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Abstract
The coumarin nucleus is a simple privileged scaffold distributed in many plants. It has recently gained attention for its diverse 
biological activities and interactions with enzymes and receptors. The vascular endothelial growth factor receptor-2 (VEGFR-
2), a receptor tyrosine kinase, is a crucial cancer target as it is involved in angiogenesis. This study employs virtual screening, 
molecular docking, and molecular simulation studies to identify potential coumarin candidates against VEGFR-2 from the 
COCONUT database. After thorough docking studies, CNP0056360, CNP0340213, and CNP0366287 were identified as 
final hits. Molecular dynamics simulation studies revealed strong stability and better binding energies for CNP0056360 and 
CNP0340213, outperforming lenvatinib; CNP0366287 showed comparable behaviour. The identified coumarins exhibited 
good in-silico pharmacokinetics and demonstrated low toxicity.
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Introduction

Coumarins are a class of secondary metabolites obtained 
extensively from plants, but also present in microorganisms 
and fungi (Annunziata et al. 2020). The coumarin molecule 
gets its name from ‘coumarou,’ a French word for Tonka 
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beans (seeds of Dipteryx odorata or Coumarouna odo-
rata) from which they were first isolated in 1820 (Maria 
João et al. 2015). More than 1300 different coumarins have 
been reported from more than 150 plant species belonging 
principally to Apiaceae, Fabaceae, Asteraceae, Rutaceae, 
Moraceae, Oleaceae, and Thymelaeaceae families (Maria 
João et al. 2015; Sharifi-Rad et al. 2021). The coumarins 
class is further divided into six different categories based 
on their core scaffold, i.e. simple coumarins, furocoumarins, 
dihydrofuro-coumarins, pyrano-coumarins (linear and angu-
lar), bis-coumarins, and phenyl-coumarins (Maria João et al. 
2015). Coumarin is a versatile nucleus owing to its different 
substitution sites and potent pharmacophore contributing 
to its broad pharmacological spectrum. Coumarins possess 
antioxidant (osthole), antiadipogenic (fraxin), anticancer 
(xanthotoxol), carbonic anhydrase inhibition, antibacterial 
(agasyllin), antitubercular (bergapten), antifungal (psoralen), 
antiviral (calanolide A), anti-inflammatory (imperatorin), 
neuroprotective (esculetin), anticonvulsant (imperatorin), 
anticoagulant (dicumarol), antidiabetic (fraxidin), and pho-
tosensitizing (methoxsalen) activities (Annunziata et al. 
2020; Sharifi-Rad et al. 2021). Amidst coumarin’s broad 
spectrum of pharmacology, its anticancer potential is quite 
fascinating as many natural coumarins possess anticancer 
activity—esculetin, osthole, chartreusin, fraxin, imperatorin, 
umbelliferone, daphnetin, auroptene, psoralen, oxypeuce-
danin, seselin, etc. (Sharifi-Rad et al. 2021; Önder 2020). 
Owing to the potency of coumarin scaffold, various syn-
thetic derivatives of coumarins have also been synthesized 
that are reported to exhibit potent antitumour and antican-
cer potential (Abolibda et al. 2023; Alshabanah et al. 2022; 
Gomha et al. 2018). Coumarins act as anticancer agents 
via different mechanisms—inhibition of mitosis, cell-cycle 
arrest, angiogenesis, inhibition of telomerase, hsp90, etc. 
(Önder 2020; Küpeli Akkol et al. 2020). Among various 
anticancer mechanisms of coumarins, only a few studies 
have been done on their anti-angiogenic activity (Naderi 
Alizadeh et al. 2018; Al-Warhi et al. 2020).

Vascular endothelial growth factor receptors (VEGFRs) 
are a type of receptor tyrosine kinases involved in angio-
genesis and bind to Vascular Endothelial Growth Factors 
(VEGFs) or vasculotropins to produce their angiogenic 
effect and aid tumour growth and survival (Lugano et al. 
2020; Pinedo and Slamon 2000). There are three types 
of VEGFRs-1, 2, and 3, and among them, VEGFR-2 is 
expressed on most epithelial cells and, hence, principally 
involved in angiogenesis during cancer (Hicklin and Ellis 
2005). The human VEGFR-2 receptor is a 1356 amino 
acid protein containing kinase insert domain (KDR). The 
VEGFR-2 in mature form is a transmembrane protein that 
is responsible for intracellular signal transduction (Wang 
et al. 2020). The signalling pathway of VEGFR-2 involves 
its binding with VEGF-A, which results in dimerization of 

VEGFR-2. Following this, autophosphorylation of tyrosine 
residues occurs in the receptor's intracellular region, causing 
activation of downstream signalling molecules and their sub-
sequent pathways (Nilsson and Heymach 2006). The signal-
ling transduction pathways that get activated are the PLCγ-
PKC-MEK-ERK pathway (involved in cell proliferation), 
TSAd-Src-PI3K-Akt pathway (involved in cell survival), 
PLCγ-PKC-eNOS-NO and TSAd-Src-PI3K-Akt pathway 
(involved in cell permeability); SHB-PI3K-Rac, SHB-FAK-
paxillin, and NCK-p38-MAPKAPK2/3 pathway (involved in 
cell migration) (Wang et al. 2020).

