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Abstract
The widespread use of energetic materials (EMs) has increased human exposure to these substances, and the potential 
toxicity of nano-sized EMs remains a largely unexplored area of research. This study investigates the cytotoxicity of three 
nano-sized energetic nanomaterials, namely nano-sized triaminotrinitrobenzene (nano-TATB), hexanitrostilbene (HNS-IV), 
and 2,6-diamino-3,5-dinitropyrazine-1-oxide (nano-LLM-105), using L929 fibroblasts for in vitro testing. The findings 
demonstrate a significant dose-dependent toxic effect on L929 cells. As the dose increases, cell density decreases, cell 
morphology becomes rounder, and cell gaps widen. The results of cell activity assays, lactate dehydrogenase (LDH) and 
superoxide dismutase (SOD) activity measurements, and apoptosis detection suggest that the cytotoxicity is caused by cell 
membrane fragmentation and the excessive production of reactive oxygen species (ROS), leading to oxidative stress. Given 
the potential for EMs to cause toxic effects in various tissues and organs, including the liver and kidneys, and even teratogenic 
and mutagenic effects, this work provides valuable insights into the toxicological evaluation of energetic nanomaterials.
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Abbreviations
EMs  Energetic materials
nano-TATB  Nano-sized triaminotrinitrobenzene
HNS-IV  Hexanitrostilbene
nano-LLM-105  2,6-Diamino-3,5-dinitropyrazine-1-oxide
LDH  Lactate dehydrogenase
SOD  Superoxide dismutase
ROS  Reactive oxygen species
RGO  Reduced graphene oxide
GO  Graphene oxide

Introduction

Energetic materials (EMs) are a class of materials in which 
a large amount of chemical energy is stored and can be 
released. It occupies an important position in military 

explosives, fuels, and rocket propellants (Badgujar et al. 
2008; Du et al. 2021; Gao et al. 2020). For example, trini-
trotoluene (TNT), nitroglycerine (NG), hexogen (RDX), and 
octogen (HMX) are probably the most well-known ones. 
In fact, nano-sized triaminotrinitrobenzene (nano-TATB), 
hexanitrostilbene (HNS-IV), and 2,6-diamino-3,5-dinitro-
pyrazine-1-oxide (nano-LLM-105) are the most promising 
explosives for industrial applications in the field of energetic 
materials, among which ultrafine HNS-IV has been used in 
conventional weapons. It has been shown that typical explo-
sives, such as TNT, are toxic to cells (Banerjee et al. 2003), 
microorganisms (Yang et al. 2021), invertebrates (Berthelot 
et al. 2008), mammals (Johnson et al. 2017; Skalska and 
Struzynska 2015), and occupational groups (Wang et al. 
2019) to varying degrees (For more specific details refer to 
Note S1 of the Supplementary Material). In addition, many 
research studies have shown that nanomaterials (NMs) also 
exhibit toxicity, accumulate in soil (Wang et al. 2023), and 
are a threat to the environment (De Matteis et al. 2022; 
Hartwig and van Thriel 2023; Kim et al. 2012; Qu et al. 
2019; Vimbela et al. 2017; Winkless 2023).

The cytotoxicity of nanomaterials may vary depending 
on the type of cell being exposed (Prasad 2019a, b). For 
example, TNT has the highest toxicity to Chinese hamster 
ovary-K1 (CHO) cells., i.e.,  LC50 of 24 μmol  L−1 (Honey-
cutt et al. 1996). In contrast, it was the least toxic to hamster 
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lung cells V79, i.e.,  LC50 of about 197 μmol  L−1 (Lachance 
et al. 1999). Two types of cell lines are usually considered to 
evaluate the toxicity of certain material in vitro, namely the 
macrophages and the fibroblasts. The former is the sentinel, 
which has diverse functions in immunity and repair, while 
the latter is responsible for tissue structure and integrity 
(Franklin 2021). Mouse fibroblast L929 cells are the stand-
ard cell line for cytotoxicity experiments and are the recom-
mended cell line for YY/T0993-2015 “In Vitro Cytotoxicity 
Experiment Standard” (He et al. 1999). Currently, there are 
relatively few studies on the biotoxicity of EMs, with the use 
of the Vibrio fischeri luminescent bacterial assay to detect 
different types of EMs such as azidoethanol, 1- and 2-ami-
notetrazole, etc. (Can et al. 2020; Klapötke et al. 2020).

