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Abstract
We have achieved an efficient synthesis of C(3)-arylphthalides by coupling C(3)-bromophthalides and arylboronic acids under 
palladium catalysis. The C(sp3)-C(sp2) coupling worked well in the presence of water to provide products in a high yield.
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Introduction

The phthalide (the C(3)-substituted 3H-isobenzofuran-1-one 
and reduced product of phthalic anhydride; highlighted 
in 1, Fig. 1) structure is a medicinally privileged scaffold 
(Sadikogullari et al. 2022; Sharma et al. 2010). Molecules 
built on this scaffold display a wide range of pharmacologi-
cal activities. The phthalide core is present in many natural 
products (Fig. 1) (Lin et al. 2005; Leon et al. 2017). Some 
of them exhibit extremely useful biological profiles (Beck 
and Chou 2007; Xioang et al. 2007; Mola et al. 2012a, b). 
For example, Isopestacin 1 isolated from the endophytic 
fungus Pestalotiopsis microspora is an antifungal agent and 
acts as an effective antioxidant towards both superoxide 

and hydroxide free radicals (Strobel et al. 2002; Meshram 
et al. 2018). Cryophonectric acid 2 isolated from the fun-
gus Cryophonectria parasitica is its most abundant natural 
product, constituting more than 20% of the crude extract 
(Arnone et al. 2002). It exhibits profound antibacterial activ-
ity (Kukreti et al. 2015; Kaur et al. 2020). Chryocolide 3 
isolated from the Japanese vegetable and garland flower-
bearing plant, Chrysanthemum coronarium exhibits plant 
growth-inhibiting and insect anti-feeding activity (Tada 
et al. 1984). Typhaphthalide (a benzylphthalide) 4 isolated 
the rhizomes of Typha capensis is a part of the traditional 
medicines for venereal diseases, dysmenorrhea, diarrhoea, 
etc. (Shode et al. 2002). Corollosporine 5 isolated from the 
marine fungus corollospora maritima, shows antibacterial 
activity against Staphylococcus aureus and other microor-
ganisms (Liberra et al. 1998; Ohzeki et al. 2001). In addition, 
several non-natural phthalides are emerging as medicinal 
drugs (Chen and Mori 2020; Luo et al. 2020). They found 
use in the treatment of circulatory disorders and heart dis-
eases (Lei et al. 2019). Another important use of phthalides 
is their application as building blocks in organic synthesis 
(Awasthi et al. 2020; Karmakar et al. 2024; Mal and Pahari 
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2007Rathwell et al. 2007). They have been used in the syn-
thesis of several functionalized naphthalenes, anthracenes, 
and naphthacenes, including some natural products having 
these structural motifs (Mousavi et al. 2023; Rathwell and 
Brimble 2007; Hernandez et al. 2007; Sankara et al. 2023; 
Zhang et al. 2023).

During the last few decades, several methods (e.g. A-G, 
Scheme 1) have emerged for the synthesis of C(3)-aryl-
phthalides (Shi and Li 2012). The majority of them (A-D) 
depend on metal catalysis to make the crucial C–C and C–O 
bonds during the benzofuran ring formation (Miura et al. 
2018; Wang et al. 2021; Qiang et al. 2021; Ibraheem et al. 
2021; Ye et al. 2010). Method E is a base-mediated conden-
sation followed by lactone formation (Mola et al. 2012a; 

b). Method F is an example of photochemical Norrish type 
I cleavage, loss of carbon monoxide, and finally reductive 
alkylation (Mor et al. 2007; Roscini et al. 2008). Method G 
is an acid-mediated substitution of the labile C(3) hydroxyl 
group in phthalide with nucleophiles that include electron-
rich aromatic compounds (Canonne et al. 1988; Ortega 
et al. 2022). However, most of them suffer from one or more 
drawbacks, like the need for expensive metal catalysts, stoi-
chiometric or excessive amounts of acids or bases, harsh 
conditions, or low functional group tolerance. Developing 
a simple and efficient method for 3-arylphthalide remains a 
highly desirable goal. Enormous importance of phthalides in 
medicinal chemistry and the increasing awareness of envi-
ronmentally benign chemical production created the need for 

Fig. 1   Biologically active compounds containing phthalide nucleus

Scheme 1   Different methods 
for the synthesis of C(3)-substi-
tuted phthalides
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the development of efficient, versatile, and scalable meth-
ods. In this context and in continuation of our efforts on the 
synthesis of phthalide mimics like isoindolinones (Mousavi 
et al. 2023) we have taken up the development of a new, 
facile, and scalable synthesis of C(3)-arylphthalides. We 
thought that readily available benzylic bromide 6 and arylb-
oronic acids 7 would undergo palladium-catalyzed C(sp3)-
C(sp2) Suzuki-type coupling to furnish C(3)-arylphthalides 
(method H, Scheme 1). We disclose details of the success-
ful realization of this hypothesis towards several hitherto 
unknown phthalides. Most relevant to the present work are 
the findings of Zhang and Feng, who employed NiCl2.glyme 
catalysed (10 mol%) coupling of 6 and 7 in presence of the 
chiral ligands (12 mol%) under stringent condition to form 
enantiomerically enriched C(3) aryl substituted phthalides 
8 (Xu et al. 2021). Although chemical yield of 8 were good, 
enantiomeric excess was moderate.

