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Abstract In this paper we apply wavelet analysis to study the dynamics of long-

term movements in wholesale prices for the USA, the UK and France over the

period 1791–2012. The application of wavelet analysis to long-term historical price

series allows us to detect long waves in prices whose periodization is remarkably

similar to those provided in the literature for the pre-World War II period. More-

over, we find evidence on the existence of long waves in prices also after World

War II, a period in which long waves are generally difficult to detect because of the

positive trend displayed by prices. The comparison between the long wave com-

ponents extracted through wavelets and the Christiano–Fitzgerald band-pass filter

suggests that wavelets provide a reliable and straightforward technique for ana-

lyzing long waves dynamics in time series exhibiting quite complex patterns such as

historical data.
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1 Introduction

After almost a century from its publication Kondratieff’s (1926) research on 50-year

long cyclical movements in economic activity remains a fascinating but highly

controversial theory. The very presence of long waves is disputed on the basis that

available datasets contain too few observations for statistically rigorous testing by

means of spectral analysis. In addition, the methodology for identification of long

waves in aggregate economic time series is still a largely debated question in the

literature on long-run patterns in economic variables. The method initially used for

detecting long waves in economic variables, i.e., the decomposition approach,1

aimed at isolating major fluctuations in the deviations of a variable around its trend

through a combination of detrending procedures and smoothing techniques

(Goldstein 1988). However, these methodologies—i.e., moving average smoothing

techniques, trend deviation and phase period analysis—can be criticized for

adopting ad hoc assumptions, such as the pre-definition of historical phase periods

or the specification of a particular form for the secular trend (linear, quadratic,

exponential, etc.) in estimating the trend component, but also because statistical

artifacts and significant errors in long waves detection can be created by applying

arbitrary and inappropriate methods of trend elimination (see Freeman and Louçã

2001; Zarnowitz and Ozyildirim 2002; Metz 2011).

In the light of the above, since the 1980s a wide range of mathematical and

statistical tools have been used by researchers: spectral analysis (e.g., Kuczynski

1978; Bossier and Hugé 1981; van Ewijk 1981, 1982; Haustein and Neuwirth 1982;

Mosekilde and Rasmussen 1989; Reijnders 1990; Gerster 1992; Metz 1992, 2006;

Berry 2006; Diebolt and Doliger 2006, 2008; Korotayev and Tsirel 2010), log-linear

trends (Bieshaar and Kleinknecht 1984), correlation analysis (Goldstein 1988;

Solomou 1990), best fitting polynomial regression (Taylor 1988), filter design

approach (Metz 1992; Metz and Stier 1992; Kriedel 2009), structural time series

model (Goldstein 1999), fractional integrated long memory processes (Diebolt

2005), outlier identification and trend breaks within stochastic models (Darné and

Diebolt 2004; Metz 2011).2 However, these studies have led to contrasting,

sometimes contradictory, results on the identification and isolation of long cycles of

the Kondratieff-type, so that considerable disagreement still exists about basic

issues such as the existence of long waves, their periodization and the countries

concerned (see Bosserelle 2001, 2012, 2013).

Among the many existing methods for the empirical detection of long waves,

spectral analysis and filter design have represented the dominant approaches.

Spectral analysis has been widely applied to long wave analysis because of its

ability to simultaneously break down any time series into a set of cyclical

components having different frequencies. However, the application of spectral

methods to long wave analysis is greatly limited by the requirement of stationarity

1 In the classical decomposition approach time series are the sum of different unobserved components:

trend, cyclical, seasonal and irregular components.
2 A detailed review of existing methodologies and long wave results can be found in Bosserelle (2012,

2013).
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for the observed time series, the relative shortness of the observation period and the

assumption of regularity of long waves.

The similarity between long waves detection and growth cycles3 extraction has

favored the rising of the filter design approach for statistical identification of long

waves. In the filter design approach, as in spectral analysis, a time series is

considered the result of the summation of different frequencies and the task of the

filter consists in determining the filter coefficients so as to isolate specific

frequencies and to finally show the course of pre-specified frequency components in

the time domain. Several approximations of the ideal band-pass filter, commonly

used for extracting business cycle components, have been recently developed by

Baxter and King (1999) and Christiano and Fitzgerald (2003) which are optimal

under different time series representation of the process.4

The same goal, which is simultaneous estimation of different cyclical compo-

nents, may be pursued using wavelet analysis. Spectral and wavelet analysis are

similar in that they both consider a time series as the result of the summation of

different frequencies each corresponding to a specific frequency band. Thus, in

terms of economic interpretation, the two decomposition methods provide the same

information content and are very appealing to study economic variables that exhibit

a cyclical behavior. However, wavelets may overcome the main problems

evidenced by the Fourier transform as all projections of a signal onto the wavelet

space are essentially local, rather than global. Unlike spectral methods, wavelets

have the ability to detect cyclical components that are spaced irregularly in time and

to handle a variety of nonstationary and complex signals.

Wavelet analysis can be used in a straightforward way for the empirical detection

of long swings. Indeed, the application of the wavelet transform to annual data

allows us to detect a cyclical component whose frequency range is between 32 and

64 years, an average length which is roughly corresponding to that of the long wave

cycles identified by Kondratieff in the 1920s. Thus, in this paper we investigate the

evolution of long-term wholesale prices for France, the UK and the USA over the

period 1791–2012 using wavelet analysis.5 The main findings from the application

of wavelet multiresolution and energy decomposition to the long series of wholesale

prices are twofold: First, there is evidence of long waves in prices not only from the

late eighteenth century to the mid-1930s, but also after World War II, with five long

waves (4.5 for France) of wholesale prices detected in the three economies over the

historical period studied. Second, apart from the trend smooth component, the

component corresponding to long waves provides the most significant contribution

in terms of the overall variance, especially in comparison with business cycles

components.

3 Growth cycles definition follows from the modern approach to business cycles analysis (Lucas 1977),

where business cycles are defined as fluctuations around a (stochastic) trend.
4 Although designed using frequency domain analysis, these filters are undertaken in the time domain by

applying moving averages to time series data.
5 In this study we do not intend to provide a solution to the problem of the statistical proof of Kondratieff

cycles. The statistical identification of long waves is at least problematic given the low number of

repeated cycles within the period of observation, i.e., the Kondratieff cycle is too long for the length of

the present time series.
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Furthermore, since the similarities between wavelet and filter design approaches

allow a direct comparison of the two methods, we provide a robustness test of our

results by comparing them with the corresponding band-pass filtered long wave

components derived from two commonly used band-pass filters, Baxter and King

(1999) and Christiano and Fitzgerald (2003). We take as a benchmark for

comparison the chronologies on long waves in prices provided by early long wave

authors on long waves patterns in prices for the pre-WWII period. Our findings

indicate that the D5 component extracted using the maximal overlap discrete

wavelet transform (MODWT) with the Daubechies’ (1992) LA(8) filter is

remarkably similar to long waves detected by the Christiano–Fitzgerald filter and

that the timing of both band-pass filters closely resemble the long wave

chronologies reported in the literature by historians. Finally, we find that the

differences emerging between the two filtered long wave components may be

related to the assumed spectral density of the original data in the Christiano–

Fitzgerald filter. Thus, we conclude that wavelet analysis can provide a straight-

forward as well as reliable methodology for detecting and uniquely identifying long

wave patterns in historical time series.

