for example, by concepts from mathematical pro-

5By efficiency, we refer here to any sort of process that reduces the number of instructions performed in an algorithm (a MOEA in our case), without
modifying the outcome produced by such algorithm.

gramming (see for example the Nash Genetic Algorithm [38]
and the ε-constraint Cultural Differential Evolution [39]), or
by existing (single-objective) EAs (see for example the Mul-
tiobjective Cellular Genetic Algorithm [40,41] and the micro
Genetic Algorithm for Multiobjective Optimization [42,43]).
Clearly, much remains to be done regarding algorithm de-
sign, and a new generation of MOEAs is expected to arise in
the future.

3.2 Efficiency

Several EMO researchers have addressed efficiency issues5

(see for example [11,16,18,44]). If focused on algorithm de-
sign, one gets the impression that little can be done to im-
prove efficiency, since the computational efficiency bounds
of nondominance checking have been known for over thirty
years [45]. Nevertheless, this is normally assumed by re-
searchers, but few detailed studies of MOEA’s algorithmic
complexity and of the algorithms used to extract nondomi-
nated solutions from a set are currently available in the spe-
cialized literature (see for example [46,47]).

Interestingly, most EMO researchers have focused on an
apparently easier way of increasing efficiency: the reduction
of the number of individuals that are used for determining
nondominance. Perhaps the first attempt to reduce the num-
ber of individuals involved in the Pareto ranking process of
a MOEA is the selection mechanism of the Niched-Pareto
Genetic Algorithm (NPGA) [11]. The NPGA uses binary
tournament selection. However, instead of comparing fitness
directly between two individuals (randomly chosen from the
population), in this case a small sample of the population
is randomly chosen (e.g., 10% of the total population size).
Then, each of the two individuals participating in the tour-
nament are compared with respect to the sample. If one of
them turns out to be nondominated (with respect to the sam-
ple) and the other is dominated, then the nondominated in-
dividual wins the tournament and is selected as a parent. In
any other case (i.e., both individuals are nondominated or
both are dominated), the individual with less neighbors in its
niche wins. Since the sample randomly chosen is smaller
than the total population size, the NPGA never ranks an in-
dividual with respect to the entire population. This results
in a faster algorithm. Another remarkable work in the same
direction of the NPGA is the improved ranking procedure
proposed by Jensen [44], which significantly reduces the
computational complexity of the NSGA-II [18]. However,
this approach is based on an algorithm that, as indicated be-
fore, is sensitive to the number of objectives [44]. There have
also been proposals in which a very small population size
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is adopted, based on the concept of the micro-genetic algo-
rithm [48], in which no more than five individuals are used in
the population [42]. This sort of MOEA requires, however,
of clever reinitialization schemes in order to avoid getting
stuck during the search.

Nowadays, a more common research trend has been to
focus on the design of MOEAs that reduce the number of
objective function evaluations performed, under the assump-
tion that such evaluations may be very expensive in some
real-world applications (clearly, much more expensive than
a Pareto ranking scheme). For that sake, EMO researchers
have been adopting techniques such as surrogate models,
which have long been used in engineering (see for example
[49−53]). The main idea of surrogate models is to build an
approximate model of the problem, which is cheap (compu-
tationally speaking) to evaluate. Their main problem is that
these models evidently have errors with respect to the orig-
inal function to be optimized and, sometimes, such an error
may be very significant. Also, some of the current MOEAs
that adopt this sort of scheme can only be applied to prob-
lems of low dimensionality (e.g., parEGO [52]). Another
possible approach is to use previously gathered knowledge
(e.g., based on previous evaluations of the fitness function),
in order to adapt the recombination and mutation operators
so that we can sample offspring in promising areas of the
search space (this is the idea of cultural algorithms [54],
which have been scarcely considered for multi-objective op-
timization [55]). Knowledge of past evaluations can also be
used to build an empirical model that approximates the fit-
ness function to optimize. This approximation can then be
used to predict promising new solutions at a smaller evalu-
ation cost than that of the original problem (see for exam-
ple [52,56]). It is also possible to use fitness inheritance in
order to reduce the number of evaluations of the objective
functions. Fitness inheritance [57] works as follows: when
assigning fitness to an individual, sometimes the objective
function is evaluated as usual, but the rest of the time, the
fitness of an individual is assigned as the average of the fit-
nesses of its parents, thus avoiding a fitness function evalua-
tion based on the assumption of similarity of the individual to
its parents. Fitness inheritance has been extended for multi-
objective optimization by a few researchers (see for example
[58,59]). For a more thorough discussion on the different
knowledge incorporation schemes that have been adopted in
MOEAs, the interested reader is referred to [60].