Angiogenesis is the primary requisite of tumours for their 
sustenance, growth, proliferation, and survival; hence, they 
interfere with the body’s homeostasis and increase the secre-
tion of angiogenic factors. This results in overexpression and 
increased kinase activity and expression of VEGFR-2 owing 
to the increase in the secretion of VEGFs (Peng et al. 2017). 
Thus, the inhibition of VEGFR-2 is considered an attractive 
approach to target tumour-related angiogenesis and subse-
quent tumour growth (S et al. 2023). Several FDA-approved 
VEGFR-2 inhibitors—Sorafenib, Lenvatinib, Sunitinib, 
Vandetanib, and Axitinib—are already used for different 
types of cancers. These inhibitors exert their action by block-
ing the VEGF-mediated activation of VEGFR-2 receptors 
and, thus, inhibit subsequent signalling (Aziz et al. 2016).

In this work, we conducted a pharmacophore-based vir-
tual screening to identify the potential coumarin leads from 
the COCONUT database of natural products against vas-
cular endothelial growth factor receptor-2 (VEGFR-2), an 
angiogenesis-related target for cancer. Based on a literature 
search, we found that no high-throughput virtual screening 
studies are performed on a plant-derived extensive database 
of natural coumarins against the VEGFR-2 protein. So, in 
this study, we tried to identify natural coumarins as potential 
inhibitors of the VEGFR-2 receptor by rigorous in-silico 
studies. Our approach encompassed several key method-
ologies—feature-based pharmacophore screening of the 
coumarin database, high-throughput docking studies, and 
molecular dynamics studies on the identified hits for deter-
mining potent angiogenic inhibitors. This study expands 
the scope of researchers to work on natural coumarins as 
anticancer agents, as they might have the potential to inhibit 
VEGFR-2 selectively.

Material and method

Database

The COlleCtion of Open Natural ProdUcTs (COCONUT) 
database was used for performing pharmacophore-based vir-
tual screening (Sorokina et al. 2021). The database consisted 
of 407270 entries of natural products and was processed 
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in the KNIME analytics platform (Berthold et al. 2008) 
(https://​www.​knime.​com/) to obtain molecules with only 
a ‘coumarin’ scaffold. The ‘substructure search’ node was 
used to accomplish this, where the coumarin scaffold was 
drawn and executed. Later, the duplicate ligands were fil-
tered out using the ‘duplicate row filter’ node. This resulted 
in 20,614 molecules with coumarin scaffold that were used 
for further studies.

e‑Pharmacophore generation 
and pharmacophore‑based virtual screening

The crystallographic structure of VEGFR-2 protein com-
plexed with multikinase inhibitor lenvatinib (PDB: 3WZD) 
was obtained from the protein data bank in PDB format 
(Berman et al. 2000) (https://​www.​rcsb.​org/). The PDB 
3WZD was selected as it was the only entry in protein data 
bank where lenvatinib was complexed with VEGFR-2. The 
chosen PDB had a resolution of 1.57 Å and R-value work 
of 0.181. The structure of VEGFR-2 with co-crystallized 
ligand and active site is shown in Fig. 1. The interaction of 
lenvatinib with VEGFR-2 was studied on Discovery Studio 
2021. The pharmacophoric features of lenvatinib interacting 
with receptors such as hydrophobic, hydrogen-bond accep-
tor, hydrogen-bond donor, and aromatic ring were chosen 
for pharmacophore model generation.

The pharmacophore-based virtual screening of coumarins 
using pharmacophoric features of lenvatinib was performed 

using the Pharmit server (Sunseri and Koes 2016) (https://​
pharm​it.​csb.​pitt.​edu/). In the server, the pharmacophoric 
search was limited to ‘one conformer per molecule’ and ‘one 
molecule per hit.’

Homology modelling and model validation

Homology modelling is a highly accurate and successful 
method for predicting the tertiary structure of query protein 
using template protein and sequence alignment (Skariyachan 
and Garka 2018). It is based on the assumption that proteins 
share structural similarity owing to common evolutionary 
ancestry, and based on this concept the 3D structure of the 
target protein could be determined using known homolo-
gous protein as a template (Kumar and Sharma 2023). The 
VEGFR-2 protein structure was viewed in UCSF Chimera 
1.14 to check missing residues (Pettersen et al. 2004). The 
missing residues in the protein were filled using homology 
modelling performed via SwissModel (https://​swiss​model.​
expasy.​org/) using the user template interface (Waterhouse 
et  al. 2018). The FASTA sequence of the protein was 
obtained from a protein data bank, and the PDB: 3WZD 
was used as a PDB template to build the homology model.