The paper is organized as follows: Sects. 2 and 3 introduce the filter design

approach with band-pass filtering and wavelet analysis, respectively. The analysis of

the data set used is performed in Sect. 4. Section 5 applies the wavelet transform to

the wholesale price series for France, the UK and the USA and compares the

performance of the long waves detected using the wavelet filter against the

corresponding band-pass filtered components isolated through the CF band-pass

filter. Section 6 concludes the paper.

2 The filter design approach and band-pass filtering

The extraction of long waves requires the design of band-pass filters from the theory

of the spectral analysis whose task is to isolate only the fluctuations within a pre-

specified range of periodicities from individual time series. Such band-pass filters

can identify the long wave component by filtering out all fluctuations outside the

frequency range of interest and are widely employed in business cycle analysis. An

ideal frequency-selective filter is one for which the gain is unity over the frequency

band of interest (the so-called pass band) and zero over the remaining frequencies

(the so-called stop bands), and no phase shift is introduced.6 Thus, the ideal band-

pass filter for isolating the spectral components of a time series within a particular

range of frequencies is a rectangular window in which the transition from the pass

band to the stop band occurs at the points corresponding to the cutoff frequencies.7

The aim of extracting from a time-series unobserved components within specified

frequency bands can be pursued by designing a filter in the frequency domain (see

6 The gain and the phase shift of the filter determine the so-called transfer function of a filter which is

used to evaluate the properties of a filter.
7 However, the ideal band-pass filter requires the application of an infinite-order moving average filter to

the series of interest, and thus, some kind of approximation is needed in order to be implemented in

empirical applications.
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Stier 1989). The filter design approach considers any time series an overlay of many

cyclical components of different lengths and frequencies that can be decomposed

into different frequency components by using the methodology of spectral analysis.8

Spectral analysis provides a frequency domain representation of a signal (or a

function) where the same information as the original function is approximated by

the sum of periodical functions with fixed frequencies, i.e., sines and cosines. The

contribution of each individual frequency to the total variance of the (stationary)

time series under consideration can be obtained by estimating the sample spectrum

through the application of the Fourier transform.9

Since the Fourier transform uses a linear combination of basis functions ranging

over � infinity, all projections in Fourier analysis are globals, and thus, a single

disturbance affects all frequencies for the entire length of the series. Thus, if the

signal is a nonperiodic one, the summation of the periodic functions, sine and

cosine, does not accurately represent the signal.10 Such a feature restricts the

usefulness of the Fourier transform to the analysis of stationary processes, whereas

most economic and financial time series display frequency behavior that changes

over time, i.e., they are nonstationary (Ramsey and Zhang 1995, 1996).11 Hence, in

order to accomplish band-pass filtering, one must therefore apply a detrending

procedure, but then one is back in the realm of detrending methods along with their

problems of arbitrariness in the estimation and elimination of the trend

component.12

Examples of filtering techniques operating entirely in the frequency domain are

the applications of the Stier digital filter to the analysis of long waves (Gerster 1988;

Metz 1992) and the frequency domain procedures of Englund et al. (1992) and

Hassler et al. (1994). The first method allows filtering the predefined components

with multiple band-pass and band-stop filters (Metz 2006), whereas, in the latter

case, the periodic components are first computed after applying the Fourier

transform to detrended data, then frequencies outside the frequency range of interest

are ‘‘zeroed,’’ and finally, the (time domain) filtered series is obtained by computing

the inverse Fourier transform. In sum, although spectral analysis is in principle an

appropriate methodology for long wave analysis because of its ability to

simultaneously estimate the contribution of several cyclical components, in practice

its application is greatly limited by the requirement that the series be detrended in

order to achieve stationarity.

8 The theory of the spectral analysis relies on the spectral representation theorem according to which any

time series within a broad class can be decomposed into different frequency components.
9 The signal can then be analyzed for its frequency content because the Fourier coefficients of the

transformed function represent the contribution of each sine and cosine function at each frequency.
10 In additon, the results of the frequency domain method at all dates are dependent on the sample length

(Baxter and King 1999).
11 Nonstationarity is an intrinsic feature of datasets used in long waves studies since long-term data

generally include historical events such as war episodes, policy changes, technique innovations and crisis

periods that are likely to be responsible for structural breaks in the form of abrupt changes, jumps and

volatility clustering.
12 Detrending procedures are not neutral with respect to the results relating to the existence of cycles:

‘‘the smoothing techniques may create artefacts’’ (Freeman and Louçã 2001, p. 99).
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A solution to the stationarity problems of filtering in the frequency domain is

represented by those pass-band filters that are performed in the time domain, but whose

desired properties are still formulated in the frequency domain. Well-known examples

of time domain filters derived by approximating the frequency domain properties of

ideal band-pass filters are the Baxter and King (1999) and Christiano and Fitzgerald

(2003) approximate band-pass filters13 which apply two-sided moving averages to time

series. These alternative finite sample filters differ for the assumptions about the spectral

density of the variables and the symmetry of the weights of the filter. Regarding the first

assumption, the approximation by Baxter and King assumes independent and identically

distributed variables, whereas Christiano and Fitzgerald assume a random walk. As to

the latter, Baxter and King develop an approximate band-pass filter with symmetric

weights on leads and lags in order to avoid the filter introducing phase shift in the cycles

of filtered series, whereas Christiano and Fitzgerald asymmetric filter has the advantage

to avoid losing observations at the beginning and end of the sample.14 Finally, the

implicit differencing incorporated in both filters results in stationary time series even

when the underlying time series is integrated of order one or two.

Although mainly developed in the context of business cycle analysis, these filtering

techniques have also been applied for extracting lower frequency components of

economic time series because both lower frequency cycles (and trends) and higher

frequency components (for example, seasonality and noise) can be filtered out. The

Baxter–King filter has been used by Baxter (1994) to study the relationship between

real exchange-rate differentials and real interest rates at low frequencies and recently

by Kriedel (2009) for the analysis of long waves of economic development with a

length between 30 and 50 years in six European countries. Christiano and Fitzgerald

(2003) have examined the Phillips curve relationship between unemployment and

inflation in the short and the long run, as well as the correlations between low-

frequency components of monetary growth and inflation with their own asymmetric

band-pass filter. Finally, Metz (2011) has compared the performance of both band-

pass filters and the Stier filter by extracting the filtered band-pass components of the

pig iron production series with a periodicity range from 20 to 40 years.

