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Abstract Requirements changes can occur both during

and after a phase of development for a variety of reasons,

including error correction and feature changes. It is dif-

ficult and intensive work to integrate requirements changes

made after specification is completed. Sequence-based spe-

cification was developed to convert ordinary functional

software requirements into complete, consistent, and trace-

ably correct specifications through a constructive process.

Algorithms for managing requirements changes meet a

very great need in field application of the sequence-based

specification method. In this paper we propose to capture

requirements changes as a series of atomic changes in spe-

cifications, and present polynomial-time algorithms for

managing these changes. The algorithms are built into

the tool support with which users are able to push require-

ments changes through to changes in specifications, main-

tain old specifications over time and evolve them into new

specifications with the least amount of human interaction

and rework. All our change algorithms are supported by

rigorous mathematical formulation and proof of correct-

ness. The application example is a safe controller.

Keywords requirements change management, sequence-

based software specification, changing state machine dia-

grams, Mealy machine, automaton

1 Introduction

The method of sequence-based specification [1,2] was

developed to convert ordinary functional requirements

into rigorous black box and state box [3,4] specifications

through a constructive process. This process is called

sequence enumeration and assisted with a prototype tool

(Proto_Seq) developed by the UTK SQRL lab*. The

strength of sequence-based specification is in the con-

structive process it provides for discovering and deriving

a state machine of the system (a state box) from the

informal requirements, which can be used to greatly facil-

itate the generation of code, or at least code structure (a

clear box) [5]. Sequence-based specification together with

the Proto_Seq tool has been effectively used in a variety of

real applications, ranging from automotive components

to medical devices to scientific instrumentation [5,6].

Enumeration clarifies requirements by noticing any

omissions, inconsistencies, and errors inherent in the

informal requirements and actively resolving these pro-

blems. The result is a specification that is complete, con-

sistent, and traceably correct. This means for any stimulus

(input) sequence its mapped response (output) by the

black box function is uniquely determined by the formal

specification – the completed enumeration, and all the

decisions made in deriving the specification can be traced

back to requirements.

However, the correct enumeration is not obtained in one

pass due to our limited, evolving understanding of the sys-

tem under specification. We start over several times as the

requirements are clarified and corrected. In each iteration

we work on a specification obtained from the previous

iteration and make changes according to the improved

understanding or interpretation of requirements. These

successive elemental changes altogether transform one

complete and consistent specification into another.

Requirements also change after a phase of develop-

ment, driven by market and customer demand. Changes

in requirements necessitate a series of atomic changes in

specifications and code that need to be identified and

accommodated.

It is difficult and intensive work to integrate require-

ments changes made after specification is completed. In

either case we need to push requirements changes through
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to changes in specifications. We need algorithms for man-

aging all possible requirements changes and handling the

change consequences gracefully. Since sequence-based

specifications are developed with the Proto_Seq enumera-

tion tool, our goal is to maximize the automation by the

tool and minimize the amount of human interaction and

effort involved in changing the specifications in response

to changes in requirements. With the automated tool sup-

port old specifications can be maintained and evolved into

new specifications. A substantial amount of rework is

avoided.

This paper is organized as follows. The next section

gives an overview of the sequence-based specification

method and links to its corresponding state machines.

Section 3 introduces all possible atomic requirements

changes, but only picks a few for presentation and

detailed explanation due to the page limit. It also gives

the time complexity analysis of all the change algorithms.

Section 4 applies our change theory to a safe controller

example. Section 5 compares our approach with similar

work in literature and concludes this paper with directions

for future research.

2 Sequence-based specification and its
state machines

Sequence-based specification offers a systematic

approach to discover and write a formal behavioral

description of a software-intensive system. Starting at

some level of abstraction, users of the method first identify

all possible stimuli (inputs) the system may receive and all

possible responses (outputs) the system may generate, and

then enumerate all possible sequences of stimuli in length-

lexicographical order, which represent all scenarios of use.

As the name suggests, sequence enumeration is the lit-

eral enumeration of sequences of inputs and the assign-

ment of correct outputs to each enumerated sequence. The

unique output (which could be an ensemble of outputs at a

finer granularity) is the intended response to the most

recent stimulus given the sequence of stimulus histories.

If a sequence generates no externally observable beha-

vior we assign a null response to it, indicated by the sym-

bol 0. If a sequence is simply impossible to happen we

assign an illegal response to it, indicated by the symbol

v. Every enumerated sequence is therefore mapped to

either an observable response, or 0, or v. A sequence is

called illegal when it maps to v, otherwise, it is called

legal.

With a finite number of stimuli typical for any real-

world application, there is an infinite number of stimulus

sequences (of finite length); enumerating all of them is

infeasible. Since sequences can be grouped into finitely

many equivalence classes based on future behavior (repre-

senting finitely many distinct system states), only a finite

number of sequences need to be enumerated to explore the

system’s behavior.

Two sequences are Mealy equivalent if and only if they

always generate the same response when extended by the

same non-empty input sequence. This means two Mealy

equivalent sequences need not be mapped to the same

response, but their responses with respect to future exten-

sions must always agree. If a sequence is not found Mealy

equivalent to any previously enumerated sequence, it is

unreduced, otherwise, it is reduced to the previously enum-

erated (Mealy equivalent) sequence that is itself unre-

duced.

While assigning a response to any enumerated

sequence, we also check for the possible reduction to a

prior sequence under Mealy equivalence. Reducing a

sequence to some prior sequence automatically eliminates

the need to enumerate any extension of the current

sequence, as the behavior of the extension is fully defined

by the same extension of the prior sequence due to Mealy

equivalence.

If a sequence is mapped to v, there is no need to enu-

merate any of its extensions because the extensions

must also be impossible to happen (i.e., physically

unrealizable).

