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Abstract
Bacterial cellulose (BC) has gained attention in recent years due to its high purity and multiple applications in the biomedi-
cal and pharmaceutical fields, and mothers of vinegar are a promising source of low-cost BC that can be easily obtained 
from any variety of vinegar. Silver nanoparticles (AgNPs) are known for their antimicrobial activity as well as their use as 
antiseptics on healing wounds. For this research, BC-AgNPs films were synthesized, and their antibacterial activity against 
Staphylococcus aureus and Escherichia coli was evaluated. The BC films were obtained from mothers of vinegar from two 
varieties (apple vinegar and cranberry vinegar) and were used as support for AgNPs at 5, 25, 41, 69, 116 and 324 ppm. All 
the films added with AgNPs achieved growth inhibition of 99–100% for both bacterial species, exhibiting values of antibacte-
rial effectiveness (R) between 3.37 and 7.72. The BC-AgNPs films presented a slightly higher antibacterial activity against 
S. aureus, but the difference was negligible, and the composites were effective to inhibit the growth of both bacteria. The 
results show that the BC-AgNPs films synthesized from mothers of vinegar have potential for wound-healing purposes and 
that they are effective with silver concentrations as low as 5 ppm.
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Introduction

Cellulose and its derivatives have gained the attention of 
the scientific community in recent years due to its easy 
fabrication, biodegradability, biocompatibility and mul-
tiple applications in the biomedical and pharmaceutical 
fields, including its capacity to adsorb, immobilize and 
enhance the surface area of nanoparticles with antimicro-
bial properties, acting as a drug delivery system (Das et al. 
2022; Ciolacu et al. 2020; Norrrahim et al. 2021).

Most cellulose is extracted from plants such as cotton, 
flax, hemp, jute or bamboo, as well as from a wide variety 
of trees (Bakri et al. 2022), and it can be obtained either 
in the form of nanofibers (CNF) or nanocrystals (CNC). 
However, obtaining cellulose from plants has several 
disadvantages. Cellulose extracted from plants is com-
bined with other natural polymers found in plants, such as 
lignin, pectin and hemicellulose (Wang et al. 2019), and it 
results necessary to purify it before its use. This purifica-
tion requires a combination of mechanical methods such 
as grinding, crushing, filtering or sieving with chemical 
separation methods assisted by acidic or basic solvents, 
or biological methods assisted by enzymes (Radotić and 
Mićić 2016). Then, after the separation process, the pure 
cellulose must either undergo a mechanical shearing to 
produce nanofibers with diameters of less than 100 nm or 
through a strong acid hydrolysis to soften and break down 
the less crystalline regions in the material and produce 
nanocrystals (Salama et al. 2021). Added to the energy 
and resources that are necessary to obtain CNF or CNC 
from plants, as well as to the pollution produced by the 
chemical waste, another problem to consider is that the 
sizes of the obtained particles can vary in a wide range, 
resulting in low reproducibility for experiments involving 
these materials (Lukova et al. 2023).

Obtaining bacterial cellulose (BC), on the other hand, 
is a simpler and environmentally friendly process. Bacte-
rial cellulose can be synthesized by bacteria of the genera 
Acetobacter, Agrobacterium, Azotobacter, Rhizobium, Sar-
cina, Alcaligenes or Pseudomonas using a wide variety 
of precursors, including hexanoates, hexoses, dihydroxy-
acetone, pyruvate and glycerol (Lahiri et al. 2021). The 
resulting material is a high-purity polymer that does not 
contain the hemicellulose, pectin and lignin of the cellu-
lose obtained from plants, which makes of its purification 
a relatively simple process without the necessity to involve 
mechanical or chemical separation methods (Keshk 2014). 
Moreover, when compared to other types of cellulose, BC 
presents a higher porosity, higher water retention capacity, 
higher mechanical strength in its wet state and lower den-
sity, as well as a lower production cost (Vasconcelos et al. 
2017). Bacterial cellulose is also easy to functionalize, and 

it can act as a platform for the in situ formation of metal 
and metal oxide nanoparticles, such as silver nanoparticles 
(Foresti et al. 2017; Valencia et al. 2020), with promis-
ing results when tested as an antiseptic for wound-healing 
applications (Anwar et al. 2022; Barud et al. 2011; Pal 
et al. 2017).