3 Wavelet multiresolution analysis

The simultaneous estimation of several cyclical components may be also pursued

using wavelet analysis.15 Like spectral analysis, wavelet analysis allows to

decompose any signal into a set of timescale components, each reflecting the

evolution through time of the signal at a particular range of frequencies, and to study

13 The exact band-pass filter is a moving average of infinite order, so an approximation is necessary for

practical application.
14 The ideal band-pass filter can be better approximated with longer moving averages. Using a larger

number of leads and lags allows for a better approximation of the exact band-pass filter, but makes

unusable more observations at the beginning and end of the sample.
15 Wavelets, their generation and their potential usefulness are discussed in intuitive terms in Ramsey

(2010, 2014). A more technical exposition with many examples of the use of wavelets in a variety of

fields is provided by Percival and Walden (2000), while an excellent introduction to wavelet analysis
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the dynamics of each component separately, but with a resolution matched to its

scale since the wavelet basis function is dilated (or compressed) according to a scale

parameter to extract different frequency information.16 A significant benefit of

wavelet analysis is that approximations generated by them are robust to small

variations. This is in contrast to the situation in time series Fourier analysis where

results are often very responsive to small changes in the model. Further, while

Fourier analysis is designed to provide efficient estimates of cyclical phenomena, it

is at the expense of ignoring nonstationarity. Wavelets provide an analytic structure

which can be used to provide relatively efficient estimations of variation by

frequency, by time and by scale. In short, the advantages of wavelet analysis are

preeminent in the initial analysis of economic and financial data.

Both Fourier and wavelet transforms can be viewed as a rotation in function

space to a different domain that for Fourier Transform contains basis functions that

are sines and cosines, whereas for the wavelet transform, this new domain contains

more complex basis functions called wavelets (see Strang 1993). The basis

functions used by the Fourier transform (upper and middle panel) and the wavelet

transform (lower panel) are displayed in Fig. 1.

Figure 1 shows how wavelets transform the data into a mathematically equivalent

representation by using a basis function that is similar to a sine and cosine function in

that it also oscillates around zero, but differs because it is well localized both in the

time and the frequency domain. Therefore, wavelet analysis may overcome the main

problems evidenced by Fourier analysis since wavelets are compactly supported, as

all projections of a signal onto the wavelet space are essentially local, not global, and

thus need not be homogeneous over time. Being performed locally, the wavelet

transform allows the analysis of series that by their nature, as it is for long historical

time series data, is likely to exhibit short-lived transient components like abrupt

changes, jumps and volatility clustering, typical of war episodes or crisis episodes.

Unlike spectral analysis and related statistical techniques, wavelet analysis considers

nonstationarity an intrinsic property of the data rather than a problem to be solved by

pre-processing the data. Indeed, much of the usefulness of wavelet analysis has to do

with its flexibility to handle a variety of complex and nonstationary signals so that the

data need neither be detrended nor corrections for war years are needed.17 Hence,

with wavelet analysis, we can avoid the practice of studying history by erasing part of

the history (Freeman and Louçã 2001).

Footnote 15 continued

along with many interesting economic and financial examples is given in Gençay et al. (2002) and

Crowley (2007).

16 Moreover, the transformation to the frequency domain does not preserve the time information so that it

is impossible to determine when a particular event took place, a feature that may be important in the

analysis of economic relationships. In other words, it has only frequency resolution but not time

resolution.
17 Corrections for war periods (war data are influenced by pre-war armament booms, war economy and

post-war reconstruction booms around World War II and to a lesser extent World War I) are generally

applied to original data by interpolating series for the war years (Metz 1992) or a priori elimination of the

impact of the war periods (Korotayev and Tsirel 2010) on the assumption that such shocks can be seen as

disturbances in the normal structure of data.
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The wavelet transform maps a function f(t) from its original representation in the

time domain into an alternative representation in the timescale domain w(t, j)

applying the transformation wðt; jÞ ¼ wð�Þf ðtÞ, where t is the time index, j the scale

(i.e., a specific frequency band) and wð�Þ the wavelet filter. There are two basis

wavelet filter functions: the father and the mother wavelets, / and w, respectively.

The first integrates to 1 and reconstructs the smooth and low-frequency parts of a

signal, whereas the latter integrates to zero and describes the detailed and high-

frequency parts of a signal. The mother wavelet, as said above, plays a role similar

to sines and cosines in the Fourier decomposition. It serves as a basis function to

construct a set of wavelets, where each element in the wavelet set is obtained by

compressing (or dilating) and shifting the mother wavelet, in order to approximate a

signal. The functions /j;k and wj;k are the approximating wavelet functions

generated from the father and mother wavelets, / and w, through scaling and

translation as follows

/j;k ¼ 2� j
2/

t � 2 jk

2 j

� �
ð1Þ

wj;k ¼ 2� j
2w

t � 2 jk

2 j

� �
ð2Þ

For a discrete signal or function f1; f2; . . .; fn, the wavelet representation of the

signal or function f tð Þ in L2 Rð Þ can be given by

Wave Wavelet 

Daubechies Coiflet Haar 

Fig. 1 A wave and a wavelet in the top panel. Different wavelet families (Haar, Coiflet and Daubechies)
in the bottom panel
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f tð Þ ¼
X
k

sJ;k/J;k tð Þ þ
X
k

dJ;kwJ;k tð Þ þ � � � þ
X
k

dj;kwj;k tð Þ þ � � � þ
X
k

d1;kw1;k tð Þ

ð3Þ

where J is the number of multiresolution components or scales, and k ranges from 1

to the number of coefficients in the specified components. The coefficients djk and

sJk of the wavelet series approximations in (3) are the details and smooth wavelet

transform coefficients representing, respectively, the projections of the time series

onto the basic functions generated by the chosen family of wavelets, that is

dj;k ¼
Z

wj;kf ðtÞdtand sJ;k ¼
Z

/J;kf ðtÞdt

for j ¼ 1; 2; . . .; J. The smooth coefficients sJk mainly capture the underlying smooth

behavior of the data at the coarsest scale, whereas detail coefficients d1k; . . .; djk; . . .;
dJk, representing deviations from the smooth behavior, provide progressively finer

scale deviations.18

The multiresolution decomposition of the original signal f tð Þ is given by the

following expression

f tð Þ ¼ SJ þ DJ þ DJ�1 þ � � � þ Dj þ � � � þ D1 ð4Þ

where SJ ¼
P

k sJ;k/J;k tð Þ and Dj ¼
P

k dJ;kwJ;k tð Þ with j ¼ 1; . . .; J. The sequence

of terms SJ ;DJ ; . . .;Dj; . . .;D1 in (4) represent a set of components that provide

representations of the signal at the different resolution levels, from 1 to J. The term

SJ represents the smooth long-term component of the signal, and the detail com-

ponents Dj provide the increments at each individual scale, or resolution, level.