It is worth noting, however, that other approaches are pos-
sible, by using hybrid schemes. For example, in Ref. [61],
a MOEA is used to produce a rough approximation of the
Pareto front, and then a local search scheme based on rough
sets theory is adopted to rebuild the missing portions of the

Pareto front. In Ref. [62], a similar scheme is proposed,
but using scatter search as the local search engine, instead.
Clearly, the use of powerful local search schemes hybridized
with MOEAs that can produce rough approximations of the
Pareto front with a reduced number of evaluations [63], or
with MOEAs that use special operators to accelerate conver-
gence [64,65], is a very promising research topic.

3.3 Relaxed forms of dominance

In recent years, some researchers have proposed the use of
relaxed forms of Pareto dominance as a way of regulating
convergence of a MOEA [66]. From these proposals, the
most popular is the so-called ε-dominance, which was intro-
duced in Ref. [67]. This mechanism acts as an archiving
strategy to ensure both properties of convergence towards
the Pareto optimal set and properties of diversity among the
solutions found. The idea is to use a set of boxes to cover
the Pareto front, where the size of such boxes is defined by a
user-defined parameter (called ε). Within each box, it is only
allowed a single nondominated solution to be retained (e.g.,
the one closest to the lower lefthand corner, if both objec-
tives are being minimized). Thus, by using a large value of
ε, the user can speed up convergence, but at the sake of sacri-
ficing the quality of the Pareto front approximation obtained.
Conversely, if a high-quality approximation of the front is re-
quired, then a small value of ε must be adopted instead. The
definition of ε, is then, quite important. Unfortunately, it is
not straightforward to find the most appropriate value of ε

that produces a certain (required) number of nondominated
solution within an archive, when nothing is known in ad-
vance about the shape of the Pareto front. Also, to correlate
the number of nondominated solutions desired with the value
of ε chosen is not easy, and normally some preliminary runs
are required in order to estimate the appropriate value. This
makes it difficult to compare approaches that adopt ε with
respect to MOEAs that do not use this concept. Addition-
ally, because of its nature, this mechanism eliminates certain
portions of the Pareto front (e.g., almost straight segments
and the extremes of the Pareto front), which may be undesir-
able in some cases [68]. This, however, can be (at least par-
tially) compensated by using geometrical assumptions about
the possible shapes of the Pareto front, and adopting boxes
of varying sizes (see for example [69]).

Several modern MOEAs have adopted the concept of ε-
dominance (see for example [70−73]), and, mainly because
of its nice mathematical properties, its use has become rel-
atively popular in the last few years. However, much more
work on this topic is expected to be developed in the years

to come, both from a pragmatic and from a theoretical point
of view.
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3.4 Scalability

For several years, most EMO research focused on solving
MOPs with only two or three objectives, and it was as-
sumed that scaling such MOEAs to a larger number of objec-
tives would be straightforward. However, several EMO re-
searchers have found this assumption to be wrong [74−76].
One of the reasons for this is that the proportion of nondom-
inated solutions in a population increases rapidly with the
number of objectives. Indeed, in Ref. [77], it is shown that
this number goes to infinity when the number of objectives
approaches to infinity. This implies that in the presence of
many objectives the selection of new solutions is carried out
almost at random since a large number of the solutions are
equally good in the Pareto sense [78]. This has made scala-
bility an important research topic [79−82].

Currently, there are mainly two approaches to deal with
problems involving many objectives: 1) to adopt relaxed
forms of Pareto optimality by proposing an optimality re-
lation that yields a solution ordering finer than that yielded
by Pareto optimality (see for example [77,81,83,84]) and 2)
to reduce the number of objectives of the original MOP, thus
lowering the dimensionality to a reasonable value that can be
handled by standard MOEAs [85,86]. Although the second
of these types of approaches seems to be an attractive choice,
the difficulties commonly associated with dimensionality re-
ductions has made relaxed forms of Pareto optimality more
popular in the literature [87]. Because of its relevance, an
important increase of research in this area is expected to oc-
cur in the coming years.