Silver nanoparticles (AgNPs) are widely-used antiseptics 
for wound-healing due to their outstanding antibacterial activ-
ity (Bruna et al. 2021; Kędziora et al. 2018). Their antimi-
crobial mechanism deactivates the cell’s respiratory enzymes, 
interrupting the release of adenosine triphosphate and trigger-
ing the production of reactive oxygen species, causing a signif-
icant damage to both Gram-negative and Gram-positive bacte-
ria (Ahmad et al. 2020; Kalwar and Shan 2018; Ong and Nyam 
2022). It is demonstrated that silver nanoparticles can inhibit 
the growth of Escherichia coli (Logambal et al. 2023; Osorio-
Echavarría et al. 2022) and Staphylococcus aureus (Arokiyaraj 
et al. 2017; Hasnain et al. 2019), and cellulose–silver com-
posites have been reported to have a remarkable antibacterial 
activity in multiple studies (Audtarat et al. 2022; Gupta et al. 
2020; Homwan et al. 2023; Horue et al. 2020).

For this study, cellulose–silver film composites were syn-
thesized using BC obtained from mothers of vinegar and 
AgNPs in concentrations of 5, 25, 41, 69, 116 and 324 ppm. 
Mothers of vinegar are thick and hard layers formed on the 
surface of vinegar as a product of the acetic fermentation reac-
tion carried out by bacteria of the Acetobacter genera (Aykin 
et al. 2015). The bacteria convert the glucose and glycerol 
present in the vinegar in a highly pure cellulose with fibrils 
that are tightly merged into ribbons (Lahiri et al. 2021), which 
results ideal for immobilizing metal nanoparticles, as well as 
microorganism cells. The aim of this research was to evaluate 
BC-AgNPs films as potential topical antiseptics with wound-
healing purposes while using BC obtained from mothers of 
vinegar as a carrier material, as mother of vinegar has been 
rarely used as a BC source for this purpose despite them being 
sustainable, affordable, easy to produce and almost entirely 
composed of cellulose. AgNPs were synthesized through an 
in situ TEMPO-oxidation reaction on BC layers obtained from 
apple vinegar (avBC) and cranberry vinegar (cvBC). The anti-
bacterial activity and growth inhibition of the films against 
Escherichia coli ATCC-25922 and Staphylococcus aureus 
ATCC-29213 were evaluated.

Experimental

Materials

Chemicals

T h e  r e a ge n t s  u s e d  fo r  t h e  T E M P O - m e d i -
a ted  oxidat ion  reac t ion  were  the  fo l lowing: 
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2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) C9H18NO 
(98%) and sodium bromide NaBr (99%) purchased from 
Sigma-Aldrich, sodium hypochlorite NaOCl (6–9%) from 
Analytyka, sodium hydroxide NaOH (99%) from Emsure 
and silver nitrate AgNO3 (99%) from Fermont. Addition-
ally, zinc oxide ZnO (99%) acquired from Sigma-Aldrich 
was used to perform the cellulose solubility test.

Mother of vinegar

The BC was obtained from mothers of vinegar of two vari-
eties: apple vinegar (avBC) and cranberry vinegar (cvBC). 
The mothers of vinegar were washed with NaOH 2 M to 
remove impurities and secondary fermentation products, 
then washed in distilled water until its pH became neutral. 
The obtained samples were subjected to a solubility test 
in a solution of NaOH/ZnO (8:1) at 5 °C, under magnetic 
stirring to verify that the material obtained was indeed cel-
lulose (Budtova and Navard 2016; Väisänen et al. 2021).