The enumeration then proceeds as follows. We start

with the first sequence in length-lexicographical order –

the empty sequence of length zero (denoted by l) that

contains no stimuli. It is mapped to 0 but not reduced as

there is no prior sequence to reduce it to. We extend it by

every stimulus and get all sequences of length one, which

are considered in lexicographical order for responses and

possible reductions. Next we only enumerate sequences of

length two that are one-symbol extensions of both legal

and unreduced sequences of length one, and consider

them in lexicographical order for responses and possible

reductions. The process continues until all enumerated

sequences of a certain length are either mapped to v or

reduced to prior sequences. From then on no sequence

needs to be extended, hence no more is enumerated. We

declare the enumeration complete. The rules that guide the

enumeration process can be expressed in the form of enu-

meration axioms [7].

In practice we tag the requirements to ease the work of

verifying the correctness of every decision made in the

specification process. Enumerations are produced in a

table. The (finitely many) rows are for all enumerated

sequences in length-lexicographical order. The columns

are for the mapped responses, reductions, and require-

ments traces (tags). An enumeration is complete and finite

if and only if every legal and unreduced sequence has been

extended by every (single) stimulus in the table, and of

course the table contains only finitely many rows.

The following example of a safe controller is based on

[2]. We tag the requirements in Table 1. Note that the last

two rows record two derived requirements (D1 and D2)
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that were not in the original requirements and only iden-

tified during the enumeration process.

The system boundary is cut between the system and a

list of interfaces in the environment representing the

external power, keypad, door sensor, and lock actuator.

We identify all stimuli and responses from the interfaces in

Tables 2 and 3. To make work efficient we useG to denote

entering the correct three digits in order and B to denote

entering the combination incorrectly but up to the first

mistake. A complete enumeration for the safe is con-

structed in Table 4.

For reasons of practicality we do not consider reduc-

tions for illegal sequences (as they cannot happen). We

can simply treat the first illegal sequence (sequence B) as

unreduced and all other illegal sequences as reduced to the

first illegal sequence. In our theoretical and formal treat-

ment, reductions can happen between legal and illegal

sequences as long asMealy equivalence holds. Our change

algorithms are based on the general model.

The enumeration in Table 4 can be read as follows.

First, the empty sequence represents the initial system

state (no input has been received). It is mapped to 0 and

unreduced as enforced by the rules of the method. Then it

is extended by every stimulus to get all the sequences of

length one (sequence B through sequence U).

Among the length-one sequences only two of them,

namely L and U, are legal, as any event prior to the

power-on event cannot be perceived by software by

derived requirement D1. Since sequence B is the first

illegal sequence in length-lexicographical order, it is unre-

duced; later illegal sequences are all reduced to B.

Sequences L and U represent two distinct states of the

system other than the initial state (power is turned on

but the door can be either locked or unlocked). They both

map to 0 as there is no externally observable behavior

when power is turned on, and they get extended by every

stimulus to form all the enumerated sequences of length

two (sequence LB through sequence UU).

The length-two sequences are considered in lexico-

graphical order (the order they show up in the table) for

the generated responses and possible reductions to prior

Table 1 Safe controller requirements

Tag Requirement

1 The combination consists of three digits (0–9) whichmust be entered in the correct order to unlock the safe. The combination is fixed in the

safe firmware.

2 Following an incorrect combination entry, a ‘‘clear’’ key must be pressed before the safe will accept further entry. The clear key also resets

any combination entry.

3 Once the three digits of the combination are entered in the correct order, the safe unlocks and the door may be opened.

4 When the door is closed, the safe automatically locks.

5 The safe has a sensor which reports the status of the lock.

6 The safe ignores keypad entry when the door is open.

7 There is no external confirmation for combination entry other than unlocking the door.

8 It is assumed (with risk) that the safe cannot be opened by means other than combination entry while the software is running.

D1 Sequences with stimuli prior to system initialization are illegal by system definition.

D2 Re-initialization (power-on) makes previous history irrelevant.

Table 2 Safe controller stimuli

Stimulus Description Interface

B Bad digits keypad

C Clear key press keypad

D Door closed door sensor

G Good digits keypad

L Power on with door locked power, door sensor

U Power on with door unlocked power, door sensor

Table 3 Safe controller responses

Response Description Interface

lock Locking the door lock actuator

unlock Unlocking the door lock actuator

Table 4 Safe controller sequence enumeration

Sequence Response Equivalence Trace

l 0 Method

B v D1

C v D1

D v D1

G v D1

L 0 5

U 0 5

LB 0 1,2,7

LC 0 L 2

LD v 8

LG unlock U 1,3

LL 0 L 5,D2

LU 0 U 5,D2

UB 0 U 6

UC 0 U 6

UD lock L 4

UG 0 U 6

UL 0 L 5,D2

UU 0 U 5,D2

LBB 0 LB 2

LBC 0 L 2

LBD v 8

LBG 0 LB 2

LBL 0 L 5,D2

LBU 0 U 5,D2
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sequences. For instance, sequence LG represents the usage

scenario where power is first turned on with the door of

the safe being locked followed by a good combination

entry. This will unlock the door and hence the response

of LG is mapped to unlock. Sequence LG gets the system

to the same state as the prior sequence U, as in both cases

the system has power and the door is unlocked. The deci-

sions regarding the response and the equivalence of LG

are traced to requirements 1 and 3.

Similarly the only legal and unreduced sequence of

length two, sequence LB, is extended to get all enumerated

sequences of length three. There are six of them (sequence

LBB through sequence LBU) and it turns out that all of

them are either illegal or reduced to prior sequences,

therefore, the enumeration terminates at length three.

A complete and finite enumeration encodes a finite

state automaton with Mealy outputs (a Mealy machine

[8]). The set of states corresponds to the set of equivalence

classes represented by all unreduced sequences.

Transitions between states are dictated by reductions.

Outputs on the arcs are dictated by response mappings.

The enumeration rules put more constraints on the struc-

ture of the Mealy machines derived from enumerations.