Results and discussion

To test the concept and to optimization of the reaction con-
ditions, we started our investigation with 3-bromoisoben-
zofuran-1(3H)-one 6 (Qiang et al. 2017) and phenylboronic 
acid 7 as the reactants to form the C(3)-phenylphthalide 8 
(Scheme 2, Table 1). From the series of experiments con-
ducted with equi-milli molar amounts of 6 and 7, the one 
with PdCl2(PPh3)2 as the catalyst (1 mol%), Na2CO3 (1 
equiv) as the base, a mixture (9:1) of water and THF as the 
solvent, and 70 °C as the bath temperature provided the best 
yield (94%) of the product 8 (entry 1, Table 1). Alternate 

reaction conditions invariably resulted in lower yields or 
there was no product even after 24 h. For example, the use 
of relatively inexpensive Pd(OAc)2 as the catalyst (1 mol%; 
19%; entry 2) (Liu et al. 2005; Saikra et al. 2015) or Pd/C 
(no reaction; entry 3) (Schmidt and Riemer 2014; Tagata and 
Nishida 2003) under the standard Suzuki coupling condi-
tions furnished in the product in low or no yield. Switching 
the base from Na2CO3 to the relatively stronger and better 
water-soluble K2CO3 (1 equiv; 34%; entry 4) or relatively 
milder and better water-soluble KHCO3 (1 equiv; 21%; entry 
5) did not help. The reaction was significantly impacted by 
the choice of the solvent. We tried conducting the reaction 
in environmentally benign H2O (59%, entry 6), an equal 
proportion of H2O and THF (89%; entry 7), THF alone 
(68%, entry 8), 1,4-dioxane (53%, entry 9), or non-polar 
toluene (18%, entry 10), but the reactions did not give opti-
mal yields. We concluded that the reaction requires water to 
proceed, however, water alone does not work to provide best 
yield of the product. The reaction was conducted as per entry 
1 but at rt did not work (entry 11). Surprisingly, the yield of 
product 8 was lower when we employed a larger amount of 
the catalyst (10 mol%; 73% entry 12). 

The workup of the reaction was simple. After completion 
of the reaction, the mixture of THF and water was recovered 
under reduced pressure. Filtration of the resulting viscous 
crude product as a solution of EtOAc (5 vol) through a pad 
of silica-gel followed by evaporation of the solvent and tritu-
ration by using n-pentane furnished the pure solid product 
with 94% yield. Notably, isolation of the product did not 
require column chromatography. We conducted this reac-
tion on a deca-molar scale, and it worked without any event. 

Scheme 2   Synthesis of C(3)-arylphthalides
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The structure of the phthalide 8a was assigned based on 
the spectroscopic (IR, 1H NMR, 13C NMR, DEPT-135) and 
analytical (ESIMS HRMS) data.

After successfully unearthing optimal reaction conditions, 
we applied it to the reactions of 6 with six more arylboronic 
acids 7b-7 g to expand the scope towards the synthesis of six 
more C(3)-arylphthalides. As anticipated, the reaction of 6 
with arylboronic acids 7b-7 g worked well under the opti-
mized reaction conditions to provide the phthalides 8b-8 g as 
solids in excellent yields. Functional groups, such as methyl 
8b, ethyl 8c, methoxy 8d, ethoxy 8e, naphthyl 8f, and fluro 
8 g were tolerated in these conditions. The spectra IR and 
1H, 13C, DEPT NMR, and HRMS of 8b-8 g supported the 
assigned structures and they matched with those of the par-
ent 8a. In gist, we have demonstrated the generality of the 
palladium-catalyzed C(sp3)-C(sp2) Suzuki-type coupling to 
realize the C(3)-arylphthalides 8b-8 g in good to excellent 
yields. Notably, in all the cases, isolation of 8b-8 g did not 
require column chromatography for isolation.

A possible mechanism for the above Pd-catalyzed cou-
pling reaction is given in Scheme 3. It is analogous to that 
of the earlier proposed mechanism for the Suzuki reaction. 
(Dalterio et al. 2021). The first step is the oxidative insertion 
of Pd(0) into C–Br of 6 to form 9. Since the reaction did 
not take place at rt, the bromide 6 remained as such at this 
temperature, and the reaction took place at 70 °C, we think 
that the oxidative insertion of Pdo into the C–Br bond is the 

rate-determining step. Transmetallation with concomitant 
elimination of B(OH)3 and HBr with the involvement of a 
molecule of water leads to the intermediate 10. Since the 
reaction worked best in H2O:THF (9:1) we think that this 
combination is suitable for the solubility of the reactants, 

Table 1   Screening of reaction conditions for the synthesis of C(3)-arylphthalides