Methods

Samples preparation

The silver nanoparticles were deposited on the BC lay-
ers by TEMPO-mediated oxidation, following the method 
reported by Ifuku et al. (2009) but using wet bacterial cel-
lulose instead of dried cellulose layers and with an in situ 
method variation. The wet BC was chopped and distrib-
uted in molds with 5 g per sample. Solutions were pre-
pared with the quantities of TEMPO, NaBr and AgNO3 
that were required to synthesize BC-AgNPs films with 5, 
25, 41, 69, 116 and 324 ppm, respectively; the quanti-
ties were adjusted to obtain films of 0.1 g with areas of 
approximately 2.5 × 2.5 cm after drying, considering that 
wet BC layers had 99.5% of water in weight. In all cases, 
the pH of the solution was maintained between 10.5 and 
11 by adding 0.01 M NaOH at room temperature. The 
solutions were mixed with each sample in their respec-
tive molds, and then, the NaOCl solution was added to 
start the oxidation reaction. Once the reaction finished, the 
samples were lightly washed with distilled water to remove 
secondary products and let them to dry in their molds for 
2–3 weeks at room temperature.

Sample characterization

The samples were characterized via optical microscopy, Fou-
rier transform infrared spectroscopy (FTIR), thermogravi-
metric analysis (TGA) and scanning electronic microscopy 

(SEM). Optical micrographs were obtained with a ZEISS 
microscope model AX10 (from Oberkochen, Baden-Würt-
temberg, Germany) and visualized with the Motic Images 
Plus 3.0 software. FTIR analysis was performed in a Per-
kin-Elmer Spectrophotometer model Spectrum 100 (from 
Waltham, MA, USA) in the 4000–450 cm−1 range, using the 
KBr plates technique with 200 mg of KBr and 2-mg sample 
and with a resolution of 4 cm−1. TGA was carried out with 
a TA Thermogravimetric Analyzer model SDT Q600 (from 
New Castle, DE, USA) in the 0–600 °C range, with a heating 
rate of 10 °C min−1 and under an N2 atmosphere. Finally, 
the SEM micrographs were obtained with a Jeol equipment 
model JSM IT200 (from Akishima, Tokyo, Japan) using a 
sample size of approximately 20 mm2.

Evaluation of antibacterial activity

The antibacterial activity of the BC-AgNPs films against 
Escherichia coli ATCC-25922 and Staphylococcus aureus 
ATCC-29213 was evaluated according to the Japan Indus-
trial Standard JIS Z 2801:2000 (Japanese Standards Associa-
tion 2000) with minor modifications. The microorganisms 
were individually grown in trypticase soy broth (TSB) at 
37 °C for 24 h. From the obtained culture, a suspension was 
prepared in 0.85% NaCl solution. The inoculum concen-
tration, calculated through the viable plate count method, 
was adjusted to approximately 51,000 colony-forming units 
per milliliter (CFU mL−1) with trypticase soy broth (1/500). 
Then, 4 mL of this suspension was inoculated into sterile 
vials containing the sample films. The samples were incu-
bated at 37 °C for 24 h in a humidified atmosphere (90%). 
After incubation, the resulting suspension was serially 
diluted, and the number of CFUs was determined by plate 
counting on trypticase soy agar (TSA) after 24-h incubation 
at 37 °C. The antibacterial activity (R) was calculated using 
the next equation:

where control24h and control0h are the mean number of colo-
nies on the vial without sample film at 24 and 0 h, respec-
tively, while sample24h is the mean number of bacteria on the 
sample film at 24 h. Finally, the growth inhibition percentage 
was calculated as follows:

where CFUcontrol and CFUsample are the numbers of colonies 
at the vial without film and with the film sample, respec-
tively. All tests were conducted in triplicate, and the average 
values were reported.

(1)R = Log
Control24h

Control0h
− Log

Sample24h

Control0h

(2)Inhibition(%) =
CFUcontrol − CFUsample

CFUcontrol

× 100



3962	 Chemical Papers (2024) 78:3959–3969

Results and discussion

After washing the mothers of vinegar in NaOH, transparent 
whitish bacterial cellulose layers were obtained. These lay-
ers were successfully dissolved in the NaOH/ZnO solution, 
meaning that they were indeed cellulose, with a degree of 
polymerization (DP) equal to or less than 200 according 
to Budtova and Navard (2016) and Väisänen et al. (2021). 
During the TEMPO-mediated oxidation reaction, the sam-
ples changed their color going from yellow to brownish, and 
finally to grayish, as expected according to Abdellatif et al. 
(2021). Finally, Fig. 1 shows that the saturation of the colors 
increased proportionally to the AgNPs concentration, as also 
reported by Pal et al. (2017).