We call this special subset of Mealy machines enumeration

Mealy machines. A few conditions are enforced in addi-

tion to the enumeration rules to establish a one-to-one

correspondence from all complete and finite enumera-

tions onto all enumeration Mealy machines (see [7] for a

rigorous and formal treatment). Informally we describe

the characteristics of an enumeration Mealy machine as

follows:

1. For an n-state enumerationMealy machine, the set of

states are named q0, …, qn21;

2. Every state is reachable (connected) from the initial

state q0;

3. Compute the first word ci in length-lexicographical

order that takes the automaton from the initial state

q0 to state qi, then the sequence of words c0, …, cn21

are in length-lexicographical order;

4. Extend the output function following [8] to all input

sequences: the output for the empty word is 0; the

output for any non-empty word is the output of the

last transition on the path generated by the word

from the initial state. If ci as defined above has v as

its output, then state qi is a trap state (i.e., all out-

going arcs from qi return to qi);

5. If one incoming arc to state qi has v as its output,

then all outgoing arcs from qi have v as their output.

Our enumeration in Table 4 encodes the Mealy

machine diagrammed in Fig. 1, with states q0–q4 repre-

sented by unreduced sequences l, B, L, U, and LB from

the enumeration, respectively.

There is an important connection between enumera-

tions and enumeration Mealy machines. Given any enu-

meration Mealy machine, if we compute for every state

the first word in length-lexicographical order that reaches

the state from the initial state, then the set of computed

words are exactly the set of all unreduced sequences in the

corresponding enumeration. This fact has significant

implication on requirements changes. The state machine

is changed as a result of changes in requirements. Change

effect on state machines is more intuitively seen than

change effect on specifications (enumerations). This hints

at using state machines to model and manage require-

ments changes and specification changes. Through recom-

puting the special set of words associated with states of the

modified automaton, we are able to obtain all unreduced

sequences in the modified enumeration, and construct the

new enumeration accordingly. This strategy is used fre-

quently in algorithms for handling requirements changes

with complicated rippling effect (i.e., a single change

resulting in a considerable part of the enumeration being

changed).

A complete and finite enumeration uncovers the black

box function of the system that maps every stimulus

sequence to a response. An algorithm for its computation

(Algorithm BlackBox) [2] mimics deriving the output for

the given input sequence by the extended output function

of the corresponding Mealy machine.

Algorithm BlackBox(E, u)
Input: A complete and finite enumeration E, a stimulus

sequence u

Output: The response for u

(* Compute the black box function*)

1. while true

2. do if u is enumerated in E
3. then return the mapped response of u

4. Find the longest prefix u9 of u that is enumerated

in E.

Fig. 1 A state machine for the safe controller (states q0–q4
represented by unreduced sequences l, B, L,U, and LB respect-
ively)
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5. if u9 is illegal

6. then return v

7. else Let u9 be reduced to v in E. Replace u9 with v

in u to form a new sequence u0.

8. return BlackBox(E, u0)

As an example, we show how to derive the correct res-

ponse to an arbitrary stimulus sequence, say LBCUDG,

by the available algorithm. Since LBC is the longest prefix

of LBCUDG that gets enumerated in Table 4, and LBC is

a legal sequence reduced to prior sequence L, we replace
LBC with L and run the algorithm on the newly formed

sequence LUDG. Since the longest prefix of LUDG that

gets enumerated isLU, which is legal and reduced toU, we

run the algorithm on UDG. Then UD is replaced with L,

and finally the newly formed sequence LGmaps to unlock

by Table 4.

3 Managing atomic requirements changes

We propose to capture requirements changes as a series of

atomic changes in specifications, and present algorithms
for managing all possible atomic requirements changes to

a sequence-based specification. The algorithms address

atomic changes one at a time, in order to preserve com-

pleteness, consistency, and correctness. As may be noticed

by the reader, seemingly minor changes in requirements

may grow into long lists of atomic changes for the spe-

cification and the code.

Integrating requirements changes into the specification

iteratively requires a human specifier identify the next

atomic change needed. Automation is built into the

Proto_Seq enumeration tool to manage each atomic

change with an algorithm that handles all its consequences
and produces an evolving specification. From our experi-

ence, these change algorithms are needed and used exten-

sively for almost any application for which sequence-

based specification is used, due to the fact that the correct

specification of the system is never built in one pass but

rather an evolving product of the first few unsuccessful

trials.

Table 5 lists all possible atomic requirements changes

to a sequence-based specification. Firstly, the stimulus set

could be changed as we identify a new stimulus across the

system boundary or an old one no longer of interest.

Possible stimulus changes include adding a stimulus, delet-

ing a stimulus, and their combinations thereof. Secondly,
the response mapping could be changed for any enumer-

ated sequence. The new response could be different from

any of the old responses and emerge from the new or

changed requirements. A response change refers to chan-

ging the mapped response of a specific enumerated

sequence in a complete and finite enumeration and hand-

ling all its consequences. Depending on the legality of this

sequence before and after the change, the response change

is classified as from legal to legal, legal to illegal, or illegal

to legal; the latter two cases are also considered as legality

changes. Lastly, the declared reduction could be changed

for any enumerated sequence. An equivalence change

refers to changing the reduction of a specific enumerated

sequence in a complete and finite enumeration and hand-

ling all its consequences. Depending on the status of the

sequence before and after the change (reduced or unre-

duced, legal or illegal), again there are subtleties.

The reader may note that we do not have additions or

deletions for responses as for stimuli; these are handled by

the elemental response change operation. When a new

response is introduced, we are actually mapping at least

one enumerated sequence to this new response. When a

response is deleted, we are also redefining all sequences

previously mapped to this response. Therefore, the res-

ponse change operation covers these situations suffi-

ciently.

The algorithms were first formulated and described as

functions [7] using an axiom system we have developed for

a rigorous treatment of the sequence-based specification

method. They were then proven for correctness and fully

implemented in the Proto_Seq enumeration tool. Here we

will present them informally with an attempt to highlight

the consequences of changes and motivate the decisions

made. Because of the page limitation we will pick a few
algorithms for detailed explanation, and refer the reader

to [7,9] for the rest of the algorithms. Some chosen

Table 5 Summary of all possible atomic requirements changes

stimulus changes adding a stimulus Algorithm 1

deleting a stimulus Algorithm 2

response changes from legal to legal Algorithm 3

from illegal to legal for a reduced sequence Algorithm 4

for an unreduced sequence Algorithm 5

from legal to illegal for a reduced sequence Algorithm 6

for an unreduced sequence Algorithm 7

equivalence changes for an unreduced illegal sequence Algorithm 8

for an unreduced legal sequence Algorithm 9

for a reduced illegal sequence Algorithm 10

for a reduced legal sequence keeping it reduced Algorithm 11

making it unreduced Algorithm 12
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algorithms have the most comprehensive or far-reaching

impact of changes.