The quality of the original protein and modelled protein 
was evaluated and compared to check the accuracy of the 
homology build protein. The SwissModel server provides 
QMEAN and the global model quality estimate (GMQE) 
parameters to assess the quality. Additionally, other freely 
available web tools, viz. Molprobity and SAVESv6.0 were 
also used. Molprobity is an easily accessible web server to 
validate the protein structure (Williams et al. 2018) (http://​
molpr​obity.​bioch​em.​duke.​edu). The protein validation 
parameters of Molprobity are protein geometry (Ramachan-
dran plot, Cβ deviation, rotamers, MolProbity score) and 
all-atom contacts (Clashscore). The SAVESv6.0 is a pro-
tein structure validation server consisting of different pro-
tein validation programs, viz. ERRAT, VERIFY 3D, and 
PROCHECK (https://​saves.​mbi.​ucla.​edu/). ERRAT evalu-
ates improvement and refinement in the modelled protein 
structure (Skariyachan and Garka 2018). PROCHECK eval-
uates the quality of modelled protein by Ramachandran plot, 
bond angle, torsion angles, atomic distances, and surface 
area (Skariyachan and Garka 2018).

Energy minimization and preparation of protein

The protein energy minimization helps to achieve an ener-
getically favourable structure by bringing the structure close 
to its native local minima (Jabeen et al. 2019). PDB2PQR 
server was used to assign the correct protonation state to the 
protein residues at pH 7.4 (Dolinsky et al. 2004) (https://​
server.​poiss​onbol​tzmann.​org/​pdb2p​qr). In this study, we per-
formed the energy minimization of the modelled VEGFR-2 

Fig. 1   Crystal structure of VEGFR-2 protein (PDB: 3WZD) in com-
plex with lenvatinib

https://www.knime.com/
https://www.rcsb.org/
https://pharmit.csb.pitt.edu/
https://pharmit.csb.pitt.edu/
https://swissmodel.expasy.org/
https://swissmodel.expasy.org/
http://molprobity.biochem.duke.edu
http://molprobity.biochem.duke.edu
https://saves.mbi.ucla.edu/
https://server.poissonboltzmann.org/pdb2pqr
https://server.poissonboltzmann.org/pdb2pqr
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protein using the Pmemd module of Amber 20. The energy 
minimization parameters were 1000 steps of conjugate gra-
dient, 4000 steps of steepest descent, and 0.02 Å step size. 
After energy minimization, the protein was further processed 
in AutoDockTools-1.5.7 by adding polar hydrogens only, 
merging non-polar hydrogens, adding Gastieger charge, and 
finally converted into PDBQT format (Tripathi et al. 2022).

Ligand preparation

The ligands obtained after pharmacophore-based virtual 
screening and PAINS filtering were processed before dock-
ing studies. The first step included ligand energy minimiza-
tion to remove stearic clashes in the ligand and bring them 
to energetically favourable spatial conformation. It was done 
via Open Bable 3.1.1 software (O'Boyle et al. 2011). Finally, 
the minimized ligands were transformed to AutoDock com-
patible format.

Grid generation and validation

The grid generation is crucial as it sets the docking boundary 
and specifies binding sites where ligand interaction might 
occur (Swetha et al. 2022). The interaction of lenvatinib and 
VEGFR-2 was visualized using Discovery Studio 2021. The 
interacting residues were used as reference points for build-
ing a grid box around the active site (Singh et al. 2022). 
The grid maps were calculated using Autogrid 4.0 (Morris 
et al. 2009). The grid size of the minimized protein was set 
at XYZ points 48 × 62 × 76 with a grid spacing of 0.375 Å, 
and the grid centre was set at x, y, and z coordinates 1.311, 
−6.175, and 15.419, respectively. The grid validation was 
done by redocking lenvatinib with VEGFR-2. It is essential 
to achieve valid, reproducible docking results (Swetha et al. 
2022). The root-mean square deviation (RMSD) between 
heavy atoms of the co-crystallized lenvatinib and redocked 
lenvatinib was calculated using the Desmond Maestro pack-
age (D.E. Shaw Research, New York, USA).

High‑throughput virtual screening (HTVS) 
and molecular docking study

HTVS is a computational screening methodology com-
plementary to high-throughput screening (HTS). HTVS is 
extensively used for screening big libraries of compounds to 
determine the binding affinity of the compounds with target 
receptor and uses a scoring function to do so. (Subramaniam 
et al. 2008). Molecular docking is an important part of struc-
ture-based drug design that aids in determining ligand–pro-
tein interaction and characterizing how ligand acts in the 
binding pocket of protein. Molecular docking gives valu-
able information regarding binding affinity, conformation, 

position, and orientation of ligand in the binding site of the 
target protein (Meng et al. 2011).

The docking study was performed using AutoDock 4.2.6 
and Lamarckian Genetic Algorithm (LGA) in three steps: 
(1) HTVS, (2) Standard precision (SP) docking, and (3) 
Extra precision (XP) docking. The coumarins were docked 
against VEGFR-2, and in each proceeding step, the dock-
ing protocol was made stringent to reduce the probability 
of false positives. The visualization and analysis of docking 
was performed using Discovery Studio 2021.

In‑silico ADMET prediction

The absorption, distribution, metabolism, elimination, and 
toxicity (ADMET) profile of compounds is an essential 
aspect in drug discovery as it is the primary determinant of 
the clinical efficacy of the potential compound. The ADMET 
determination of compounds at initial stage of the drug dis-
covery process helps in reducing failure at the final stages 
(Ghosh et al. 2022). The in-silico ADMET estimation of 
the final hits was done using the freely accessible web tool 
PreADMET (https://​pread​met.​webse​rvice.​bmdrc.​org/) and 
SwissADME (Daina et al. 2017).