Reaction condition: 3-bromoisobenzofuran-1(3H)-one (0.92  mmol, 1.0 equiv), Phenylboronic acid (0.92  mmol, 1.0 equiv), Pd2Cl2(PPh3)2 
(0.009 mmol, 1 mol%), Na2CO3 (0.92 mmol, 1.0 equiv), H2O: THF(9:1, 20 mL), 70 °C, 2 h, 94%

 

Entry Variation from the standard conditions Yield 
of 8a 
(%)

1 – 94
2 Pd(OAc)2 instead of PdCl2(PPh3)2 19
3 Pd/C instead of PdCl2(PPh3)2 nr
4 K2CO3 instead of Na2CO3 34
5 KHCO3 instead of Na2CO3 21
6 H2O instead of H2O:THF (9:1) 59
7 H2O:THF (1:1) instead of H2O:THF (9:1) 89
8 THF instead of H2O:THF (9:1) 68
9 1,4-dioxane instead of H2O:THF (9:1) 53
10 Toluene instead of H2O:THF (9:1) 18
11 rt instead of 70 °C nr
12 10 mol% instead of 1 mol% 73

Scheme  3   Proposed mechanism for the Pd-catalyzed C(sp3)-C(sp2) 
coupling
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catalyst, and base to afford good yield of the desired product 
6. The in situ generated acid (HBr) is trapped by Na2CO3 
to form sodium bromide which precipitated from the reac-
tion medium. Transformation of the intermediate 10 through 
C(sp3)-C(sp2) coupling led to 8 and regeneration of the [Pd0] 
catalyst.

Conclusion

In conclusion, we have developed an efficient palladium-
catalyzed C(sp3)-C(sp2) coupling for C(3)-arylphthalides 
from readily available C(3)-bromophthalides and arylbo-
ronic acids. The method offers several advantages such 
as easy handling, workup, environmentally benign con-
ditions and excellent yields. The method allows the syn-
thesis of a combinatorial library of medicinally important 
C(3)-arylphthalides.

Experimental

Materials and equipment

The progress of all reactions were monitored by TLC using 
a hexanes and ethyl acetate mixture as eluent. Column chro-
matography was performed on silica gel (100–200 mesh) 
using increasing percentages of ethyl acetate in hexanes. 1H 
NMR (400 MHz), 13C NMR (100 MHz), and DEPT-135 
spectra were recorded for CDCl3) solutions on a Bruker 
Avance 400 spectrometer with TMS as the internal stand-
ard. Chemical shifts (in ppm) and coupling constants J are 
given in Hz. IR spectra were recorded as solid solutions in 
KBr on a Nicolet-6700 FT-IR spectrometer. High-resolution 
mass spectra (HRMS) were recorded on an Agilent 6350 
B Q-TOF mass spectrometer using electrospray ionization 
mode. The melting points were recorded with an open-ended 
capillary tube with a VEEGO VMP-DS instrument and were 
uncorrected. Standard methods were used to dry organic sol-
vents (Armarego and Chai 2003). Commercially obtained 
reagents were used after purification. Arylboronic acids, 
phthalic anhydride, and palladium salts were purchased from 
Sigma-Aldrich.

General procedure for the synthesis 
of 3‑phenylisobenzofuran‑1(3H)‑one 8a

To the reaction tube with 3-bromoisobenzofuran-1(3H)-
one (200 mg, 0.92 mmol), phenylboronic acid (114 mg, 
0.92 mmol), Na2CO3 (100 mg, 0.92 mmol), PdCl2(PPh3)2 
(6.4 mg, 0.009 mmol) a solution of 20 mL of H2O and THF 
(9:1, v/v). The reaction tube was kept stirring at 70 °C for 
2 h. After the completion of the reaction, as monitored by 
TLC, the solvent was evaporated under reduced pressure. 
The residue was passed through a pad of silica gel with the 
help of EtOAc (50 mL) to give 3-phenylisobenzofuran-
1(3H)-one 8a as a white solid (186 mg, 94% yield); mp 113 
°C; IR (KBr, cm−1) 3340, 1762, 1603, 1499, 1356, 1282, 
1193, 1092, 1008, 913, 749, 696, 638; 1H NMR (400 MHz, 
CDCl3) δ 7.96 (d, J = 8 Hz, 1H), 7.65 (td, J = 7.5, 1.1 Hz, 
1H), 7.55 (t, J = 7.5 Hz, 1H), 7.40–7.35 (m, 3H), 7.33 (dd, 
J = 7.7, 0.8 Hz, 1H), 7.27 (dd, J = 7.0, 3.0 Hz, 2H), 6.41 (s, 
1H); 13C NMR (100 MHz, CDCl3) δ 170.7 (C), 149.7 (C), 
136.4 (C), 134.4 (CH), 129.49 (CH), 129.43 (CH), 129.0 
(CH), 127.0 (CH), 125.7 (CH), 125.6 (CH), 122.9 (C), 82.8 
(CH); HRMS (ESI) calcd for C14H11O2 (M + H) 211.0759, 
found 211.0745.
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