Characterization of samples

Optical microscopy

Samples of pure bacterial cellulose from both vinegar varie-
ties, as well as cellulose films loaded with 116 ppm of silver 
nanoparticles, were observed with an optical microscope 
with 40 × and 75° prism opening, using the polarized mode 
in order to detect the silver metallic particles. The result-
ing micrographs are shown in Fig. 2. Although it is not 
possible to determine the width of the individual cellulose 
nanofibers with a 40 × magnification, intertwined fibers and 
strands of about 10–17 μm wide in the case of avBC (a) 
and about 5–13 μm for the cvBC (b) are visible, as it was 
expected according to Lahiri et al. (2021). The micrographs 
of the silver-loaded samples, on the other hand, show that 
the nanoparticles aggregated and formed blocks as long as 
373 and 395 μm in the avBC-AgNPs films (c) and 279 μm 
in the cvBC-AgNPs films (d). Aggregation likely occurred 
because of the large specific area of the nanoparticles, which 
is reported to increase their thermodynamic attraction to 
each other (Hotze et al. 2010; Tsuda and Konduru 2016).

Fourier transform infrared spectroscopy (FTIR)

Figure 3 shows the FTIR spectra of pure avBC (a) and cvBC 
(b), as well as the spectra of avBC-AgNPs films (c) and 
cvBC-AgNPs films (d) with 116 ppm of silver nanoparticles. 
In all the samples, an O–H stretching can be appreciated at 
3340 cm−1 and C-H stretchings at 2895, 1424 and 1360 cm−1 
(Mohite and Patil 2016; Sun et al. 2022). The intensity of 
the band at 1603 cm−1 is higher in the samples with sil-
ver nanoparticles; this can be attributed to the increment 
of carboxylate ions after the TEMPO-oxidation reaction 
(Feng et al. 2014; Fujii et al. 2020). The peaks that can be 
observed in all the samples at 1336 and 1314 cm−1 corre-
spond to C = O vibrations and skeletal C–C and C–O vibra-
tions, respectively (Abu-Nayem et al. 2020; Sun et al. 2004). 
The band at 1281 cm−1, which can be observed in the sam-
ples with silver, is attributed to vibrations of nitrate groups, 
probably due to AgNO3 remnants, which was employed as a 
precursor to obtain the AgNPs (Carvalho et al. 2018; Nunes 
et al. 2020). The signal at 1250 cm−1, present in the samples 
with silver nanoparticles, corresponds to an asymmetrical 
stretching of C–O–C, which also contributes to confirming 
the carboxyl functionalization of the cellulose (Hong et al. 
2021). Observed in all the spectra, the signal at 1206 cm−1 
represents a C–O stretching band (Nirmala et al. 2011); the 
peak at 1161 cm−1 can be attributed to the C–O–C stretch-
ing of the β-glucosidase bonds in the cellulose (Bagewadi 
et al. 2016; Zhuang et al. 2020); the signal at 1108 cm−1 
corresponds to the asymmetric C–O–C stretching and C–C 
breathing mode of cellulose rings (Paladini et al. 2021); the 
peaks at 1055 and 1032 cm−1 are attributed to the C–O–C 
skeletal vibrations of the pyranose rings in the cellulose 
(Mohite and Patil 2016; Sun et al. 2004, 2022); the peak 
at 1004 cm−1 corresponds to C–O and C–O–C stretching 
vibrations in cellulose (Azadfar and Wolcott 2020; Capraru 
et al. 2022) and the signal at 663 cm−1 represents a C–OH 
out-of-plane bending (Lanzagorta-Garcia et al. 2022). The 
broad absorption band between 685 and 520 cm−1 may be 
attributed to various vibrations of the pyranose ring and the 

Fig. 1   Samples of avBC loaded 
with 324, 116, 69, 41 and 
25 ppm of silver nanoparticles
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bending vibrations of the hydroxyl groups; and the peak at 
519 cm−1, present only in the samples with silver nanopar-
ticles, is attributed to its Ag2-O stretching vibrations (Alos-
manov et al. 2022; Kokot et al. 2002). It is also important to 
note the absence of signals at 1700 cm−1, indicating that the 
samples do not contain the carbonyl groups that are charac-
teristic of lignin, which is a confirmation that the cellulose 
samples are of bacterial and not vegetal origin (Bock et al. 
2020; Salim et al. 2021).