Molecular dynamics (MD) simulation study

Molecular dynamic simulation is an important part of drug 
discovery as it provides insights into the motion of protein 
at different time intervals which could not be provided by 
NMR, XRD, etc. (Durrant and McCammon 2011). When a 
drug binds to the binding pocket of a target protein it gives 
rise to conformational changes in protein structure, interferes 
with its normal function, and exerts agonistic or antago-
nistic action. Hence, to simulate the body’s environment at 
the initial developmental stage, MD simulation studies are 
performed. Thus, molecular docking and molecular dynam-
ics studies are closely intertwined for screening of potential 
drug-like candidates.

The MD studies of final hits with binding energy less 
than lenvatinib and cluster size more than lenvatinib were 
performed via Amber 20. The ligand–protein complex 
was obtained from Discovery Studio 2021. The complex's 
parameter and coordinate files were created using tleap and 
the Amber ff14SB force field. Utilizing TIP3P water mol-
ecules in a cubic periodic box with a 10 Å edge length, the 
refined structures were solvated. Sodium ions were added 
to the system to balance out its overall charge. Long-range 
electrostatic interactions were handled using the Particle 
Mesh Ewald (PME) approach and a non-bonded cut-off 
of 10 Å (Singh et al. 2022). To refine the system, energy 
minimization was performed using a combination of steep-
est descent and conjugate gradient algorithms. The system 
was heated to 310 K using a Langevin thermostat and the 

https://preadmet.webservice.bmdrc.org/
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collision frequency was tuned to 5  ps−1 using the NVT 
ensemble. Once the desired temperature was reached, a 
100 ps molecular dynamics (MD) run was carried out in the 
NPT ensemble at a pressure of one bar, using the Berendsen 
barostat. Subsequently, a 100 ns production MD simulation 
was performed once the system reached equilibrium. Using 
the cpptraj tool of Amber 20, the trajectories acquired from 
the MD simulations were examined for root-mean-square 
deviation (RMSD), root-mean-square fluctuation (RMSF), 
and radius of gyration (Rg) studies (Tripathi et al. 2022).

Binding free energies

The binding free energy is the difference in free energies 
of bound and unbound states, where the bound state is the 
explicit complex state and the unbound state is the one 
where protein–ligand interaction is negligible (Hata et al. 
2021). The calculation of binding free energy was executed 
via MMPBSA.py package of Amber 20 and comprised 
of molecular mechanics, Poisson-Boltzmann surface area 
(MM-PBSA) and molecular mechanics, Generalised Born 
model for solvent accessibility (MM-GBSA). The energy 
calculation was done using GB method in the last 50 ns of 
MD simulation at 10 ns interval. The salt concentration, 
inner dielectric, and exterior dielectric were set at 0.1 nM, 
1, and 80, respectively (Singh et al. 2022).

Results

e‑Pharmacophore generation 
and pharmacophore‑based virtual screening

Lenvatinib is a small molecule multiple kinase inhibitor with 
IC50 value range between 4–100 nm (Hao and Wang 2020). 
Figure 2 shows the pharmacophoric features of lenvatinib 
used for generating e-pharmacophore. The pharmacoph-
ore-based virtual screening of the COCONUT-coumarin 
database using this e-pharmacophore resulted in 6301 hits. 
The RMSD cut off was set at 0.5 Å and the molecules with 
RMSD less than that were selected for HTVS. This resulted 
in the final 910 hits.

Homology modelling and model validation

The structure alignment between the template and modelled 
protein was checked by superimposing them using ‘Protein 
Structure Alignment’ in Desmond Maestro. The alignment 
score and RMSD of the modelled VEGFR-2 protein were 
found to be 0.007 and 0.414 Å, respectively. The sequence 
alignment of template and modelled proteins have been pro-
vided in Supplementary Material (Figure S2). The QMEAN 

Z-score was 0.89 ± 0.05 and validation results are provided 
in Supplemental Material (Figure S3).

The Ramachandran plot obtained from the Molprobity 
server showed 99.7% residues in the allowed region and 
only 0.3% in the disallowed region with only one outlier 
residue, i.e. Asp 260. The Ramachandran plot obtained from 
PROCHECK indicated no residues in the disallowed region 
(Fig. 3).

The Rama Z-score is a global metric for assessing the 
overall quality of homology-built model and a score between 
− 2 to 2 is indicative of the normal backbone geometry of the 
model. The modelled protein had a Rama Z-score value of 
1.49 ± 0.49, which was within permissible limits (Sobolev 
et al. 2020). The Cβ deviation is the difference between the 
predicted position of the Cβ atom and its ideal expected 
position. The Cβ deviation greater than 0.25 Å indicates 
incompatibility in side chain and main chain conformation. 
No Cβ deviation (> 0.25 Å) was found in the modelled pro-
tein (Davis et al. 2007). The Clashscore is number of serious 
stearic clashes (> 0.4 Å) per 1000 atoms including hydrogen 
atoms, and for modelled protein it was 1.03 which is con-
sidered very well. MolProbity score is the weighted sum of 
clashes, Ramachandran favoured, and rotamer outliers, and 
for modelled protein it was 0.80 (Williams et al. 2018).