Various mechanisms for the toxic effects of NMs have 
been raised. One explanation is that the active surface and 
small size of the materials allow them to cross cell mem-
branes and interact with different cell structures and biomol-
ecules (Chatterjee et al. 2024; Dev et al. 2017). Specifically, 
nanoparticles can penetrate biological barriers, accumulate 
in various organs, and cause toxic effects such as oxidative 
stress, DNA damage, cell death, and morphological changes 
(Liu et al. 2018; Mohanty et al. 2022; Wu et al. 2022). Reac-
tive oxygen species (ROS) are formed on nanoparticles or 
metal ions released from the surface of the particles, inter-
fering with cellular pathways and damaging cellular compo-
nents and DNA (Atalay et al. 2018). At the same time, the 
balance between ROS production and antioxidant defense 
determines the degree of oxidative stress (Finkel & Hol-
brook 2000). Based on the biotoxicity effects of nanoscale 
EMs, it is worth further revealing the possible mechanisms.

In this work, we assess the toxicity of three types of ener-
getic nanomaterials on L929 fibroblasts. The nano-sized 
EMs are nano-TATB, HNS-IV, and nano-LLM-105. By 
detecting the cell activity after the exposure of nano-sized 
EMs, we obtain a relationship between the EMs dose and 
cytotoxicity. Further, we explore the lactate dehydrogenase 
(LDH) and peroxidase dismutase (SOD) activity, as well as 
the degree of apoptosis, and propose the possible toxicity 
mechanism of these nano-sized EMs.

Experimental section

Preparation and purification of nanoscale EMs

Spherical or ellipsoidal nano-TATB quasi-three-dimensional 
(3D) nano grids, HNS-IV nanoparticles, and nano-sized 
LLM-105 were synthesized according to the literatures 
(Wang et al. 2001; Yang et al. 2006; Zhang et al. 2014). 
See Supporting Information for detailed information on the 
preparation.

Cell morphological characterization

L929 fibroblasts in the logarithmic growth phase were 
selected, and the cell density was 1 ×  105/mL. 100 μL cel-
lular fluid was then taken in 96-well plates, incubated at 
37 °C, and 5%  CO2 at a constant temperature. After cell 
attachment, three EMs at different concentrations were 
added to the suspension. Then, the cells were incubated 
for 24 h, and morphological changes were observed under 
an inverted microscope.

Detection of cell activity

The cellular activity was usually determined using a 
chemical reagent method, such as CCK8, which reacts 
with dehydrogenase in living cells to produce a blue or 
yellow formazan compound (Mu et al. 2022). Cells in the 
logarithmic growth phase were selected for a 6 ×  104/mL 
cell density. EMs were added to cells for toxicity reac-
tions. After 24 h of incubation, 200 μL of CCK8 reagent 
was added to each well. After another 4 h of incubation, 
the absorbance (A) value at 450 nm was measured by 
an enzyme marker. The cell activity was calculated as 
follows.

where  A0 is the absorbance of the blank control;  A1 is the 
absorbance of the experimental group;  A2 is the absorbance 
of the control group in L·(g·cm)−1.

Cell culture supernatant LDH activity assay

We select cells in the logarithmic growth phase and adjust 
the cell density to 6 ×  104/mL. The cultured cells were sub-
jected to toxicity assay and incubated for 24 h according 
to the above conditions. Then, take the cell supernatant 
and use the LDH kit to detect LDH viability, and strictly 
follow the kit instructions.

Detection of cellular oxidative stress

We selected cells in a logarithmic growth phase and adjusted 
the cell density to 1 ×  105/mL. Then, the cell was incubated 
for 24 h. After removing the supernatant, the cells were col-
lected, and the SOD kit detected their viability.