In any case we start with a complete and finite enumera-

tion E, perform all required changes incurred by a single

atomic change. It is proven in [7] that the resulting enu-

meration E9 guarantees to be also complete and finite.

3.1 Adding a stimulus: Algorithm 1

Suppose a new stimulus x is added into the set of stimuli.

Since all legal and unreduced sequences in E must have

been extended by every old stimulus, their extensions by x

need to be defined as well. To minimize human interven-

tion, the tool makes an assumption about all new exten-

sions by mapping them to v. It is up to the user of the tool

to decide later what the correct response and reduction

will be according to the new requirements. As a reminder

to the user, all new extensions that are mapped to v are

highlighted in the enumeration table. The user can rede-

fine these entries easily by calling response or equivalence

change algorithms.

To summarize, adding a stimulus has the following

implications:

N All old enumeration entries remain unchanged;

N All legal and unreduced sequences in E are extended by

x. The extensions are mapped to v and highlighted.

Algorithm 1 (AddStim) (E, x)
Input: A complete and finite enumeration E, a new

stimulus x

Output: A complete and finite enumeration E9
(*Add a stimulus*)

1. Initialize E9 to be the same as E.
2. for every legal and unreduced sequence u in E9
3. do Extend u by x in E9. Map the extension to v and

make it unreduced.

4. Highlight the row for sequence ux.

5. return E9

3.2 Deleting a stimulus: Algorithm 2

Suppose stimulus x is to be removed from the set of stim-

uli. In the view of the corresponding Mealy machine all

arcs labeled with x will disappear. Some states may

become unreachable as a result and have to be removed.

For any of the remaining states, say qi, if previously the

first word in length-lexicographical order reaching it from

the initial state was ci, and ci contains the bad stimulus x,

then it no longer exists as a path in the modified auto-

maton, hence the word for qi in the new automaton needs

to be recomputed. We remain interested in the first words

in length-lexicographical order reaching every state of the

modified automaton from the initial state because they are

exactly unreduced sequences in the modified enumera-

tion.

There are more subtleties. Now suppose the newly com-

puted word for qi is c’i , which does not contain x as a

symbol. If the output for ci was not v, but the output

for c’i is v, and qi was not previously a trap state, then

all outgoing arcs from qi need to be redirected in the

modified automaton to make it a trap state, in accordance

with Condition 4 required for any enumeration Mealy

machine (see Section 2). This may render more states

unreachable and getting removed. While recomputing

the special words for every state of the new automaton

(that correspond to new unreduced sequences), we need to

be careful with these redirected arcs and newly introduced

trap states.

As an example Fig. 2(a) shows the state machine for

an enumeration with stimuli a and b, and Fig. 2(b)

shows its modified version after a is deleted. To visualize

the relationship of enumerations and state machines we

label each state with its corresponding unreduced

sequence in the old (or new) enumeration. Note that

the old state a is preserved but named after bb, and since

bb outputs v it becomes a trap state and further elim-

inates the old state aa.

Once the c’is are computed, we are ready to derive the

new enumeration from the old one mechanically, by link-

ing old enumeration entries to old Mealy machine transi-

tions (with outputs on the arcs), and linking new Mealy

machine transitions to new enumeration entries. In gen-

eral, if the transition from state qi to state qj by arc s with

output r is preserved in the modified automaton, then we

have:

Fig. 2 Example automaton diagrams for deleting a stimulus
(a) before deleting a, (b) after deleting a
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N In E unreduced sequence ci when extended by stimulus

s is mapped to response r and reduced to unreduced
sequence cj;

N In E9 unreduced sequence c’i when extended by stimulus

s is mapped to response r and reduced to unreduced

sequence c’j .

For example the transition from state b on input b corre-
sponds to ‘‘bb mapped to v and reduced to a’’ in the old

enumeration, but ‘‘bb mapped to v and reduced to bb’’ in

the new one. From here on, we will refer to an unreduced

sequence interchangeably as ‘‘reduced to itself’’.

Exceptions to this general rule exist. In case ci has v as

its output, the transition does not have a corresponding

entry in E as illegal sequences are not extended, but it is

implied. However, if the output for c’i is not v, then the

transition indeed has a corresponding entry in E9, which
cannot be obtained by revising an existing old entry in E
and must be added explicitly.

Of course we need to know when a transition in the old

automaton, say from state qi to state qj, is preserved in the

new automaton to apply the substitution rule. This is easy

given the helper function that computes the (partial) map-

ping from all unreduced sequences in E to all unreduced

sequences in E9. The transition from qi to qj is preserved in
the new automaton in all but the following two cases:

N State qi becomes unreachable after deleting x, hence

there is not a primed value for ci;

N State qi is not a trap state in E, however, c’i has outputv
which enforces qi to become a trap state in E9. The
redirected transitions do not have any entries in E9 as
illegal sequences are not extended.

To summarize, deleting a stimulus has the following

implications:

N Unreduced sequences in E that do not contain x remain

as unreduced sequences in E9;
N Unreduced sequences in E that contain x may or may

not have corresponding unreduced sequences in E9. In
case they have, the unreduced sequences in E9 need to

be computed;

N E9 can be derived from E by applying substitution rules

and covering a few exceptional cases.

Algorithm CompMapForStimDel below serves as a

helper function that computes a partial mapping k from

all unreduced sequences in E to all unreduced sequences in

E9. Given an unreduced sequence u in E, if u does not

contain x as a symbol, then it remains as an unreduced

sequence in E9 representing the same state (Steps 2-4).