ERRAT assesses the statistical properties of non-bonded 
interactions among various atom types within a model pro-
tein, comparing them to a database of dependable high-res-
olution structures (Colovos and Yeates 1993). The overall 
quality factor of the modelled protein on the ERRAT pro-
gram was found to be 98.639 and the plot is shown in Sup-
plemental Material (Figure S4). The VERIFY3D assesses 
how well a 3D atomic model aligns with its corresponding 
1D amino acid sequence (Jitendra and Vinay 2011). In this, 

Fig. 2   Pharmacophoric features of lenvatinib selected for virtual 
screening (A represents Hydrogen-bond acceptor, H represents 
Hydrophobic, R represents Aromatic Ring)
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at least 80% amino acids of the model should score > = 0.1 
in 3D/1D profile for model to be considered good. In the 
modelled VEGFR-2 protein, 85.48% of the residues were 
found to have averaged 3D/1D score > = 0.1 and the plot is 
shown in Supplemental Material (Figure S4).

Energy minimization and preparation of protein

The potential energy of the system was minimized from ini-
tial − 276,910 kcal/mol to − 420,330 kcal/mol and the graph 
depicting the same has been provided in the Supplementary 
Material (Figure S5). Following minimization, the protein 
was saved into PDBQT format (Singh et al. 2022).

Grid generation and validation

Lenvatinib displayed hydrophobic and hydrogen bond 
interactions with the active site residues of VEGFR-2, 
viz. Glu885, Ile888, Leu889, Cys919, Cys1045, Asp1046, 
Phe1047. The RMSD between the two pose was found to be 
0.9280 Å and the poses have been shown in the Supplemen-
tal Material (Figure S10).

High‑throughput virtual screening (HTVS) 
and molecular docking study

The coumarin ligands from the COCONUT database were 
docked against the VEGFR-2 receptor protein (PDB Id: 
3WZD). Lenvatinib was employed as an internal reference 
for selecting the compounds. In HTVS, the ligands having 
binding energy less than lenvatinib were filtered out for fur-
ther SP docking. The HTVS was performed on a total 909 
ligands and from that, 485 compounds were selected for 

SP docking. From SP docking, 30 compounds were chosen 
for XP docking as their binding energy was less than refer-
ence standard. Through XP docking, the compounds were 
tapered to 12 and the docking was analysed and visualized 
using Discovery Studio. Among 12 compounds, three com-
pounds viz. CNP0056360, CNP0340213, and CNP036628 
(Fig. 4) with good binding energy, cluster size (Table 1) 
and ADMET properties were selected for further molecular 
dynamic studies. The interaction diagrams of CNP0056360, 
CNP0340213, and CNP036628 with VEGFR-2 protein along 
with lenvatinib are shown in Fig. 5. The binding energy, 
ligand efficiency, and cluster size of the rest of the com-
pounds is provided in Supplemental Material (Table S1).

In‑silico ADMET prediction

The in-silico ADMET profiling gives primitive information 
about the pharmacokinetics of virtually identified leads. The 
different parameters viz. Blood–brain barrier (BBB) pen-
etration, Aqueous solubility, Human Intestinal Absorption 
(HIA), human ether-a-go-go-related gene (hERG) inhibition, 
rodent carcinogenicity, plasma protein binding (PPB%), 
CYP2D6 inhibition, and Rule of Five (Ro5) violation are 
important in deciding if the molecule will be successful in 
drug discovery pipeline. The BBB penetration is a crucial 
parameter as the CNS active drugs are required to penetrate 
BBB, while CNS inactive drugs should not cross BBB. The 
classification used by PreADMET for BBB penetration is 
BB (Cbrain/Cblood) > 2.0—High CNS absorption, between 2.0 
to 0.1—Moderate CNS absorption, and < 0.1—Low CNS 
absorption (Ma et al. 2005). The PPB controls the amount 
of drug available in plasma for pharmacological action. 
According to PreADMET, PPB% > 90% is strong binding, 

Fig. 3   Ramachandran plot of homology model of VEGFR-2 protein obtained from—a Molprobity and b PROCHECK
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while PPB% < 90% is weak binding. The aqueous solubil-
ity of a drug is essential for its absorption and subsequent 
action. HIA represents the absorption of orally administered 
drugs from the gastrointestinal system into the bloodstream. 
The %HIA between 0–20, 20–70, and 70–100 indicates poor, 
moderate, and high absorption, respectively. The hERG inhi-
bition results in cardiotoxicity by prolongation of the QT 
interval. Hence, it is important to determine if a lead has 
high or medium risk for hERG inhibition. CYP2D6 enzymes 
are responsible for the metabolism of approximately 20% of 
drugs, and thus, their inhibition will reduce drug metabolism 
and increase toxicity. Rodent carcinogenicity is determined 
to extrapolate its carcinogenic effects in humans. The Rule 
of Five (Ro5) is considered important to predict the drug-
likeness of a molecule. The general paradigm is—for a mol-
ecule to become drug-like, it must fall within the permissible 
limits of Ro5 but, in many natural products inspired FDA 
approved drugs this is not true. The ADMET profile of com-
pounds CNP0056360, CNP0340213, and CNP036628 was 
comparatively better than rest of the compounds as shown in 

Table 2. The in-silico ADMET properties of rest of the com-
pounds is provided in Supplemental Material (Table S2).