Thermogravimetric analysis (TGA)

Thermogravimetric analyses were carried out in the range 
of 0–600 °C. Figure 4 shows the TGA curves of pure cvBC 
(a) and cvBC-AgNPs with 116 ppm of silver (b). The first 
stage of mass loss in the pure BC occurred when heated 
from room temperature up to 100 °C which corresponds 
to the loss of moisture in the sample (Mohammadkazemi, 
et al. 2015; Mutiara et al. 2022). After the water loss, the 
TGA curve remained stable up to 250 °C, until a slight 
second degradation stage is observed between 250 and 
300 °C, corresponding to the start of the organic compound 

Fig. 2   Optical micrographs of pure avBC a, pure cvBC b, avBC-AgNPs films c and cvBC-AgNPs films d 

Fig. 3   FTIR spectra of pure avBC a, pure cvBC b, avBC-AgNPs 
films c and cvBC-AgNPs films d 
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decomposition. The third stage in the degradation pro-
cess, observed from 300 to 375 °C, resulted in a significant 
weight loss (~ 60%) and is attributed to the degradation of 
the cellulose (Mohammadkazemi, et al. 2015; Mutiara et al. 
2022). Then, from 375 to 600 °C, there is a fourth and last 
stage in the degradation process that represents the loss of 
carbonaceous residues (Zibetti-Teixeira et al. 2019), and 
the remaining weight corresponds to ashes (Mutiara et al. 
2022). Compared to the pure BC samples, the films with 
silver nanoparticles presented a relatively higher mass loss 
(> 40%) in the first stage, from room temperature to 100 °C. 
This is probably due to the degradation of impurities and 
residues of the synthesis reaction added to the water loss 
(Labulo et al. 2022). The second degradation stage, from 
100 to 315 °C, can be attributed to the loss of the cellulose 

and organic impurities (Majeed-Khan et  al. 2011). The 
remaining carbonaceous residues decompose during a third 
degradation stage from 315 to 450 °C (Zibetti-Teixeira et al. 
2019). Finally, the TGA curve stabilizes after 500 °C, as 
the remaining weight corresponds to ashes and the silver 
nanoparticles (Sampaio and Viana 2018).

The DTG curve observed in Fig. 5a shows that the deg-
radation of the pure cvBC samples occurred in the region of 
300–380 °C, with a maximum decomposition rate reached 
at 353 °C, which is close to the results obtained by Surma-
Ślusarska et al. (2008) and Vasil’kov et al. (2023). The DSC 
curve shown in Fig. 5b corresponds to a cvBC-AgNPs film 
with 116 ppm of silver, and it presents an intense exother-
mic peak at 273 °C which can be attributed to the thermal 

Fig. 4   TGA curves of pure cvBC a and cvBC-AgNPs film b 

Fig. 5   DTG curve of pure cvBC a and DSC curve of cvBC-AgNPs film b 
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decomposition of the cellulose, as expected according to 
Kristanto et al. (2021) and Majeed-Khan et al. (2011).

Scanning electronic microscopy (SEM)

Figure 6 shows the SEM micrographs of a cvBC-AgNPs film 
with 116 ppm of silver nanoparticles. It can be observed that 
most of the silver particles have an average size of 40–50 nm 
and form clusters with sizes up to 1000 nm (1 µm), as 
expected according to Chien et al. (2021), de Santa María 
et al. (2009), Lu et al. (2019) and Mohite and Patil (2016). 
The Ag/AgCl has not defined shape on the surface of the 
bacterial nanocellulose.