These states provide the basis for computing which other
old states are also preserved by the following observation.

Every enumerated sequence in E except the empty

sequence describes a transition of the old automaton.

For instance, if prefix sequence p followed by stimulus s

is reduced to sequence v, then the state represented by p

has an outgoing arc s into the state represented by v. If the

starting state but not the ending state of this transition is
known to be existing in the modified automaton (k(p)
? nil, k(v)5 nil), the arc is not to be deleted (s? x), and

the arc is not to be redirected (BlackBox(E, k(p))?v),
then the ending state must be preserved in the new auto-

maton and reached by k(p) concatenated with s (Steps 6-

8). All incoming arcs to such states are considered to select

the first paths in length-lexicographical order getting to

these states as their corresponding new unreduced
sequences in E9 (Steps 9-10).

Algorithm CompMapForStimDel(E, x)
Input: A complete and finite enumeration E, an existing

stimulus x

Output: A hash map k mapping each unreduced

sequence in E to an unreduced sequence in

E9 that represents the same state (if the state

is preserved after deleting x), or nil (otherwise)

(* Compute the map for unreduced sequences when *)

(* deleting a stimulus *)

1. Initialize an empty hash map k.
2. for each unreduced sequence u in E
3. do if u does not contain x as a symbol

4. then k(u)r u

5. repeat

6. for every enumerated sequence in E of the form:

prefix sequence p followed by stimulus s is reduced

to v

7. do if s? x and k(v)5 nil and k(p)? nil and

BlackBox(E, k(p))?v

8. then Let k(p) concatenated with s be a candid-

ate for k(v).

9. for every unreduced sequence v that has designated
candidates in Steps 6-8

10. do k(v)r its first candidate in length-lexico-

graphical order

11. until The last iteration has no new sequence defined

for k.
12. return k

The stimulus deletion algorithm (Algorithm 2

(DelStim)) first calls Algorithm CompMapForStimDel to
get the mapping k from old unreduced sequences to new

unreduced sequences (Steps 1-2). Then it initializes E9with
the empty sequence (Step 3). Next, every enumerated non-

empty sequence (prefix sequence p concatenated with

stimulus s) in E is considered. If the corresponding trans-

ition is neither deleted (s? x and k(p)? nil) nor redirected

(BlackBox(E,k(p))?v), then the preserved transition

translates to an enumerated sequence in E9 (Steps 4-6).
Finally, every old trap state corresponding to an illegal

and unreduced sequence u in E is examined. If the same
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state is preserved (k(u)? nil) but represented by a legal

and unreduced sequence k(u) in E9 (BlackBox(E,k(u))?
v), then k(u) is explicitly extended (Steps 7-10).

Algorithm 2 (DelStim)(E, x)
Input: A complete and finite enumeration E, an existing

stimulus x

Output: A complete and finite enumeration E9
(* Delete a stimulus *)

1. Initialize an empty hash map k.

2. krCompMapForStimDel(E, x)
3. Initialize E9 to contain l only, with lmapped to 0 and

unreduced.

4. for every enumerated sequence in E of the form: pre-

fix sequence p followed by stimulus s mapped to re-

sponse r and reduced to sequence v

5. do if s? x and k(p)? nil and BlackBox(E, k(p))?v

6. then Add the following sequence in E9: prefix
sequence k(p) followed by stimulus s map-

ped to response r and reduced to sequence

k(v).

7. for every enumerated illegal and unreduced sequence

u in E
8. do if k(u)? nil and BlackBox(E, k(u))?v

9. then for every stimulus s except x

10. do Add the following sequence in E9: prefix
sequence k(u) followed by stimulus smap-

ped to v and reduced to sequence k(u).

11. return E9

It is proven [7] that combinations of stimulus addition

and deletion can be performed in an arbitrary order with-

out affecting the final result.

3.3 Changing a response from legal to illegal for an

unreduced sequence: Algorithm 7

Suppose we pick an enumerated legal, unreduced

sequence u and want to change its response to v. All

extensions of u will become illegal after the change. If

there is any sequence, say w, previously reduced to u,

keeping the same reduction may pose a problem as we

may not want to change the response for any extension

of w (let alone to v).

This problem is caused by assuming u and w are still

taking the automaton to the same state after the change

but actually they are not. This happens only if w is not

an extension of u. The state reachable by both in the

old automaton is preserved in the new automaton by w

(and possibly many other sequences). Sequence u leads

to a newly added trap state that defines the new beha-

vior for u as well as any extension of u. The state that

gets preserved now corresponds to a different unre-

duced sequence than u in E9, which must be the first

word in length-lexicographical order taking the

modified automaton from the initial state to the pre-

served state.

The same problem exists for reductions in E to an unre-

duced sequence in which u is a proper prefix. The state,

even if preserved, may correspond to a different unre-

duced sequence in E9 that cannot contain u as a prefix.

Therefore, the unreduced sequences in E that contain u

as a prefix (not necessarily proper) are problematic. The

states represented by them in the old automaton may not

be preserved in the new automaton (in that case all

sequences getting to these states get to the newly added

trap state in the new automaton), or they are preserved

but represent different unreduced sequences in E9. We

have a helper function similar to the one used for stimulus

deletion to compute which of these states get preserved as

well as their corresponding unreduced sequences in E9.
Again we need to handle subtleties resulted from trying

to satisfy Condition 4 for an enumeration Mealy machine

(see Section 2).

As an example Fig. 3 shows the state machines before

and after changing the response of a legal, unreduced

sequence a from 0 to v.

Once we have all unreduced sequences in E9 computed,

we can derive E9 from E in a similar fashion as for stimulus

deletion. Since u leads to a newly added trap state, the row

for u in the old enumeration table is not used in substi-

tution. The row for u is defined explicitly for E9.
To summarize, changing a response from legal to illegal

for an unreduced sequence has the following implications:

Fig. 3 Example automaton diagrams for changing a re-
sponse from legal to illegal for an unreduced sequence (a) before
changing the response of a, (b) after changing the response of a
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N Unreduced sequences in E that do not contain u as a

prefix remain as unreduced sequences in E9;
N Unreduced sequences in E that contain u as a prefix

may or may not have corresponding unreduced se-
quences in E9. In case they have, the unreduced

sequences in E9 need to be computed;

N Sequence u is unreduced in E9, but not related to any

unreduced sequence in E. It is defined explicitly;

N E9 can be derived from E by applying substitution rules

and covering a few exceptional cases.