Molecular dynamics (MD) simulation study

To check the binding of CNP0056360, CNP0340213, and 
CNP036628 with VEGFR-2 in a real time simulated envi-
ronment and study the ligand–protein interaction in detail, 
the molecular dynamics studies were performed.

The RMSD is the measure of average deviation in the 
position or coordinates of an atom in a particular frame 
compared to the reference frame (Ganeshpurkar et  al. 
2020). Typically, the perfect overlap of structure is inevi-
table, so it is desirable to obtain minimum deviation to 
ensure protein stability. One can understand the pro-
tein’s structural conformation by monitoring its RMSD 
throughout the MD simulation. The average RMSD of 
protein between 1–3 Å is considered acceptable for small 
globular proteins. The ligand RMSD gives insights into 
the ligand–protein interactions as it enables assessment of 

Fig. 4   Structures of final hits 
and standard

Table 1   Summary of interactions of final hits and lenvatinib with VEGFR-2 protein

COCONUT database ID Binding 
energy (kcal/
mol)

Ligand effi-
ciency (kcal/
mol)

Cluster size Total poses Interactions with VEGFR-2 (PDB:3WZD)

CNP0056360  − 13.41  − 0.433 43 100 A:Leu 840 (Pi-Sigma), A:Cys 919 (H-Bond), A:Cys 1045 
(Pi-Sulphur), A:Asp 1046 (H-Bond), A:Phe 1047 (Pi-Pi 
T-shaped)

CNP0340213  − 12.91  − 0.403 45 100 A:Glu 885 (Pi-Anion), A:Phe 918 (Pi-Pi Stacked), A:Cys 
919 (H-Bond), A:Asp 1046 (H-Bond), A:Phe 1047 (Pi-
Sigma)

CNP0366287  − 12.68  − 0.409 39 100 A:Lys 868 (H-Bond), A:Cys 919 (H-Bond), A:Asn 923 
(H-Bond) A:Asp 1046 (Pi-Anion), A:Phe 1047 (Pi-Pi 
T-shaped)

Lenvatinib  − 11.37  − 0.379 32 100 A:Leu 840 (Pi-Sigma), A:Glu 885 (H-Bond), A:Cys 
919 (H-Bond), A:Cys 1045 (Pi-Sulphur), A:Asp 1046 
(H-Bond)
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stability about protein and its binding pocket. When the 
ligand RMSD values significantly exceed that of protein, 
it indicates that the ligand may have moved away from the 
binding pocket.

The average RMSD for VEGFR-2 complexed with 
CNP0056360, CNP0340213, CNP036628, and lenvatinib 
was found to be 1.0161, 1.7137, 1.6695, and 1.5233 Å, 
respectively. CNP0056360-VEGFR-2 complex exhibited 
the lowest RMSD, even smaller than lenvatinib indicating 
better stability of protein-ligand complex. The RMSD of 
VEGFR-2 bound to other two ligands were slightly higher 
than the Lenvatinib-VEGFR-2 complex. The mean ligand 
RMSD for CNP0056360, CNP0340213, CNP036628, and 
lenvatinib when bound to VEGFR-2 was found to be 1.4949, 
0.9353, 1.6727, and 0.8356 Å, respectively. There was not 
much variation between ligand and protein RMSD of three 
ligands and lenvatinib, indicating that ligands didn’t diffuse 
out of the binding pocket during the simulation run (Fig. 6).

The RMSF monitoring gives an idea about the flexibil-
ity and local changes occurring in the protein during the 
simulation run. In general, a high fluctuation is observed 
in the C- and N-terminal compared to other parts. In the 
RMSF plot, peaks specify protein residues that fluctuate 
most. The average RMSF values for VEGFR-2 complexed 
with CNP0056360, CNP0340213, CNP036628, and len-
vatinib were 1.105, 1.1258, 1.1194, and 1.128 Å, respec-
tively. The high fluctuations were observed in the tail region 
which are inevitable. The high fluctuations near residues 
840–890, 915–925, and 1035–1050 could be observed in 
Fig. 7 because they are active site residues and involved 
in interacting with the ligands. The residues Cys919 and 
Asp1046 are involved in H-bond interaction, showing high 
fluctuations in the RMSF plot. Other than active site resi-
dues, the rest of the protein was stable throughout the run.

Hydrogen bonds are crucially involved in the binding of 
ligands with the protein active site. The H-bond analysis is 
important as it highly influences absorption and metabolism 
of drugs. The H-bond is also essential for stabilizing the 
protein–ligand complex and is indicative of strong and stable 
binding. Lenvatinib showed a maximum two H-bond interac-
tions present at most of the simulation time. In the case of 
CNP0056360, the maximum number of H-bond interactions 
observed was four that kept varying between two and three, 
and one H-bond was present at most of the run. Except for 
CNP0056360, no ligand including lenvatinib showed four 
H-bond interactions. For CNP0340213, three H-bond inter-
actions were observed at the start of the simulation that were 
reduced to two and subsequently one. In CNP0366287, one 
H-bond interaction was present for almost whole run, while 

two and three H-bonds were present only for a brief period 
of time (Fig. 8).