Wavelet multiresolution analysis provides a systematic way of performing band-

pass filtering (Proietti 2011). With wavelet multiresolution decomposition analysis,

we are able to decompose any individual time series into its different timescale

components, each corresponding to a specified frequency band, and then to isolate

the stochastic cyclical component of interest. In particular, as the wavelet filter

belongs to high-pass filter with passband given by the frequency interval

½1=2jþ1; 1=2 j� for scales 1\ j\ J, inverting the frequency range to produce a

period of time, we have that wavelet coefficients associated with scale j ¼ 2j�1 are

associated with periods ½2 j; 2jþ1�. Thus the application of the discrete wavelet

transform (DWT) with a number of levels (scales) J ¼ 5 to annual data produces

five wavelet details vectors D1, D2, D3, D4 and D5 whose frequency domain

interpretation in term of periods is presented in Table 1.19

In addition, to decompose a time series into several components each associated

with a different resolution level, wavelets allow for an alternative representation of

the variability of stochastic processes on a scale-by-scale basis through the energy

18 Each of the sets of the coefficients sJ ; dJ ; dJ�1; . . .; d1 is called a crystal in wavelet terminology.
19 They capture oscillations with a period of 2–4, 4–8, 8–16, 16–32 and 32–64 years, respectively.
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decomposition analysis. Let E be the total energy of a signal f(t) for j ¼ 1; . . .; J, we

have

E ¼ EJ þ
XJ
j¼1

Ej

where

EJ ¼
Xn

2 j

k¼1

s2
J;k

Ej ¼
Xn

2 j

k¼1

d2
J;k

are the energy of the scaling and wavelet coefficients, respectively. The expression

shows that the total signal energy is the sum of the jth level approximation signal

and sum of all detail level signals first detail to jth detail. Indeed, since the wavelet

transform is an energy-preserving transformation, the sum of the energies of the

wavelet and the scaling coefficients is equal to the total energy of the data.20 In

particular, by performing the energy decomposition analysis, we can decompose the

total energy of a series into the energy associated with each scale component so as

to detect which frequency components contribute substantially more to the overall

energy of the process relative to the others.

4 Dataset: wholesale price series for France, the UK and the USA
from late eighteenth century

The presence of long waves has been investigated by early twentieth-century long

wave investigators (e.g., van Gelderen 1913; de Wolff 1924; Kondratieff 1926)

using price series for three main reasons. First, price data have been largely

examined in the literature on long waves because prices have been for a long time

Table 1 Frequency

interpretation in periods for a

J ¼ 5 level decomposition

Scale level, J Detail level, Dj Period

1 D1 2–4

2 D2 4–8

3 D3 8–16

4 D4 16–32

5 D5 32–64

6 S5 [64

20 The variance of the time series is preserved in the variance of the coefficients from the MODWT, i.e.,

varðXtÞ ¼
PJ

j¼1 varðdj; tÞ þ varðsJ ; tÞ (see Percival and Mojfeld 1997).
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the only available economic data and because they were consistently measured (by

contrast, output variables have been reconstructed by economic historians relatively

recently and only back to mid-nineteenth century). Second, since annual data on the

wholesale price index go back to late eighteenth century, they allow us to use the

longest possible time span as well as a number of observations higher than any

corresponding international dataset on GDP whose data are only available from

1870 onwards only. Third, price series have provided the strongest supporting

evidence for the long wave hypothesis.

In what follows, we examine the pattern in the wholesale price index for France, the

UK and the USA, the leading economies, respectively, in the eighteenth, nineteenth

and twentieth centuries. The raw series are represented by annual observations from

1791 to 2012 of the wholesale price indexes for France (from 1803), the USA and the

UK, normalized to 100 for 1914.21 All the series show a similar behavior, but very

different patterns over time: Between late eighteenth and early twentieth century, the

level of prices tends to display a very large amount of variation over time around a

trendless or slightly declining trend, with large upward movements during upswings

followed by similarly long downward movements during downswings. But after

World War II, price level reductions disappear and prices kept increasing also in

periods of declines of the level of economic activity as a consequence of a change in the

process of price determination (van Duijn 1979; van Ewijk 1982), the effect being the

emergence of a strong positive trend since 1930s, but especially in the post-World War

II period.

Over the past twenty years, the issue of testing for structural breaks has received

great attention in the statistics and econometrics literature.22 The occurrence of such

one-time structural change in the trend function or in volatility becomes more

prominent especially when dealing with secular or long-run movements in

macroeconomic time series during which changes in regime may occur as a result

of wars, economic crises, changes in institutional arrangements (e.g., international

monetary system), etc.

In the classical approach to structural break estimation and testing, such breaks

are assumed to take the form of abrupt jumps or irregular changes, rather than

smooth transitions, whose effects are displayed instantaneously. Examples of

methods testing for the presence of breaks of unknown timing in the data and also

estimating their dates are the Quandt likelihood ratio (QLR) test (Andrews et al.

1996), and the sequential procedure suggested by Bai and Perron (1998) for single

and multiple structural breaks, respectively.

21 Data from 1791 to 1990 are taken from Lothian and Taylor (1996). As stated in their Appendix (see

pp. 505–506), the origin of the wholesale prices series is as follows. For France: 1803–1948, European

Historical Statistics (Mitchell 1975, pp. 772–774, table 1) and 1949–1990, various issues of International

Financial Statistics (IFS). For the UK: 1791–1939, 1946–1948, Jastram (1977, pp. 32–33, table 2),

1939–1945, Board of Trade, wholesale price index for 1930–1950, as reported in British Historical

Statistics (p. 730), table entitled Prices 5, and 1948–1990, IFS, various issues. For the USA 1791–1800,

Warren and Pearson (1935, pp. 30–32, table 1), 1800–1976, Jastram (1977, pp. 145–146, table 7),

1976–1990, IFS, various issues. From 1991 to 2012 wholesale price series for the three countries are

updated by the authors using various issues of IFS.
22 The foundation for structural break estimation and testing has been given in Bai (1994) and then

extended to multiple breaks by Bai (1997a, b) and Bai and Perron (1998, 2003).
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The approach for detecting and testing the number and location of the structural

breakpoints is concerned with investigating whether the null hypothesis of ‘‘no

structural change’’ holds in the following linear regression model

yt ¼ x0tbj þ ut

m ¼ Tj�1 þ 1; . . .; Tj

j ¼ 1; . . .;mþ 1

ð5Þ

where yt is the dependent variable at time t, xt the vector of observations of the

independent variables with coefficient b and ut the disturbance at time t. The

alternative hypothesis is represented by the assumption that there are m breakpoints

so that the vector of regression coefficients varies over time up to mþ 1 times (there

are mþ 1 segments in which the regression coefficients are constant). The break

dates ðT1; . . .; TmÞ are simultaneously estimated together with the unknown

regression coefficients ðb1; . . .; bmÞ, with both breaks and coefficients explicitly

treated as unknown. Specifically, the least squares estimates of b and m, b̂ðT̂jÞ and T̂j
are obtained by minimizing the residual sum of squares (RSS) of the equation above

argminSTðTjÞ ¼
Xmþ1

j¼1

XTi
t¼Ti�1

ðyt � x0tbjÞ
2 ð6Þ

where STðTjÞ represents the residual sum of squares issued from the estimation of

the m regressions.