It is worth noting, however, that until recently, the focus of
scalability studies has been high dimensionality in objective
function space, but scalability in decision variable space is
also worth studying [88,89].

3.5 Alternative metaheuristics

Relatively recently, several other biologically-inspired meta-
heuristics have been adapted to solve MOPs [3,90]:

• Artificial immune systems

From a computational perspective, our immune system can
be seen as a distributed intelligent system, which is able to
learn and retrieve knowledge previously acquired, in order
to solve recognition and classification tasks [91]. Because
of these features, researchers have developed computational
models of our immune system and have used them for a va-
riety of tasks, including classification, pattern recognition,
and optimization [91−93]. Several multi-objective exten-
sions of artificial immune systems have been proposed in
the specialized literature (see for example [94−98]). Also,

combinations of artificial immune systems and another type
of approach have been proposed, aiming to solve specific
types of MOPs (e.g., [99,100], in which the aim is to solve
bi-objective flowshop scheduling problems). However, from
the author’s perspective, the potential of multi-objective arti-
ficial immune systems for solving classification and pattern
recognition problems has not been fully exploited yet [101].

• Ant colony optimization

This is a metaheuristic inspired on the foraging behavior
of real ants. It is a distributed, stochastic search proce-
dure based on the indirect communication of a set (called
“colony”) of artificial ants, which mediate using artificial
pheromone trails. These pheromone trails can be seen as
distributed information which is used by the ants to construct
their solutions to the problem at hand. Such pheromone trails
are modified during the algorithm’s execution, such that they
reflect the search experience acquired by the ants. This meta-
heuristic is intended for solving difficult (both static and dy-
namic) combinatorial optimization problems, in which solu-
tions can be generated through the use of a construction pro-
cedure [102−105]. There are several multi-objective exten-
sions of ant colony optimization (ACO) algorithms (see for
example [106−112]), but as multi-objective combinatorial
optimization becomes more attractive for EMO researchers
[113,114], it is expected that more multi-objective ACO ap-
proaches (and hybrids of ACO algorithms with MOEAs and
other metaheuristics) are proposed in the near future.

• Particle swarm optimization

This metaheuristic is inspired on the choreography of a bird
flock which aim to find food [115,116]. It can be seen
as a distributed behavioral algorithm that performs (in its
more general version) a multidimensional search. The im-
plementation of the algorithm adopts a population of parti-
cles, whose behavior is affected by either the best local (i.e.,
within a certain neighborhood) or the best global individ-
ual. Particle swarm optimization (PSO) has been success-
fully used for both continuous nonlinear and discrete binary
optimization [116−120]. An important number of multi-
objective versions of PSO currently exist (see for example
[121−127]). However, until relatively recently, most of the
research had concentrated on producing new variations of
existing algorithms, rather than on studying other (more in-
teresting) topics, such as the role of the main components
of PSO in multi-objective optimization. Some recent re-
search in that direction has shown that certain components
that had been traditionally disregarded (e.g., the leader se-
lection mechanism and the parameters of the flight formula)
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play a key role in the performance of a multi-objective PSO
algorithm [128,129]. This opens new paths for future re-
search within this area.

• Scatter search

This approach was originally conceived as an extension of
a heuristic called surrogate constraint relaxation, which was
designed for solving integer programming problems [130].
The main idea of this approach is to adopt a series of differ-
ent initializations to generate solutions. A reference set of
solutions (the best found so far) is adopted, and then such
solutions are “diversified” in order to generate new solutions
within the neighborhood of the contents of the reference set.
This sort of simple procedure is repeated until no further im-
provements to the contents of the reference set are detected.
In the mid-1990s, some further mechanisms were added to
the original scatter search algorithm, which allowed its ex-
tension to solve nonlinear, binary and permutation optimiza-
tion problems [131]. These new applications triggered an
important amount of research in the last few years [132,133].
Multi-objective extensions of scatter search are relatively re-
cent, but have been steadily increasing [89,134−136]. Scat-
ter search has a lot of potential for hybrid approaches, such
as memetic MOEAs [137], since it can act as a powerful lo-
cal search engine for tasks such as generating missing parts
of a Pareto front [62]. Because of its flexibility and ease of
use, scatter search is expected to become more commonly
adopted in the near future, particularly when designing hy-
brid MOEAs that rely heavily on good local search engines.