The radius of gyration (Rg) is done to know how pro-
tein atoms are distributed around the axis of protein or its 
extendedness (Sneha and George Priya Doss 2016). Since, 
it is a basic measurement of the overall size of a protein 
chain, Rg analysis is done to get information regarding con-
formational change in protein structure (Jiang et al. 2019). 
The average Rg values for CNP0056360-VEGFR-2 complex, 
CNP0340213-VEGFR-2 complex, CNP0366287-VEGFR-2 
complex, and Lenvatinib-VEGFR-2 complex were 20.2873, 
20.3322, 20.3348, and 20.4940 Å, respectively (Fig. 9).

Binding free energies

The prediction of binding energy between ligand and pro-
tein is achieved through free energy calculations, which 
encompass a set of techniques. The binding-free energy 
calculations provide a semi-qualitative assessment of bind-
ing affinity of a ligand with active site of protein. These 
methods analyse the atomic-level interactions that contribute 
to the affinity of the ligand for the protein (Ganeshpurkar 
et al. 2020). Within the framework of MM-GBSA and MM-
PBSA calculations, the calculation involves the assessment 
of both molecular mechanics (MM) and solvation energies. 
The solvation energy encompasses two components: a polar 
component [evaluated using an implicit solvent model (PB 
or GB)] and a non-polar component [determine the solvent-
accessible surface area (SASA)] (Singh et al. 2022).

Tables 3 and 4 display the non-bonded interaction ener-
gies (van der Waals energy—ΔEvdw, electrostatic energy—
ΔEele, polar part of solvation free energy—ΔGPB, non-polar 
part of solvation free energy—ΔGNonpolar, and total binding 
free energy—ΔGMMPBSA) for all the complexes analysed 
using the MM-GBSA and MM-PBSA methods, respectively. 
Both approaches demonstrated low overall binding energies, 
indicating a high level of stability in the complexes. The gas 
phase energies, specifically ΔEvdw and ΔEele, substantially 
contribute to the overall stability, suggesting that confirm-
ing the ligand relative to the receptor is the primary fac-
tor in complex stability. Among the identified compounds, 
CNP0056360 and CNP0340213 exhibited stronger bind-
ing free energy than lenvatinib in the GB model. In the PB 
model, CNP0056360 and CNP0340213 exhibited stronger 
binding free energy than lenvatinib.

Discussion

This research investigates potential coumarin lead com-
pounds from the COCONUT database as VEGFR-2 inhibi-
tors, a crucial target in cancer treatment. The study employed 
a multi-stage virtual screening approach (HTVS, SP, XP 

Fig. 5.   3D and 2D interaction diagram of best hits obtained through 
HTVS with VEGFR-2 protein (PDB Id. 3WZD). a Lenvatinib, b 
CNP0056360, c CNP0340213, and d CNP0366287

◂
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docking) to identify promising coumarin leads from a large 
database. Three compounds—CNP0056360, CNP0340213, 
and CNP036628—emerged with favourable binding ener-
gies and ADMET properties. In-silico ADMET profiling 
provided preliminary insights into the pharmacokinetics of 
these leads. CNP0056360, CNP0340213, and CNP036628 
displayed good ADMET profiling. The study further evalu-
ated the stability and binding dynamics of the leads using 
molecular dynamics simulations. All four complexes 

exhibited good stability throughout the simulation run, as 
indicated by RMSD and RMSF analyses. CNP0056360 
formed the most stable complex with VEGFR-2, showing 
lower RMSD values than even lenvatinib. H-bond analysis 
revealed varying degrees of interaction between the ligands 
and VEGFR-2. CNP0056360 formed the most extensive 
and consistent H-bond interactions, potentially contribut-
ing to its higher stability. Rg analysis suggested minimal 
conformational changes in the protein structure upon ligand 

Table 2   ADMET prediction of final hits

COCONUT 
database ID

BBB Water solubility HIA (%) hERG Inhibition Plasma pro-
tein binding 
(%)

Rodent carcino-
genicity

CYP2D6 Inhibi-
tor

Lipinski’s rule 
of five viola-
tions

CNP0056360 0.625 Moderately 
Soluble

98.18 Medium Risk 88.46 Non-Carcinogen Non-Inhibitor Zero

CNP0340213 0.049 Moderately 
Soluble

95.02 Medium Risk 89.91 Non-Carcinogen Non-Inhibitor Zero

CNP0366287 0.019 Moderately 
Soluble

96.45 Medium Risk 96.23 Non-Carcinogen Non-Inhibitor Zero

Fig. 6   a RMSD of the protein–
ligand complexes (Lenvatinib 
(red), CNP0056360 (green), 
CNP0340213 (purple), 
CNP0366287 (blue)). b RMSD 
of heavy atoms of the ligands 
(Lenvatinib (red), CNP0056360 
(green), CNP0340213 (purple), 
CNP0366287 (blue))
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binding, further supporting the stability of the complexes. 
MM-GBSA and MM-PBSA methods predicted low over-
all binding energies for all complexes, indicating stable 
and strong ligand-receptor interactions. Gas phase energies 
(ΔEvdw and ΔEele) significantly contributed to the binding 
stability, emphasizing the importance of ligand conforma-
tion relative to the receptor. Notably, CNP0056360 and 
CNP0340213 demonstrated stronger binding free energies 
than lenvatinib in both GB and PB solvation models, sug-
gesting potentially superior binding affinities. Overall, these 

leads displayed favourable binding profiles, good stability in 
complex with VEGFR-2, and potentially superior binding 
affinities compared to lenvatinib.