Algorithm CompMapForRespOrEquivChg serves as a

helper function for both the response change algorithm

discussed in this section (Algorithm 7 (ChgResp5)) and

the equivalence change algorithm discussed in the next

section (Section 4, Algorithm 9 (ChgEquiv2)). In both
cases a formerly extended sequence will not be

extended after being mapped to v or reduced to a prior

sequence. Algorithm CompMapForRespOrEquivChg

computes the mapping from unreduced sequences in E
to unreduced sequences in E9. As a starting point, if an

unreduced sequence in E does not contain the sequence

u under change as a prefix, then it remains as an unre-

duced sequence in E9 representing the same state (Steps
2-4). Similar as for Algorithm CompMapForStimDel,

every enumerated non-empty sequence in E describes

a transition in the old automaton. For instance, if pre-

fix sequence p followed by stimulus s is reduced to

sequence v, then the state represented by p has an out-

going arc s into the state represented by v. If the start-

ing state but not the ending state is known to be

existing in the modified automaton (k(p)? nil, k(v)5
nil), and the transition is not to be redirected (ps? u,

BlackBox(E,k(p))?v), then the state represented by v

in the old automaton is preserved in the new auto-

maton and reached by k(p) concatenated with s

(Steps 6-8). All incoming arcs to such states are con-

sidered to pick the first paths in length-lexicographical

order leading to these states as the corresponding new

unreduced sequences in E9 (Steps 9-10).

Algorithm CompMapForRespOrEquivChg(E, u)
Input: A complete and finite enumeration E, an enum-

erated legal, unreduced sequence u except l
Output: A hash map k mapping each unreduced

sequence in E to an unreduced sequence in
E9 that represents the same state (if the state

is preserved after mapping u to v, or reducing
u to a prior sequence), or nil (otherwise)

(* Compute the map for unreduced sequences when *)

(* changing a formerly extended sequence *)

1. Initialize an empty hash map k.
2. for each unreduced sequence v in E
3. do if v does not contain u as a prefix

4. then k(v)r v

5. repeat

6. for every enumerated sequence in E of the form:

prefix sequence p followed by stimulus s is reduced

to v

7. do if ps? u and k(v)5 nil and k(p)? nil

and BlackBox(E, k(p))?v

8. then Let k(p) concatenated with s be a

candidate for k(v).

9. for every unreduced sequence v that has designated

candidates in Steps 6-8

10. do k(v)r its first candidate in length-lexico-

graphical order

11. until The last iteration has no new sequence defined

for k.

12. return k

Algorithm 7 (ChgResp5) handles the change conse-

quences incurred by mapping a previously legal and unre-

duced sequence u tov. The sequence under change cannot

be l, as lmust be mapped to 0 and its response cannot be

changed. Algorithm 7 (ChgResp5) first calls Algorithm

CompMapForRespOrEquivChg to get the mapping k from

old unreduced sequences to new unreduced sequences

after the change (Steps 1-2). Then it initializes E9 with

the empty sequence (Step 3) and explicitly defines new

response for u (Step 4). Next, every enumerated non-

empty sequence in E is considered. If the corresponding

transition remains in the modified automaton, it is trans-

lated into a row in E9 (Steps 5-7). Finally, every old illegal

and unreduced sequence is examined. If the same state is

preserved but represented by a legal unreduced sequence

in E9, then the new unreduced sequence is explicitly

extended (Steps 8-11).

Algorithm 7 (ChgResp5)(E, u)
Input: A complete and finite enumeration E, an enum-

erated legal, unreduced sequence u except l

Output: A complete and finite enumeration E9
(* Change a legal response to illegal for an unreduced *)

(* sequence *)

1. Initialize an empty hash map k.

2. krCompMapForRespOrEquivChg(E, u)
3. Initialize E9 to contain l only, with lmapped to 0 and

unreduced.

4. Add sequence u in E9. Map u to v and make it unre-

duced.

5. for every enumerated sequence in E of the form: pre-

fix sequence p followed by stimulus s mapped to res-

ponse r and reduced to sequence v

6. do if ps? u and k(p)? nil and BlackBox(E,
k(p))?v

7. then Add the following sequence in E9: prefix
sequence k(p) followed by stimulus s map-

ped to response r and reduced to sequence

k(v).
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8. for every enumerated illegal and unreduced sequence

v in E
9. do if k(v)? nil and BlackBox(E, k(v))?v

10. then for every stimulus s

11. do Add the following sequence in E9: prefix
sequence k(v) followed by stimulus smap-

ped to v and reduced to sequence k(v).

12. return E9

3.4 Changing an equivalence for an unreduced legal

sequence: Algorithm 9

Suppose we pick an enumerated legal, unreduced

sequence u and want to change its reduction. We assume

the new reduced value of u (denoted by v) does not con-

tradict with any of the enumeration rules. If a sequence is

unreduced, we treat its reduced value as the sequence

itself. If a sequence is reduced to itself, it is essentially

unreduced. Error checking for valid reductions is then

separated from our major concern of the consequences

of a possible equivalence change. In this case v could be

any unreduced prior sequence of u in length-lexicograph-

ical order.

This case looks much like the above case of a response

change. In both cases a formerly legal and unreduced

sequence is not going to be extended in the new enumera-

tion. The state it represents in the old automaton may or

may not be preserved in the new automaton. In case it is

preserved, it no longer represents the same unreduced

sequence in the new enumeration. The same applies to

any formerly unreduced sequence that happens to be an

extension of this sequence u under change. Unreduced

sequences for E9 need to be computed from the modified

automaton globally.