The dynamic programming algorithm proposed by Bai and Perron (2003)

provides an efficient way to determine the optimal partition ðT1; . . .; TmÞ by

achieving global minimization of the overall sum of squared residuals over all

partitions. Bai and Perron’s suggested OLS procedure consists in first testing for the

existence of structural changes (1 break, 2 breaks, etc.) and then, if structural change

exists, identifying the number and location of breaks by a sequential procedure

where model selection is based on the Bayesian Information Criteria (BIC).23 The

regressors are modeled by only a constant and a trend, and the sequential test is

implemented by setting the maximum number of breaks m equal to 5 and the

trimming percentage to 15 % in all cases. The results of the application of Bai-

Perron’s test for multiple breakpoints to the wholesale price index of France, the UK

and the USA are given in Table 2, where the estimated break dates corresponding to

breakpoints are reported along with their confidence intervals. The breakpoint

selection procedure, based on the values of the residual sum of squares and

Bayesian information criteria (minimum RSS and BIC), identifies three structural

breakpoints for each series and four different regimes.24

The estimated breakpoints detect sudden and, sometimes, dramatic historical

changes, such as World War I and World War II, the Great Depression, oil price

23 For technical details the interest reader is referred to Bai and Perron (1998, 2003).
24 The breakpoints are estimated with the R package strucchange (Zeileis et al. 2002). The number of

estimated breakpoints according to the values of the RSS and BIC criteria are five and four, respectively.

However, on the grounds of sequential tests and also because of the well-known fact that information

criteria are often downward biased, we select three breaks (Bai and Perron 2003).
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shocks and productivity slowdown that have affected economic processes over time.

Among all estimated break points, the structural change points occurring before

World War I in France and in the 1930s in the UK and the USA are of great interest

because they correspond to the trend reversal in the pattern of price series from

slightly negative to strongly positive. Indeed, the nonlinear features of all the series

are clearly displayed by the two different trend regimes clearly evident before and

after these structural breaks.

The results above confirm that complexity and nonlinearities are likely to be

intrinsic feature of datasets used in long waves studies as long-term data generally

include historical events, such as war episodes, policy changes, technique

innovations and crisis periods that are mostly responsible for structural breaks.

Moreover, some of the above-mentioned changes can also appear as gradual

evolution of long-term trends instead of one-time instantaneous breaks of a constant

deterministic or stochastic trend. Such a complex pattern makes the price series

suitable for testing the performance of the methodology proposed in this paper for

identifying long waves or super cycles, that is wavelet analysis.

5 Wavelet estimation of long waves in prices

Wavelet techniques are one of the most popular and powerful tools for processing

complex nonlinear signals.25 Compared with other similar basis functions, wavelets

possess several uniquely attractive features when dealing with nonlinear series. This

result is due to the localization of nonstationary structures. Thus, we apply the

maximal overlap discrete wavelet transform (MODWT) to annual observations

from 1791 to 2012 of the wholesale price indexes for France, the USA and the

UK.26 In order to perform a wavelet analysis of a time series, a number of decisions

must be made: Which family of wavelet filters to use? What type of wavelet

transform to apply? And how boundary conditions at the end of the series are to be

Table 2 Estimated break dates

and confidence intervals (in

parenthesis) for the wholesale

price series for France, the UK

and the USA

France UK USA

1914 1895 1862

(1913, 1915) (1894, 1896) (1861, 1863)

1945 1929 1929

(1944, 1946) (1928, 1930) (1928, 1930)

1981 1976 1977

(1980, 1982) (1975, 1977) (1976, 1978)

25 Although wavelets were first introduced in the mid-80s and the real development started in the early

90s, they are considered a relatively new tool in signal processing. Nonetheless, in the last decades, they

are becoming increasingly popular, especially in economics and finance applications.
26 We apply the MOWDT because the DWT has two main drawbacks: (1) the dyadic length requirement

(i.e., a sample size divisible by 2J), (2) the wavelet and scaling coefficients are not shift invariant, and,

finally, the MODWT produces the same number of wavelet and scaling coefficients at each

decomposition level as it does not use downsampling by two.
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handled? There are several families of wavelet filters available, such as Haar

(discrete), symmlets and coiflets (symmetric), daublets (asymmetric), differing by

the characteristics of the transfer function of the filter and by filter lengths (see

Fig. 1). Daubechies (1992) has developed a family of compactly supported wavelet

filters of various lengths, the least asymmetric family of wavelet filters (LA), which

is particularly useful in wavelet analysis of time series because it allows the most

accurate alignment in time between wavelet coefficients at various scales and the

original time series. We use the Daubechies least asymmetric (LA) wavelet filter of

length L ¼ 8 based on eight nonzero coefficients (Daubechies 1992), with reflecting

boundary conditions.27 The LA(8) is the most widely used filter in economic

applications because of its ability to balance the most common desirable

characteristic for wavelet basis functions (smoothness, length and (a)symmetry)

and is applicable to a wide variety of data types (see Gençay et al. 2010).

5.1 Energy decomposition analysis

The application of the MODWT allows the analysis of the signal energy

distribution with respect to different frequency bands and to measure the relative

importance of the long wave component as to all other cyclical components,

especially business cycle components. Since we are interested in extracting lower

frequency components from price series, we need to define which range of

cyclical periodicities identify long-term cycles. In the literature, the existence of

long-term fluctuations has been primarily recognized using series of commodity

prices. Long swings with a characteristic period of 40–60 years and an average

length of about 50 years were documented by Kondratieff (1926, 1935, 1992) for

several countries (France, Germany, the UK and the USA) using different

economic variables (wholesale price index, industrial production, interest rates,

foreign trade, etc.).28 The frequency domain interpretation of signal components

provided in Table 1 indicates that the D5 detail component can provide an

estimate of long waves similar to those discovered by Kondratieff in his original

studies since its frequency range is between 32 and 64 years and its average cycle

length is around 48 years.29 Moreover, since no assumption has been made on the

underlying nature of the signal and a criterion similar to a locally adaptive

bandwidth has been adopted, the wavelet detail component D5 represents a

nonparametric estimation of the Kondratieff-type long waves.

That longer cycle frequencies carry most of the energy in wholesale price series,

with the small-scale features accounting for a small fraction of the total variability,

is a standard result that resemble what Granger (1961) termed as ‘‘the typical

27 With reflecting boundary conditions, the original signal is reflected about its end point to produce a

series of length 2N which has the same mean and variance as the original signal.
28 Long-period cycles with upswings of roughly 10–35 years, implying complete cycles of, say, 20–70

years, have been recently examined in several papers using real commodity and metal prices (Jerrett and

Cuddington 2008; Erten and Ocampo 2013; Jacks 2013).
29 See Bernard et al. (2014) for a discussion of the main theories of long waves proposed in the literature

and for some empirical evaluation of the empirical evidence on cycles of different time scales.
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spectral shape of an economic variable.’’30 Thus, before applying the MODWT

energy decomposition analysis, we remove the S5 long-term component from the

price series so as to provide a clear-cut comparison of the relative importance of the

different cyclical components present in the price series. The five crystals energy-

related bar plots of the wholesale price series for France, the UK and the USA, net

of the S5 component, are shown in Fig. 2.