Conclusion

In this study, the COCONUT database was subjected to rig-
orous pharmacophore-based in-silico investigation to iden-
tify coumarin leads as VEGFR-2 inhibitors using lenvatinib 

Fig. 7   Residue-wise RMSF 
deviation of complexes (Len-
vatinib (red), CNP0056360 
(green), CNP0340213 (purple), 
CNP0366287 (blue))

Fig. 8   Number of intermolecular H-bond interactions shown by the ligand during simulation run a CNP0056360 b CNP0340213 c CNP0366287 
d Lenvatinib
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as a standard for comparison. The specific cut-off for binding 
energy and cluster size resulted in three hits—CNP0056360, 
CNP0340213, and CNP0366287 and these ligands possessed 
acceptable ADMET properties in in-silico ADMET estima-
tion. Molecular dynamics simulations of all three hits dem-
onstrated favourable stability when bound to the VEGFR-2 
in a simulated biological environment. The binding free 
energy calculations also revealed the superior binding free 
energies of CNP0056360 and CNP0340213 compared to 
lenvatinib in both solvation models. The obtained results 
demonstrate the effectiveness and potential of identified 
leads as inhibitors of VEGFR-2, a crucial target in can-
cer treatment. These coumarin leads have shown success-
ful inhibition of VEGFR-2 receptors in in-silico studies. 
While, further in-vitro and in-vivo studies are necessary to 
validate these findings, the current results establish a strong 

foundation for developing novel coumarin-based VEGFR-2 
inhibitors for cancer therapy.

Future perspective

The study identified three promising natural coumarin leads 
(CNP0056360, CNP0340213, and CNP0366287) from the 
COCONUT database. As natural coumarins are relatively 
unexplored as VEGFR-2 inhibitors, the study highlights their 
potential for new anticancer therapeutic strategies. While, 
the in-silico results are encouraging, further chemical modi-
fications on the identified leads that might optimize their 
binding affinity and pharmacokinetics could be explored, 
leading to even more potent VEGFR-2 inhibitors. As 
VEGFR-2 is involved in various cancers, investigating the 

Fig. 9   The radius of gyra-
tion of complexes (Lenvatinib 
(red), CNP0056360 (green), 
CNP0340213 (purple), 
CNP0366287 (blue))

Table 3   Energy contributions 
of complexes obtained from 
MM-GBSA assay

Data expressed in Mean ± SEM (n = 5)

Energy Component CNP0056360 CNP0340213 CNP0366287 Lenvatinib

ΔEvdw (kcal/mol)  − 72.3401 ± 1.3761  − 65.2911 ± 1.2701  − 66.1271 ± 2.2427  − 59.7153 ± 1.3934
ΔEele (kcal/mol)  − 4.3141 ± 0.6579  − 11.1043 ± 1.4064 3.466 ± 6.2043 8.2341 ± 3.4526
ΔGGB (kcal/mol) 21.791 ± 0.4934 26.1831 ± 1.3598 27.5681 ± 6.7112 12.9643 ± 2.8223
ΔGSA (kcal/mol)  − 7.3457 ± 0.0401  − 6.9151 ± 0.106  − 7.6897 ± 0.1063  − 6.759 ± 0.0596
ΔGMMGBSA (kcal/mol)  − 62.209 ± 1.6631  − 57.1274 ± 1.3944  − 42.7827 ± 1.9897  − 45.2759 ± 1.3402

Table 4   Energy contributions 
of complexes obtained from 
MM-PBSA assay

Data expressed in Mean ± SEM (n = 5)

Energy Component CNP0056360 CNP0340213 CNP0366287 Lenvatinib

ΔEvdw (kcal/mol)  − 72.3401 ± 1.3761  − 65.2911 ± 1.2701  − 66.1271 ± 2.2427  − 59.7153 ± 1.3934
ΔEele (kcal/mol)  − 4.3141 ± 0.6579  − 11.1043 ± 1.4064 3.466 ± 6.2043 8.2341 ± 3.4526
ΔGPB (kcal/mol) 25.7312 ± 1.118 31.5521 ± 1.3665 26.3881 ± 6.808 9.4164 ± 4.6718
ΔGNon-Polar (kcal/mol)  − 4.2468 ± 0.0228  − 4.3451 ± 0.0979  − 4.6465 ± 0.0187  − 4.5083 ± 0.0354
ΔGMMPBSA (kcal/mol)  − 55.1698 ± 2.3583  − 49.1885 ± 2.0212  − 40.9194 ± 1.966  − 46.5731 ± 2.0084
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lead compounds against specific cancer types with VEGFR-2 
overexpression could give more precise insights into their 
role as anti-angiogenic agents. Overall, this research lays 
a strong foundation for further developing coumarin-based 
VEGFR-2 inhibitors. With successful experimental valida-
tion and continued research, these leads have the potential to 
translate into novel and effective cancer treatment options.
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