Algorithm 7 can be slightly modified to solve this prob-

lem. Instead of adding a new trap state, we redirect the last

transition incurred by u to an existing state represented by v.

All implications of Algorithm 7 apply except for the

third bulleted item. We have the following instead:

N Sequence u is reduced to v in E9.

As an example Fig. 4 shows the state machines before

and after changing the equivalence of a formerly unre-

duced, legal sequence b.

Algorithm 9 (ChgEquiv2) is very similar to Algorithm 7

(ChgResp5), except for Step 4 in which a new reduction

rather than a new response is defined for the sequence u

under change.

Algorithm 9 (ChgEquiv2)(E, u, v)
Input: A complete and finite enumeration E, an enum-

erated legal, unreduced sequence u except l, an
enumerated unreduced sequence v prior to u

Output: A complete and finite enumeration E9
(* Change equivalence for an unreduced legal sequence

*)

1. Initialize an empty hash map k.
2. krCompMapForRespOrEquivChg(E, u)
3. Initialize E9 to contain l only, with lmapped to 0 and

unreduced.

4. Add sequence u in E9. Map u to its response in E and

reduce it to v.

5. for every enumerated sequence in E of the form: pre-
fix sequence p followed by stimulus s mapped to re-

sponse r and reduced to sequence w

6. do if ps? u and k(p)? nil and BlackBox(E,
k(p))?v

7. then Add the following sequence in E9: prefix
sequence k(p) followed by stimulus s map-
ped to response r and reduced to sequence

k(w).

8. for every enumerated illegal and unreduced sequence
w in E

9. do if k(w)? nil and BlackBox(E, k(w))?v
10. then for every stimulus s

11. do Add the following sequence in E9: prefix
sequence k(w) followed by stimulus smap-

ped to v and reduced to sequence k(w).
12. return E9

3.5 Time complexity analysis

Our change algorithms all contain as an input a complete

and finite enumeration. They may contain other inputs

Fig. 4 Example automaton diagrams for changing an equi-
valence for an unreduced legal sequence. (a) before changing
the equivalence of b, (b) after changing the equivalence of b
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such as a stimulus (for stimulus changes), a response (for

response changes), or a stimulus sequence (for response/

equivalence changes), the size of which can be ignored

compared with the size of the enumeration.

We will use a red-black tree to store an enumeration

table. Every row of the table is stored with a node in the

tree that has both a key and a value. The keys are for the

enumerated sequences; the values are for the structures

holding the associated responses, equivalences, and traces.

The keys (sequences) are sorted length-lexicographically.

Let n be the size of a complete and finite enumeration,

and the input size of any of the change algorithms. Then

the number of enumerated sequences (the number of

rows, or the number of nodes in the red-black tree) is

bounded by n. It follows that stimulus addition

(Algorithm 1 (AddStim)) takes time O(n log(n)), as each

tree operation executes in log(n) time.

For stimulus deletion (Algorithm 2 (DelStim)), we first

examine how long it takes to compute the partial function

k using Algorithm CompMapForStimDel. Finding all

unreduced sequences takes time O(n log(n)). The number

of all unreduced sequences is bounded by n. The first for

loop (Lines 2-4) executes in time O(n log(n)), and the fol-

lowing repeat-until loop (Lines 5-11) is executed at most n

times, as each iteration identifies the k mapping for at

least one unreduced sequence in the original enumeration.

In each iteration, the red-black tree is traversed in time

O(n log(n)) (Line 6). For each node visit O(log(n)) time is

needed for looking up values in the k mapping as well as

for computing the mapped response for k(p) (Lines 7-8).

The for loop in Lines 9-10 takes time O(n log(n)).

Therefore, the time complexity for Algorithm CompMap-

ForStimDel is

O n log nð Þð Þzn1 O n log nð Þð ÞzO n log nð Þð Þð Þ
~O n2 log nð Þ� �

:

Now consider Algorithm 2 (DelStim). Line 1 takes con-

stant time O(1). Line 2 takes time O(n2 log(n)). Line 3

takes time O(log(n)). The for loop in Lines 4-6 is executed

at most n times each taking timeO(log(n)). The for loop in

Lines 7-10 also executes in time O(n log(n)). Hence the

total running time is O(n2 log(n)).

Similarly we can prove that among all response and equi-

valence change algorithms, only two of them, i.e.,

Algorithms 7 (ChgResp5) and 9 (ChgEquiv2), take time

O(n2 log(n)); the others all have time complexityO(n log(n)).

All the twelve change algorithms are polynomial-time

algorithms.

4 Example: safe controller with security
alarm

Suppose our safe controller product introduced in Section

2 is now enhanced with a new feature. On a wrong com-

bination entry, a security alarm will be triggered, which

cannot be cleared until the correct three digits are entered.

This will replace tagged requirement 7 in Table 1, and be

tagged as 79.

Two new outputs across the system boundary are iden-

tified: alarm on and alarm off. With our change algo-

rithms, we do not need to start over re-enumerating, but

instead can build on the previous enumeration (Table 4)

following the atomic steps listed in Table 6.

Among the twelve atomic steps, only the first two steps

are needed to clear things up in the old safe enumeration

(Table 4), and preserve the work that has already been

completed. The rest of the steps (Steps 3-12) are needed

anyway to specify the new behavior paired with the newly

introduced requirement 79; the work cannot be saved even

if one re-enumerates the new system from the beginning.

A completed specification obtained for the enhanced

safe controller is shown in Table 7.

If the requirements changes go in the other direction and

we start with the enumeration for the enhanced product, it

takes only two atomic requirements changes to derive a

specification of the original product, as shown in Table 8.

All the change consequences will be taken care of by the

available change algorithms and the tool support.