Two main findings emerge from the energy decomposition analysis: First, the

residual energy at each scale level tends to decrease with the scale level, and second,

most of this energy is concentrated at the detail level corresponding to the long

wave component, D5.31 In sum, even if the total residual energy is modest, given the

dominance of the S5 components, we can conclude that the component

corresponding to long waves provides the most significant contribution in terms

of overall variance, especially in comparison with classical business cycles cyclical

components.

5.2 Long waves detection using wavelet multiresolution analysis

The D5 detail components of the wholesale price index for France, the UK and the

USA, WPID5
, are displayed in Fig. 3 along with their corresponding raw series,

WPI.32 Five long waves in prices are clearly detected between 1790 and 2012 for

the UK and the USA, whereas only four and a half long waves are clearly

detectable for France because the sample starting in 1803 captures the downswing

phase of the first long wave. The periodization is reported in Table 3 with upswings

(Phase A) and downswings (Phase B) phases.

The main feature emerging from the visual inspection of long waves prices for all

countries is the absence of regularities in terms of length and amplitude of such long

wave patterns. Indeed, these long wave patterns in wholesale price indexes are

represented as an alternating sequence of historical phases of variable length.

Moreover, these long cycle movements in prices are evident not only when the raw

series has a slightly negative trend, as it is in the pre-World War II period, but also

after World War II when the strong trending behavior of the price level makes such

long waves in price indexes hard to be detected. This is an interesting result because

in the literature a question highly debated is whether the wave pattern of price index

dynamics has changed in the post-World War II period when the wave pattern has

ceased to be clearly traced in the price indices as a consequence of the strong

positive trend of prices after 1930s. In particular, our results not only confirm the

findings of previous researchers (e.g., van Ewijk 1982; Goldstein 1988; Reijnders

1990; Gerster 1992; Berry et al. 1993; Berry 2006), but, at the same time, contrasts

other findings, such as Diebolt and Doliger (2007) which had reached the conclusion

30 Indeed, most economic variables display a spectrum that exhibit a smooth declining shape with

considerable power at very low frequencies.
31 This last result strictly holds for the UK and the USA, whereas in the case of France the level of energy

at the D4 level is slightly higher than that at the D5 level.
32 Gray-shaded areas based on price chronologies reported in Table 4 are included. The post-World War

II turning points are based upon Rostow’s (1978) periodization and refer to the movement in relative

prices of commodities compared to manufactured goods.
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that there was no Kondratieff type of fluctuations in long price series. Specifically,

our results indicate that such a reduction after World War II has occurred for the

USA only, where a moderation in amplitude of the waves is evident by looking at

the fourth and fifth price waves. Otherwise, for the UK there is no evidence of any

reduction in the amplitude of long-term fluctuations in prices in the post-World War

II period, whereas in the case of France the evidence shows that a considerable

increase in the amplitude of price fluctuations is limited to those long waves taking

place in the interwar and post-World War II periods.

Figure 3 also shows that long movements in prices are closely related

internationally, especially between the UK and the USA. Long waves in UK and

US wholesale prices are highly synchronized throughout the sample period, a

finding that is consistent with the historical evidence on prices reported in the

empirical literature for the major economies (see Goldstein 1988).33 As regards

France, although wholesale prices are out-of-phase with the UK and the USA

throughout the nineteenth century, they have been moving in phase from the early

twentieth century. Such in-phase relationship holds throughout the twentieth century

until the US wholesale price index begins moving out-of-phase as to the two

European countries.34

Finally, another interesting result emerging from this study is about the absence

of synchronization of long waves in prices and quantities (mainly GDP) after World

War II. Indeed, for the proponents of Kondratieff waves, there would have been a

long expansion phase (phase A) from 1945 to 1973 followed by, according to some

authors, a long phase of major economic difficulties (phase B), or, according to

others, a phase B until the years 1990–2000 and a new phase A since then. Whatever

the variant adopted, it is clear that, starting from World War II, there is no
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Fig. 2 Energy decomposition analysis of wholesale price series (net of the S5 component) for France
(left), the UK (center) and the USA (right)

33 According to Lewis (1978) Kondratieff price swings, which is declining prices from 1873 to 1895

followed by rising prices from 1895 to 1913, are associated with a change in the terms of trade between

agriculture and industry, where agricultural prices fall more up to 1895 and then rise relative to industrial

prices.
34 Indeed, the diverging pattern emerging in the first decade of the new millennium indicates that a phase

shift between the price waves of the USA and those of the two European countries could have occurred.
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Fig. 3 France (top), UK (middle) and USA (bottom) wholesale price index (red lines) along with its D5

corresponding wavelet detail vector (blue lines). Gray-shaded areas (turns) described in footnote 32
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correspondence between the paths followed by long waves of production and

prices.35

Since the results provided in this section arise from applying a new methodology,

it is important to examine whether the turning points detected by the D5 component

resemble the periodization of long waves in prices previously reported in the

literature.36 Table 4 shows countries’ long wave chronologies for wholesale prices

as reported in Kondratieff (1935), Burns and Mitchell (1946), Imbert (1959) and

Bosserelle (1991), along with the peaks and troughs dates detected by the D5

component.37

Despite minor differences, the dates of long wave phases detected by the D5

detail component of the wholesale price index match closely the periodization

reported in Table 4. Important deviations are evident only for the first wave of

France: The peak at the turn of the nineteenth century and the trough date in the

mid-nineteenth century are slightly anticipated by several years. A similar

difference also emerges with respect to the trough date in the mid-nineteenth

century, for the UK, although there is evidence of a prolonged period of low prices

lasting until 1850, the consensus date for the trough of the downswing phase.

All in all, notwithstanding the different periodization at the beginning of the

sample for France, and partly the UK, the overall dating scheme provided by

wavelet decomposition analysis shows a close correspondence with the chronology

provided in the literature on the long waves in prices.

Table 3 Chronology of long

waves in prices for France, the

UK and the USA with WPID5

Phases A (upswing), Phase B

(downswing)

Phases France UK USA

A1 – –1811 –1813

B1 –1833 1811–1837 1813–1846

A2 1833–1871 1837–1870 1846–1869

B2 1871–1901 1870–1897 1869–1895

A3 1901–1919 1897–1919 1895–1918

B3 1919–1937 1919–1937 1918–1937

A4 1937–1955 1937–1953 1937–1953

B4 1955–1973 1953–1969 1953–1969

A5 1973–1990 1969–1988 1969–1985

B5 1990– 1988– 1985–

35 We thank an anonymous referee for suggesting this point.
36 After Kondratieff (1926) a huge number of long wave chronologies have been proposed by various

authors, e.g., Schumpeter (1939), Clark (1944), Burns and Mitchell (1946), Dupriez (1951), Imbert

(1959), Mandel (1975), Rostow (1978), van Duijn (1983), among the others, but only a few of them are

based on nominal prices.
37 In Kondratieff the peak of the third long cycle for France is located in 1920 because Kondratieff’s

periodization is based upon the movement of gold prices, not nominal prices.
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5.3 A comparison with BK and CF band-pass filters