Antibacterial activity evaluation

Table  1 shows the values of antibacterial activity (R) 
against E. coli and S. aureus, as well as the percentage of 
growth inhibition obtained with the BC-AgNPs films and 
the pure bacterial cellulose samples. As observed, all the 
samples with silver nanoparticles presented a high anti-
bacterial activity with R values between 3.37 and 7.72, 
and according to Nuñez-Figueredo et al. (2019), a material 
can be considered an effective antibacterial when reaching 
values of R ≥ 2.0. Growth inhibition percentages between 
99 and 100% confirm that BC-AgNPs films with as low as 
5 ppm of silver nanoparticles have potential as antiseptic 
materials against both bacteria. It is important to mention 
that the antibacterial activity of all the BC-AgNPs films 
was higher when tested against S. aureus than when tested 
against E. coli. The BC-AgNPs films reached a 100% of 
growth inhibition with R values between 7.45 and 7.72 and 
a 99–100% inhibition with R values of 3.37–7.45 against 
S. aureus and E. coli, respectively. This finding is in line 
with the reports of Kawakami et al. (2008), whose research 
demonstrated that the same metallic element could have 
different antibacterial properties against different bacteria. 
It can also be noted that the pure bacterial cellulose sam-
ples from both sources showed a slight antibacterial activ-
ity against E. coli, although not against S. aureus. This 
likely occurred because cellulose fibers have the capacity 

to immobilize bacteria (Drachuk et al. 2017; Lahiri et al. 
2021; Rezaee et al. 2008; Santaolalla et al. 2021). How-
ever, this antimicrobial activity is minimal, with R val-
ues between 0.04 and 0.13 for E. coli and between − 2.84 
and − 2.74 for S. aureus, with no bacterial growth inhibi-
tion in any case.

Finally, it is important to mention that the BC-AgNPs 
films synthesized for this research equaled or surpassed 
the values of antibacterial activity and growth inhibition 
reported for other polymer–silver composites. Polylactide 
films with 1.0% of silver in weight presented a R value of 
4 against Salmonella enterica (Martínez-Abad et al. 2013); 
polysulfone films with 0.2% of a nanohybrid blend of gra-
phene oxide and silver nanoparticles were reported to inhibit 
the growth of E. coli and S. aureus in a 83.9% and 58.5%, 
respectively (Bouchareb et al. 2021); polyethylene films 
containing Ag-SiO2 and Ag-TiO2 mixtures in quantities 
ranging from 5 to 15% reached growth inhibition values of 
99.99% for S. aureus and between 92 and 99.97% for E. 
coli (Becaro et al. 2015) and cellulose–AgNPs composites 
synthesized with plant-extracted cellulose and silver nano-
particles in concentrations of 250 and 500 mM reached val-
ues of 99.99% of growth inhibition against E. coli (Kwon 
et al. 2021). Thus, the values of antibacterial activity and 
growth inhibition reported in this paper show that the bacte-
rial cellulose obtained from mothers of vinegar is a promis-
ing material to be used as support for silver nanoparticles 
with antiseptic purposes, and that the BC-AgNPs compos-
ites synthesized with this BC have an effectiveness which 
is similar to that of the cellulose–silver films produced with 
cellulose extracted from plants and superior to that of other 
polymer–silver composites.

Conclusions

In this study, BC-AgNPs films for wound-healing antiseptic 
purposes were synthesized via TEMPO-mediated oxidation, 
using mother of vinegar as the source of bacterial cellulose 
and various silver concentrations within the 5–324 ppm 
range. The BC was obtained from the mothers of vinegar 

Fig. 6   SEM micrographs of 
cvBC-AgNPs films
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from two varieties: apple and cranberry. The incorporation 
of the AgNPs into the bacterial cellulose was verified by 
optical microscopy, FTIR, TGA and SEM. FTIR and TGA 
analysis confirmed that the material obtained from the 
mothers of vinegar was indeed bacterial cellulose. Opti-
cal and SEM micrographs revealed that the silver nano-
particles tended to form aggregations, and for this reason, 
it is recommended to add a stabilizing agent in the future 
related research. The antimicrobial properties of the BC-
AgNPs films were tested against Staphylococcus aureus and 
Escherichia coli. The films presented outstanding values of 
antibacterial effectiveness and achieved a growth inhibition 
of 99–100% for both bacteria with silver concentrations as 
low as 5 ppm. These results prove that the BC obtained from 
mothers of vinegar can be used as an effective carrier for 
silver nanoparticles with wound-healing purposes, and that 
the BC-AgNPs composites which were synthesized for this 

research have great potential as antiseptic materials in the 
treatment of superficial wounds.
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