� ��� ���� ���
�� �� �� ����

Other topics that, from the author’s perspective, are worth
exploring within the next few years are the following:

• Constraint-handling

One of the research areas that has attracted a lot of interest
in recent years has been the use of multi-objective optimiza-
tion concepts to design constraint-handling mechanisms for
(single-objective) EAs (see for example [138−142]). In-
terestingly, however, relatively few research has been done
regarding the design of constraint-handling mechanisms for
MOEAs (see for example [143−146]), in spite of the impor-
tance of constraints in real-world applications of MOEAs.
Most of the current work has focused on extending the Pareto
optimality relation in order to incorporate constraints (e.g.,
giving preference to feasibility over dominance, such that

6When dealing with equality constraints, the optimum lies on the boundary between the feasible and the infeasible regions. Therefore, the use of approaches
that always favor feasible solutions over the infeasible ones are not effective in this case.

an infeasible solution is discarded even if it is nondomi-
nated). Also, the use of penalty functions that “punish” a
solution for not being feasible are easy to incorporate into
a MOEA [147]. However, topics such as the design of
constraint-handling mechanisms for dealing with equality
constraints,6 the design of scalable test functions that incor-
porate constraints of different types (linear, nonlinear, equal-
ity, inequality), and the study of mechanisms that allow an
efficient exploration of constrained search spaces in MOPs
remain practically unexplored.

• Incorporation of user’s preferences

In practical applications of MOEAs, users are normally not
interested in a large number of nondominated solutions. In-
stead, they are usually only interested in a few types of trade-
offs among the objectives (e.g., perhaps only the solutions
around the “knee” of the Pareto front are of interest to the
user). Thus, if such user’s preferences are incorporated into
the selection mechanism of a MOEA, the search can be much
more efficient (e.g., one can zoom in a certain region of the
Pareto front and evolve the population only towards the area
of interest) and the results more meaningful. Although some
research has been done in this direction (see for example
[148,149,141,150]), it is still relatively uncommon to report
results of a MOEA that incorporates user’s preferences. It
is thus important that EMO researchers get closer to the ex-
tensive work done in Operations Research in this regard (see
for example [151]).

• Parameter control

The design of mechanisms that allow an automated control
of the parameters of a MOEA (by using, for example, on-
line adaptation [152,153] or self-adaptation [154], so that
the MOEA can adapt its parameters without any human in-

tervention) has been scarcely explored by EMO researchers
[43,155−160]. This is clearly a very challenging topic, due
to the high nonlinear interaction among the parameters of an
EA [161]. The goal of a parameterless MOEA is rarely dis-
cussed in the EMO literature [43], and alternative (perhaps
more viable) schemes such as the use of internal restarts (in
other words, the use of information from previous runs to
improve performance of subsequent runs) is also scarcely
addressed [161]. Additionally, studies that show the effect
of the parameters of a MOEA in its performance are still
lacking in the specialized literature (see for example [162]),
and are a key aspect of algorithmic design.

Several other topics that are also very promising re-
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search paths will not be discussed due to obvious space
limitations (for example, runtime analysis of MOEAs7

[163,164], archiving techniques8 [25,69,165,168] and con-
vergence analysis9 [169−171], just to name a few), but they
serve as a good indicator of a healthy research field in which
many things remain to be done.

� ���	���
���

This paper has attempted to provide a summary of the main
topics in which EMO researchers are currently working, and
which, from the author’s perspective, provide several inter-
esting challenges for the years to come. This aims to provide
a quick reference for those interested in starting research in
this field, so that they can get a very general picture of the
current state of the area.

At the end of the paper, a few other topics are briefly dis-
cussed. Such topics also offer the potential to become very
popular research areas within a few more years, and have
remained relatively unexplored so far, thus offering impor-
tant opportunities for newcomers. Hopefully, this general
overview of the current and future status of the field will
serve to maintain and increase the interest of researchers and
practitiones in EMO, since such is the main goal of this pa-
per.
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