Detection of apoptosis

L929 cells in the logarithmic growth phase were selected 
for toxicity assay and cultured for 24  h as described 
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above, the cells were washed with PBS buffer and then 
digested with trypsin. Then, the cell liquid was added 
to a 1.5 mL tube and centrifuged at 1000 rpm for 5 min, 
and the supernatant was removed. Next, add 500 μL of 
buffer to resuspend the cells, add five μL of Annexin 
V-APC/PI to mix well, and then use flow cytometry to 
detect. The f low cytometer parameters were excita-
tion wavelength Ex = 488  nm, emission wavelength 
FL1 (Em = 525 ± 20 nm), and FL2 (Em = 585 ± 21 nm). 
Annexin V-APC green fluorescence was detected through 
the FITC channel (FL1), and PI red fluorescence was 
detected through the PI channel (FL2). The percentage of 
each cell type was counted, and the level of apoptosis was 
quantitatively analyzed.

Statistical analyses

The data of cell activity and apoptosis levels in this 
experiment were taken as the mean values of three paral-
lel samples, and the data were expressed in the form of 
“mean ± standard deviation,” and the data were processed 
by SPSS22.0 software, and the experimental data were 
counted by one-way ANOVA.

Results and discussion

Cell morphological changes

In Fig. 1, we show the morphological information of L929 
cells with an inverted microscope. The morphology of unin-
fected L929 cells is shown in Fig. 1a, which shows that the 
cells are in good growth condition and have a long shuttle 
shape.

It is known that when cells were cultured with the pres-
ence of toxic materials, the cell morphology and its prolif-
eration rate could change accordingly. Thus, the changes in 
cell morphology can be used for preliminary determination 
of the material’s toxicity.

In a relatively low concentration of 5 μg  mL−1, the mor-
phology and density of the cells in nano-TATB (Fig. 1b) 
and HNS-IV (Fig. 1e) stained groups did not change sig-
nificantly compared with the unstained control group. The 
results indicate that a low concentration of nano-TATB and 
HNS-IV did not obviously damage the L929 fibroblasts cell. 
In contrast, the density of nano-LLM-105 (Fig. 1h) stained 
cells decreased slightly.

When the concentration was increased to 10 μg  mL−1, 
the cell density of the nano-TATB (Fig. 1c) and HNS-IV 
(Fig. 1f) contaminated groups also started to decline; the 

Fig. 1  Morphological of 
uninfected (a), and nanoscale 
EMs stained (b–j) L929 cells 
(× 400). The red circles in the 
figure indicate the cell morphol-
ogy that changed significantly. 
Note that the cell morphology 
all changed to different degrees 
with the increase of EM con-
centration
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morphology of some cells in the nano-LLM-105 contami-
nated group also changed from a strip with clear shape bor-
ders to a round shape with blurred borders (Fig. 1i).

After using a high concentration (100 μg  mL−1), the den-
sity of L929 cells in the nano-TATB (Fig. 1d) and nano-
LLM-105 (Fig. 1j) contaminated groups decreased signifi-
cantly, and the cell morphology became round with larger 
cell gaps as shown by the red circles in the figure. The 
cell density in the HNS-IV (Fig. 1g) contaminated group 
decreased the most, and almost all cell morphologies showed 
irregular shapes. Changes in cell morphology were evident, 
with more spillage and an increased percentage of necrotic 
cells, indicating significant toxicity of the material at high 
concentrations.

Effect on cell activity

In vitro cytotoxicity assays are often used to predict the tox-
icity of a chemical material to an organism. Cell viability 
was determined by the CCK8 method at different concentra-
tions of EMs after 24 h. Figure 2 shows the effect of nano-
TATB, HNS-IV, and nano-LLM-105 on the activity of L929 
fibroblasts, which showed a significant dose–effect relation-
ship with the increase in the concentration of different EMs. 
Still, there were substantial differences in the magnitude of 
the toxic effects of the three explosives. As the concentra-
tion of nano-LLM-105 increased from 5 to 250 μg  mL−1, the 
activity of L929 cells decreased by nearly half, indicating 
that nano-LLM-105 is highly cytotoxic. It is clear from the 
graph that nano-LLM-105 has the greatest degree of toxic 
effect on cells, followed by HNS-IV, and nano-TATB has the 
weakest toxic effect.