Since wavelet and spectral analysis are filtering approaches that permit to

decompose a time series into different components corresponding to pre-specified

ranges of periodicities, we can perform a direct comparison of the two methods. In

particular, we compare the long waves extracted using the MODWT with the LA(8)

Daubechies’ wavelet filter, represented by the D5 component, with the correspond-

ing components extracted using the Baxter and King (1999) and Christiano and

Fitzgerald (2003) band-pass filters,38 by evaluating how the long waves identified by

the various band-pass filtered components accord with the dating schemes reported

in Table 4. The D5 component (red line) and the corresponding CF band-pass

filtered component for the wholesale price index for France (top), the UK (middle)

and the USA (bottom) are plotted in Fig. 4, with gray-shaded areas as in Fig. 3.39

Table 4 Turns of the D5 component and comparison with existing chronologies for long waves of

wholesale prices in the pre-World War II period

Turning

point

Country D5 Kondratieff

(1935)

Burns and

Mitchell

(1946)

Imbert

(1959)

Bosserelle

(1991)

P France – – 1820 1817 –

UK 1812 1814 1813 1810 1810

USA 1813 1814 1814 1814 1814

T France 1833 – 1851 1851 1851

UK 1835 1849 1849 1849 1849

USA 1847 1849 1843 1849 1849

P France 1871 1873 1872–1873 1872 1872

UK 1871 1873 1873 1873 1873

USA 1870 1866 1864 1865 1865

T France 1901 1896 1896 1896 1896

UK 1898 1896 1896 1896 1896

USA 1895 1896 1896–1897 1896 1896

P France 1919 1920 1926 1926 1926

UK 1919 1920 1920 1920 1920

USA 1919 1920 1920 1920 1920

T France 1937 – 1935 1935 1935

UK 1937 – 1933 1933 1933

USA 1937 – 1932 1932 1932

38 We select the band-pass filtered frequency components in the BK and CF filters so that only

fluctuations within the band of 32–64 years are retained in each filtered component.
39 The BK filter is estimated using a value of leads and lags equal to 12 and padding the original data at

both sides to compensate for the loss of data. The filtered components detected using the BK filter (not

reported in Fig. 4) are strikingly different from the two other filters, both as to the amplitude of the

movements and the timing of the turning points.
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A remarkable similarity emerges between the patterns of the long waves

detected through the LA(8) wavelet filter and the CF band-pass filter.40 With

respect to the D5 and CF filtered components, we notice how the amplitude of the

filtered cycles and the turning points corresponds quite well since early twentieth

century for all the three countries, and also from the late eighteenth to the end of

nineteenth century for the USA, and partly the UK. Apart from some rare

exceptions, the dating of long wave phases detected by the LA(8) and CF filters

closely matches the timing identified by earlier analysts using less formal

approaches. Nonetheless, several differences between LA(8) and CF filters are in

evidence around mid-nineteenth century for France and the UK, and in the last

part of the sample in correspondence of the fifth wave, especially for France and

the USA. In the first case, there are differences related to turning points detection,

in the latter to the amplitude of the filtered components. Indeed, after detecting the

lower turning point of the first long wave for France in the years 1833–1834, the

LA(8) wavelet filter detects the upper turning point of the second long wave in

1872, whereas the CF band-pass filter identifies two small extra cycles with peaks

in 1852 and 1880 and a trough in 1870. But this is at odd with the chronology

based on price index reported in the literature on long waves and reported in

Table 3 where the upper turning point of the second wave is dated between 1872

and 1873 (see Kondratieff 1926; Burns and Mitchell 1946; Imbert 1959). As to

the UK the main difference refers to the lower turning point of the first long wave

that according to the CF filter appears in 1835, while the wavelet-filtered

component provides evidence of a prolonged period of low prices lasting until

1850, a date which is in between the consensus dates for the trough of the

downswing phase as shown in Table 3. Otherwise, when structural breaks are

clearly evident, as it is for the USA also in the pre-World War I period, the

filtered components are remarkably similar.

In order to interpret these differences between the filtered components, we must

remember that the optimizing criteria adopted by band-pass filter approximations

implicitly define the specific class of model for which the approximating filter is

optimal. By contrast, the application of the wavelet transform does not require a

commitment to any particular class of model. The sub-cycles identified by the CF

band-pass filter in the second half of the nineteenth century in the price series for

France are consistent with the interpretation that these cycles can be artifacts

40 These results are fully in line with a-priori expectations about the ability of band-pass filters to extract

the cyclical component whose performance are likely to depend on the characteristics of the spectral

density of the (unknown) theoretical cyclical component (e.g., Metz 2011). The filters by Baxter and King

(1999) and Christiano and Fitzgerald (2003) assume a special type of data generating process, that is

independent and identically distributed variables and random walks, respectively. Since a random walk

puts more weight on lower frequencies, whereas independent and identically distributed variables weight

all frequencies equally, Everts (2006, p.17) conclude that ‘‘the filter by Christiano and Fitzgerald

approximates the ideal band-pass filter for data sets with low frequencies (long durations) better than the

filter by Baxter and King’’ and that ‘‘produces more accurate results for long business cycles than the one

by Baxter and King.’’ On the other hand the filter by Baxter and King approximates the ideal band-pass

filter for shorter business cycles with higher accuracy than the filter by Christiano and Fitzgerald which

provide a worse performance for cycles with short durations.
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Fig. 4 MODWT LA(8) (black lines) and Christiano–Fitzgerald (light gray lines) filtered long wave
components of the wholesale price index for France (top), UK (middle) and USA (bottom). Gray-shaded
areas (turns) as in Fig. 3
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stemming from implicit differencing, as differencing eliminates all low frequencies

when applied to a stationary series (see Metz 2011).41

As to the filtered values at the right edge of the price series, the differences

emerging between the filtered components do not allow a common interpretation

because such differences are not uniform across countries. Since the attenuation of

the fluctuations in the components filtered by the MODWT as to the CF is evident

for France and the USA, but not for the UK, discriminating between such alternative

periodization is difficult because of the absence in the literature of historical

chronologies for long waves in price series.42

6 Conclusion

In this paper, we propose the application of wavelet analysis to wholesale price

series of France, the UK and the USA in order to detect long waves of the type

examined by Kondratieff in the 1920s and subsequently by many other authors. A

fundamental benefit of wavelet analysis in contrast to Fourier series or splines is

that, in general, wavelet analysis is more robust in a messy world than are the other

techniques. By a messy world, we mean one in which random occurring sizable

shocks distort the dynamical system, the parameterization of approximating models

need to be changed over time, and distributions relevant in one time period are not

statistically similar in another time period. The prevalence of unit roots is more of a

theoretical problem than an empirical one, although all fractional differencing is

probably a common phenomenon in economic and financial data.