Table 6 Atomic steps needed for adding the alarm feature

Step Algorithm Atomic change

1 Algorithm 3 change the response of LB from 0 to alarm on

2 Algorithm 12 change the equivalence of LBC from L to LBC

3 Algorithm 5 change the response of LBCB from v to 0

4 Algorithm 9 change the equivalence of LBCB from LBCB to LB

5 Algorithm 5 change the response of LBCC from v to 0

6 Algorithm 9 change the equivalence of LBCC from LBCC to LBC

7 Algorithm 5 change the response of LBCG from v to alarm off, unlock

8 Algorithm 9 change the equivalence of LBCG from LBCG to U

9 Algorithm 5 change the response of LBCL from v to 0

10 Algorithm 9 change the equivalence of LBCL from LBCL to L

11 Algorithm 5 change the response of LBCU from v to 0

12 Algorithm 9 change the equivalence of LBCU from LBCU to U
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As an example, we show below how Algorithm 9

(ChgEquiv2) is applied at the last step to produce

Table 4. The enumeration after executing Step 1 of

Table 8 is almost the same as the enhanced safe enumera-

tion except that LB is mapped to 0. Then among the six

unreduced sequences l, B, L, U, LB, and LBC, only LBC

contains the sequence under change (i.e., LBC) as a prefix.

The k mapping from old unreduced sequences to new

unreduced sequences is computed as follows:

k(l) ~ l

k(B) ~ B

k(L) ~ L

k(U) ~ U

k(LB) ~ LB

k(LBC) ~ nil

Sequence LBC is not defined for k as the only two

sequences reduced to LBC (sequences LBC and LBCC)

do not satisfy the condition required by Line 7 of

Algorithm CompMapForRespOrEquivChg, hence no can-

didate values for k(LBC) are found. Most of the entries in

the enhanced safe enumeration can be translated to cor-

responding entries in the safe enumeration with the k

function. Sequences with LBC as a proper prefix (the last

six sequences) are removed since k(LBC)5 nil and it

breaks the condition required by Line 6 of Algorithm 9

(ChgEquiv2).

5 Conclusion and related work

Requirements changes can occur both during and after a

phase of development. Algorithms for managing require-

ments changes meet a very great need in field application

of the sequence-based specification method. In this paper

we propose to capture requirements changes as a series of

atomic specification changes, categorize all possible

atomic requirements changes, and propose algorithms

for managing them. All the change algorithms have been

implemented in the prototype tool supporting sequence-

based specification. They are also supported by rigorous

mathematical formulation and proof of correctness [7].

Changing requirements has long been recognized as a

major source of risk and the cause for many difficult and

costly errors during the software development life cycle

[10–13]. Various research has been conducted focusing on

process improvement, process modeling and measure-

ment, and change effort (cost) estimation [14,15]. For

instance, in [16] a model for requirements change manage-

ment was proposed based on the needs of stakeholders

and the relationships between objects (e.g., needs, goals,

actions), however, it remains unclear how requirements

changes (and changes of needs) translate into behavioral

changes explicit and detailed enough for implementation.

A lot of research on change impact analysis focuses on

the code level [17–20]. Lock and Kotonya [21] proposed

an approach supporting change impact analysis at the

requirements level, using probability to assist in the com-

bination and presentation of predicted impact propaga-

tion paths. They, too, focused on functional requirements

of a system, but limited traceability analysis to within

requirements level artifacts. The impact of a requirements

change is determined using other related requirements

without mapping requirements changes to changes in spe-

cifications or the code.

Our work differs from the previous work in that it

strives to provide a general solution to requirements

change management independent of the application

domain, and a rigorous approach that precisely prescribes

the impact of requirements changes on the specification

(and the code), with software development and mainten-

ance treated as a mathematical process. Since every prob-

lem that can be programmed for computers can be

Table 7 Enhanced safe controller sequence enumeration

Sequence Response Equivalence Trace

l 0 Method

B v D1

C v D1

D v D1

G v D1

L 0 5

U 0 5

LB alarm on 1,2,79

LC 0 L 2

LD v 8

LG unlock U 1,3

LL 0 L 5,D2

LU 0 U 5,D2

UB 0 U 6

UC 0 U 6

UD lock L 4

UG 0 U 6

UL 0 L 5,D2

UU 0 U 5,D2

LBB 0 LB 2

LBC 0 2

LBD v 8

LBG 0 LB 2

LBL 0 L 5,D2

LBU 0 U 5,D2

LBCB 0 LB 2

LBCC 0 LBC 2

LBCD v 8

LBCG alarm off, unlock U 1,3,79

LBCL 0 L 5,D2

LBCU 0 U 5,D2

Table 8 Atomic steps needed for removing the alarm feature

Step Algorithm Atomic change

1 Algorithm 3 change the response of LB from alarm on to 0

2 Algorithm 9 change the equivalence of LBC from LBC to L
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modeled as a finite state machine, and sequence-based

specification systematically discovers the state machine

from informal requirements, the work presented in this

paper provides a rigorous change management theory

and automation concepts needed to avoid the high risk
of introducing errors (as compared with changing spe-

cification and code manually).

Our theory of managing requirements changes in

sequence-based specifications differs from the conven-

tional state change theory in that it is designed for active

state machine development and revision. For example,

Korel [22] presented an approach of understanding

model-based modifications that uses the original model
and the modified model to compute the effect of the mod-

ifications through affecting and affected transitions. It

assumes the availability of the modified model and bases

the analysis on data and control dependence among

inputs and outputs. The change might be the result of

maintenance, error correction, or change in functionality

driven by change in requirements. However, these algo-

rithms would not support an original enumeration pro-
cess, or complete the revision of changes in an

enumeration.

Seawright and Brewer [23] presented ‘‘production-

based specification’’ and used a similar base of lan-

guage-automata theory to convert grammar productions

into hardware design. They, too, focus on external beha-

vior relative to a well-defined system boundary and its

interfaces, and generate Mealy-Moore state machine
descriptions as an intermediate step toward circuit design.

Although our algorithms could apply to production-

based specification at their intermediate state machine,

it is not clear how such changes would reflect in their

original productions. Their production language is quite

powerful, subject to debugging, and describes a larger

class of Mealy machines than those represented by enu-

merations.
Future research along this line includes abstraction

change management, in which the theoretical basis for

introducing and removing abstractions as well as shifting

up and down in levels of abstractions will be explored.
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