Specifically, around 10 μg  mL−1, the cell viability was 
still high, about 70%, and decreased abruptly to less than 
30% around 25 μg  mL−1, indicating that nano-LLM-105 
staining significantly reduced cell activity and inhibited 

cell growth in a dose-dependent manner. HNS-IV was 
less toxic to L929 cells at a concentration of 25 μg  mL−1, 
with cell activity above 80%, and the cell survival rate was 
(59.34 ± 4.48)% at 250 μg  mL−1. At the maximum concen-
tration of 250 µg-mL−1 of nano-TATB, the cell survival rate 
was still (74.38 ± 2.77) %, and the inhibition of cell activ-
ity was not obvious at such a high concentration, indicating 
that the toxicity of nano-TATB and HNS-IV to L929 cells 
was very low. According to the dose relationship in Fig. 2c, 
the half maximal inhibitory concentration  (IC50) value of 
nano-LLM-105 own L929 cells at 24 h was calculated to be 
15.74 μg  mL−1. However, for nano-TATB and HNS-IV, the 
inhibition was not less than 50% even at a high concentration 
of 250 μg-mL−1, so it was impossible to obtain, and it was 
not necessary to require their  IC50.

Effect on cell membrane permeability

Lactate dehydrogenase activity is elevated in many patho-
logical states, as shown in Fig. 3. When L929 cells were 
incubated with the three groups of EMs, the LDH activity 
in the cell supernatant was found to increase with increasing 
concentrations of nano-TATB, HNS-IV, and nano-LLM-105 
compared to the blank control in each group, indicating an 
increase in cell membrane permeability, but the degree of 
change was different for the three materials. Among them, 
HNS-IV (Fig. 3b) triggered the release of large amounts of 
LDH from the cells, indicating that the integrity of the L929 
cells membrane was lost, which increased its permeability. 
Cell death caused by the disruption of cell membranes is one 
of the standard mechanisms for the cytotoxicity of NMs. It 
has been shown that elevated serum LDH is an independent 
risk factor for the severity of COVID-19 pathogenesis and 
mortality (Li et al. 2020). High LDH activity in sickle cell 
disease (SCD) arises from multiple mechanisms, particularly 
intravascular hemolysis, ischemia–reperfusion injury, and 

Fig. 2  Effect of three nanoscale EMs on the viability of L929 cells at 
different dyeing doses. Note that the cellular activity all showed dif-
ferent degrees of diminution with increasing concentration of EMs. 

And according to the trend nano-LLM-105 has the strongest cyto-
toxic effect, followed by HNS-IV, and nano-TATB has the weakest 
effect
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tissue necrosis (Stankovic Stojanovic and Lionnet 2016). 
Ahamed et al. exposed lung A549 cells to 50 µg/mL  CeO2 
NPs, reduced graphene oxide (RGO), and  CeO2-RGO 
nanocomposites for 24 h and found that RGO significantly 
induced LDH leakage and that cytosolic LDH leakage into 
the medium was an indicator of cell membrane damage 
(Ahamed et al. 2019).

Cellular oxidative stress levels

Reactive oxygen species (ROS) are notable species of free 
radicals in living organisms. When organisms are exposed 
to external environmental stresses, such as pollutant expo-
sure, this can lead to the production of large amounts of 
exogenous ROS, such as superoxide anion  (O2•−), hydroxyl 
radical (HO•−) that can act as signaling molecules during 
apoptosis (Nel et al. 2006). In contrast, biological organisms 
have a set of antioxidant defense systems that eliminate free 
radicals, such as superoxide dismutase (SOD), whose activ-
ity changes in response to the level of ROS in the body.