The comparison with band-pass filters, based on the chronologies for the price

series available in the literature, provides interesting information on the potential

advantages displayed by wavelet multiresolution decomposition analysis in

comparison with classical filtering methods for the analysis of long waves when

trend breaks are present in the original data. In particular, since classical filters

assume a specific kind of data generating process, whereas no specific assumption

on the characteristics of process is required for the application of the wavelet

transform, their results are similar to those stemming from wavelet filtering method

only when the details of the time series representation are compatible with those

assumed by optimal linear approximation. In this sense, the wavelet method seems

to be a very promising (model-free) approach to frequency extraction problems, as it

allows simultaneous estimation of different unobserved components without making

any explicit assumption about the characteristic of the data generating process.

41 As evidenced by Metz (2009, p. 65), ‘‘the mechanical use of filters without considering trend breaks

may result in spurious impression of the trend and cyclical behavior of time series.’’
42 Filtering methods applied to a finite length time series inevitably suffer from border distortions; this is

due to the fact that the values of the transform at the beginning and the end of the time series are always

incorrectly computed, in the sense that they involve missing values of the series which are then artificially

prescribed. Therefore, at the edges of a series the filtered values are likely to suffer from these boundary

effects and have to be interpreted carefully.
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In sum, we believe that wavelet analysis, by allowing researchers to be less

committed to a particular class of model, can overcome most of the methodological

difficulties faced by previous methods. Moreover, because of its ability to localize

the nonstationary structure which depends on time, wavelets are well suited for the

analysis of time series resulting from complex, nonlinear processes, as it is the case

with the secular movements in price series which exhibit structural changes in the

trend function so as to be characterized as a segmented trend process.
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Darné O, Diebolt C (2004) Unit roots and infrequent large shocks: new international evidence on output.

J Monet Econ 51:1449–1465

Daubechies I (1992) Ten lectures on wavelets. In: CBSM-NSF regional conference series in applied

mathematics, vol 61. SIAM, Philadelphia

de Wolff S (1924) Prosperitats-und Depressionsperioden. In: Jensen O (ed) Der Lebendige Marxismus.

Thuringer Verlagsanstalt, Jena, pp 13–43

Diebolt C (2005) Long cycles revisited—an essay in econometric history. Economies et Sociétés, série
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quantitative, AF 40:877–900

Kuczynski T (1978) Spectral analysis and cluster analysis as mathematical methods for the periodization of

historical processes. Kondratieff cycles—appearance or reality? In: Proceedings of the seventh

150 M. Gallegati et al.

123



international economic history congress, vol 2. International Economic History Congress, Edinburgh,

pp 79–86

Lewis WA (1978) Growth and fluctuations 1870–1913. George Allen and Unwin, London

Lothian JR, Taylor MP (1996) Real exchange rate behavior: the recent float from the perspective of the

past two centuries. J Polit Econ 104:488–509

Lucas RE (1977) Understanding business cycles. Carnegie-Rochester Conf Ser Public Policy 5:7–29

Mandel E (1975) Long waves in the history of capitalism. In: Review NL (ed) Late capitalism. NLB,

London, pp 108–146

Metz R (1992) A Re-examination of long waves in aggregate production series. In: Kleinknecht A, Mandel

E, Wallerstein I (eds) New findings in long waves research. St. Martin’s Press, New York, pp 80–119

Metz R (2006) Empirical evidence and causation of Kondratieff cycles. In: Devezas TC (ed) Kondratieff

waves, warfare and world security. IOS Press, Amsterdam, pp 91–99

Metz R (2009) Comment on Stock markets and business cycle comovement in Germany before world war

I: evidence from spectral analysis. J Macroecon 31:58–67

Metz R (2011) Do Kondratieff waves exist? How time series techniques can help to solve the problem.

Cliometrica 5:205–238

Metz R, Stier W (1992) Modelling the long wave-phenomena. Hist Soc Res 17:43–62

Mosekilde E, Rasmussen S (1989) Empirical indication of economic long waves in aggregate production.

Eur J Oper Res 42:279–293

Percival DB, Mojfeld H (1997) Analysis of subtidal coastal sea level fluctuations using wavelets. J Am

Stat Assoc 92:868–880

Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press,

Cambridge

Proietti T (2011) Trend estimation. In: Lovric M (ed) International encyclopedia of statistical science, 1st

edn. Springer, Berlin

Ramsey JB (2010) Wavelets. In: Durlauf SN, Blume LE (eds) The new Palgrave dictionary of economics.

Palgrave Macmillan, Basingstoke, pp 391–398

Ramsey JB (2014) Functional representation, approximation, bases and wavelets. In: Marco Gallegati,

Semmler W (eds) Wavelet applications in economics and finance. Springer, Heidelberg, pp 1–20

Ramsey JB, Zhang Z (1995) The analysis of foreign exchange data using waveform dictionaries. J Empir

Finance 4:341–372

Ramsey JB, Zhang Z (1996) The application of waveform dictionaries to stock market index data. In:

Kravtsov YA, Kadtke J (eds) Predictability of complex dynamical systems. Springer, Berlin,

pp 189–208

Reijnders JPG (1990) Long waves in economic development. Edward Elgar, Aldershot

Rostow WW (1978) The world economy: history and prospect. University of Texas Press, Austin

Schumpeter JA (1939) Business cycles. McGraw-Hill, New York

Solomou S (1990) Phases of economic growth 1850–1973. Kondratieff waves and Kuznets swings.

Cambridge University Press, Cambridge

Stier W (1989) Basic concepts and new methods of time series analysis. Hist Soc Res 14:3–24

Strang G (1993) Wavelet transforms versus Fourier transforms. Bull Am Math Soc 28:288–305

Taylor JB (1988) Long waves in six nations: results and speculations from a new methodology. Review

9:373–392

van Duijn JJ (1979) The long wave in economic life. Economist 125:544–576

van Duijn JJ (1983) The long wave in economic life. Allen and Unwin, Boston

van Ewijk C (1981) The long wave–a real phenomenon? Economist 129:324–372

van Ewijk C (1982) A spectral analysis of the Kondratieff cycle. Kyklos 35:468–499

van Gelderen J (1913) Springvloed: Beschouwingen over industrieele ontwikkeling en prijsbeweging

(Spring Tides of Industrial Development and Price Movements), De Nieuwe Tijd 18:253–277,

369–384, 445–464

Zarnowitz V, Ozyildirim A (2002) Time Series decomposition and measurement of business cycles.

Trends and growth cycles. NBER Working Paper no. 8736, Cambridge

Zeileis A, Leisch F, Hornik H, Kleiber C (2002) strucchange: An R package for testing for structural

change in linear regression models. J Stat Softw 7:1–38

Long waves in prices: new evidence from wavelet analysis 151

123


	Long waves in prices: new evidence from wavelet analysis
	Abstract
	Introduction
	The filter design approach and band-pass filtering
	Wavelet multiresolution analysis
	Dataset: wholesale price series for France, the UK and the USA from late eighteenth century
	Wavelet estimation of long waves in prices
	Energy decomposition analysis
	Long waves detection using wavelet multiresolution analysis
	A comparison with BK and CF band-pass filters

	Conclusion
	Acknowledgments
	References