Oxidative stress is a possible mechanism for the potential 
toxicity of NMs, causing cellular necrosis (Dusinska et al. 
2017). Nanoscale materials may induce oxidative stress 
through the production of pro-oxidants or the reduction of 
antioxidants. Specifically, the generation of intracellular 
ROS or the depletion of antioxidants may lead to oxidative 
damage to cellular biomolecules. Moreover, ROS can initiate 
a chain reaction that readily reacts with various unsaturated 
fatty acids and cholesterol on the cell membrane, and this 
direct oxidative damage to the cell can lead to apoptosis. It 
has been reported that curcumin regulation of nuclear tran-
scription factor κB (NF-κB) activity is affected by ROS in 
transformed cells, and abnormal κB activity induces apop-
tosis (Chi et al. 2018; Deragon et al. 2020). Paclitaxel dik-
etone induces apoptosis in BCR-ABL-positive cells through 
the generation of ROS by the mechanism of mitochondria-
mediated apoptosis (Uchihara et al. 2018).

As shown in Fig. 4, the HNS-IV and nano-TATB-dyed 
groups caused almost no significant changes in intracellular 
SOD activity, which was not statistically significant. In con-
trast, the SOD activity of the nano-LLM-105-tainted group 
decreased with the increase of the dose; the intracellular 
SOD activity significantly reduced at the concentration of 
nano-LLM-105 above 25 μg  mL−1. The decrease in SOD 
activity indicates that its ability to scavenge ROS is dimin-
ished, and the excess of free radicals will oxidize unsaturated 
fatty acids in the biofilm to damage the cell membrane struc-
ture, resulting in a decrease in cell activity.

Several studies have also demonstrated this mechanism. 
Ahamed et al. found that reduced RGO NMs significantly 
induced reactive oxygen species (ROS) production and 

Fig. 3  Effect of three nano energetic materials on the integrity of L929 cells membrane at different doses (*P < 0.05, **P < 0.01). Elevated LDH 
levels indicated that the L929 cell membrane was fragmented, with HNS-IV having the strongest membrane-disrupting effect

Fig. 4  Effect of three nanoscale energetic material on the intracellular 
SOD activity of L929 cells at different dyeing doses. The decline in 
SOD activity indicates a reduced ability to scavenge ROS. The toxic-
ity mechanism of nano-LLM-105 is mainly manifested by oxidative 
stress
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reduced glutathione levels in human lung epithelial A549 
cells (Ahamed et al. 2019). Shaheen et al. investigated the 
induction of oxidative stress-mediated toxicity in graphene 
oxide (GO) ZnO nanocomposites in MCF-7 cells (Shaheen 
et al. 2018). CuO NPs in A549 cells induced cytotoxicity, 
oxidative stress, and severe ultrastructural damage (Moschini 
et al. 2013). Rao et al. found that the toxic effects of nano-
hydroxyapatite HAP on renal epithelial cells were mainly 
attributed to its entry into the cells through endocytosis and 
accumulation in the lysosomes, leading to increased intracel-
lular reactive oxygen species (ROS) levels and disruption of 
lysosomal integrity (Rao et al. 2019).

Apoptosis

Apoptosis is a self-protection mechanism for organisms to 
clear potential hazards, and oxidative protein damage lead-
ing to protein carbonylation is also associated with the gen-
eration of apoptosis. Apoptosis, which is closely related to 
cell proliferation and differentiation, is the main pathological 
basis of many diseases and one of the most important indica-
tors for drug development and toxicity testing, for example, 
apoptosis as a parameter was used in the study of the toxic-
ity of secondary effluents disinfected with performic acid 
(PFA) (Ragazzo et al. 2017). It has been reported that furan 
can produce cytotoxic effects on Leydig cells through DNA 
damage and apoptosis (Yilmaz et al. 2023). The study of 
the mechanism of toxicant-induced apoptosis is essential for 
comparing the toxicity of different toxicants and understand-
ing their toxicological characteristics. In this paper, we carry 
out a simple verification that the toxicity of nanomaterials 
induces apoptosis, and its specific mechanism still needs to 
be continued to explore.

As shown in Table 1, the apoptosis percentages of nano-
TATB, HNS-IV, and nano-LLM-105 NMs at different 
concentrations showed a dose-dependent apoptosis level 
with increasing attention. When the concentration of nano-
LLM-105 (Fig. 5) was 10 μg  mL−1, the images were sig-
nificantly dispersed when comparing the responses at low 
concentrations, indicating that it promoted apoptosis. As the 
concentration was increased to 100 μg  mL−1, the level of 
apoptosis was nearly half. This suggests that nano-LLM-105 

significantly promoted apoptosis, while HNS-IV and nano-
TATB showed apoptosis-inducing effects only at high con-
centrations; HNS-IV and nano-TATB images are shown in 
the Supplementary Materials of Fig. S2. This is consistent 
with the results of cell viability studies, which showed that 
nano-LLM-105 had the most potent toxic effect, and the 
decrease in cell viability increased with increasing concen-
trations. It had the most powerful impact on apoptosis levels. 
Another study showed a correlation between reduced cell 
viability and cell membrane rupture, which can be caused 
by cell gangrene or apoptosis, especially in the middle and 
late stages of apoptosis (Bao et al. 2015). This suggests that 
nano-LLM-105 exerts its toxic effects by inducing apoptosis, 
and thus reduces the viability of the cells.

Conclusion

Energetic materials (EMs) have the potential to cause toxic 
effects in various tissues and organs, including the liver and 
kidneys, and may even be teratogenic and mutagenic. The 
three materials evaluated in this study are among the most 
promising explosives for industrial applications in the field 
of EMs, and their cytotoxicity was investigated to assess 
their potential health risks.

In this experiment, mouse fibroblasts L929 were used as 
the test cells, and the toxic effects of the nano-sized energetic 
materials nano-TATB, HNS-IV, and nano-LLM-105 were 
investigated. The results showed that all three EMs had cyto-
toxic effects on L929 cells, with nano-LLM-105 being the 

Table 1  Effects of nano-TATB, HNS-IV, and nano-LLM-105 on the 
apoptosis level of L929 cells

Group Apoptosis %

Nano-TATB HNS-IV Nano-LLM-105

Blank 1.88 1.88 1.88
5 μg·mL −1 8.46 ± 0.79 4.52 ± 0.4 7 6. 26 ± 0.33
10 μg·mL −1 8.53 ± 0.35 5.54 ± 0.43 22.69 ± 0.26
100 μg·mL −1 16.46 ± 0.34 8.26 ± 0.27 42.35 ± 1.26

Fig. 5  Effects of nano-LLM-105 at different exposure doses on apop-
tosis of L929 cells



3513Chemical Papers (2024) 78:3507–3514 

most toxic. The toxicity of the nano-LLM-105-treated cells 
increased with increasing particle concentration, indicat-
ing a dose-dependent effect. The half-maximum inhibitory 
concentration  (IC50) of nano-LLM-105 on L929 cells was 
15.47 μg  mL−1, which was significantly lower than the  IC50s 
of HNS-IV and nano-TATB on L929 cells (> 250 μg  mL−1).

The mechanism of cytotoxicity was investigated by 
measuring cell morphology changes, cell membrane dam-
age, and oxidative stress. The results showed that all three 
EMs induced cell morphology changes, increased lactate 
dehydrogenase (LDH) activity, and decreased superoxide 
dismutase (SOD) activity. These findings suggest that the 
cytotoxic effects of EMs are mediated by cell membrane 
damage and oxidative stress.

In conclusion, this study provides valuable insights into 
the cytotoxic effects of nano-sized energetic materials. The 
findings suggest that nano-LLM-105 is the most toxic of the 
three materials evaluated, and that oxidative stress may be a 
major mechanism of nano-LLM-105 toxicity. These results 
highlight the need for further research on the toxicologi-
cal effects of EMs and the development of safer alternative 
materials.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11696- 024- 03324-6.
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