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Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious virus that belongs to the RNA virus 
family Coronaviridae, infects a variety of animal species, and replicates primarily in the lower and upper respiratory tract. 
A proportion of 90% of infections are uncomplicated, and 4–7% of people are hospitalized. The main focus is on people 
with comorbidities, which are risk factors for severe disease and lead to high rates of hospitalization and death. During the 
early stages of a pandemic, many diagnostic approaches such as biochemical, serological, and molecular investigations are 
used to detect SARS-CoV-2. This review emphasizes immunodiagnostic techniques, including virus neutralization assay, 
CRISPR, nicking endonuclease amplification reaction, lateral flow immunoassay, protein-peptide microarray, and chemilu-
minescence immunoassay; it also includes novel approaches such as next-generation sequencing. Nanotechnology is critical 
in the prevention, diagnosis, and treatment of SARS-CoV-2, with an in-depth review of its principles, usefulness, benefits, 
and drawbacks. The study sheds light on diagnostic methods that apply to future infectious viruses as well as SARS-CoV-2. 
Furthermore, the article explores diverse nano-based treatments, including vaccines, immunotherapy, and gene therapy, 
providing encouraging methods for the prevention and management of SARS-CoV-2.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is the causative agent of the new 2019 coronavi-
rus disease (COVID-19), which belongs to the large RNA 
viruses, i.e., the Coronaviridae family, which affects a 

variety of mammals (Nickbakhsh et al. 2020 and Bhat-
tacharjee et al. 2023). The SARS-CoV-2 virus causes a wide 
spectrum of clinical symptoms, ranging from asymptomatic 
illness to severe pneumonia, short-lived flu-like symptoms, 
and acute respiratory distress syndrome. It is an extremely 
contagious virus that replicates mainly in the lower and 
upper respiratory tracts and is transmitted primarily by aero-
sols and droplets (Kang et al. 2020).

In general, 90% of infections are uncomplicated, have 
mild symptoms, or are oligosymptomatic, not requiring hos-
pitalization. However, hospitalization is required in 5–10% 
of cases, including patients with comorbidities, such as 
hypertension, chronic heart or lung failure, diabetes melli-
tus, older age, and immunodeficiency (Salzberger et al. 2021 
and Sahu et al. 2021). SARS-CoV-2 is structurally similar 
to SARS-CoV, middle respiratory syndrome coronavirus 
(MERS-CoV), and other coronaviruses of living organisms 
(Singh and Yi 2021).

Coronavirus consists of approximately 30,000 nucleotides 
and four structural proteins, namely the envelope protein 
(E), membrane protein (M), nucleocapsid protein (N), and 
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spike protein (S) encoded by this gene, as well as many 
non-structural proteins (NSP) (Fig. 1). The viral capsid is a 
type of protein shell that contains a core capsid commonly 
referred to as a nuclear protein. It is linked to the positive 
single strand of the virus’s RNA, allowing it to enter living 
tissue and transform it into a viral casting unit (Boopathi 
et al. 2019). SARS-CoV-2 induces the angiotensin-convert-
ing enzyme 2 (ACE2) surface receptor to enter the living 
tissue of the host cell (Sarma et al. 2021). Table 1 provides 
information about the variants of SARS-CoV-2 and their 
structural differences.

The viruses and their characteristics were obtained from 
a variety of patient samples, including nasal and throat 
samples, mucus, saliva, plasma, and serum. Numerous 
techniques are used to analyze SARS-CoV-2 in the initial 
phase of the pandemic, such as monitoring body temperature 
(fever), as this is associated with SARS-CoV-2 symptoms. 
However, even individuals undergoing thermal screening are 
positive in confirmatory analytical procedures (Schultz et al. 
2023). There are several diagnostic approaches to detect the 
presence of SARS-CoV-2 that can make the results more 
accurate. Biochemical testing is among the methods that 
can improve diagnosis. The tests include C-reactive pro-
tein (CRP), complete blood count, and cytokines; however, 
a major drawback is that they are not highly specific (Ye 
et al. 2022). To determine the target component of SARS-
CoV-2, both molecular and serological diagnostic methods 
are used. The most widely used molecular diagnostic tests 
for the diagnosis of SARS-CoV-2 are polymerase chain 
reaction (PCR), real-time quantitative reverse transcription 
PCR (qRT-PCR), computed tomography (CT), and reverse 
transcription loop-mediated isothermal amplification (RT-
LAMP). In contrast to SARS-CoV-2, the detection of viral 
antibodies (IgM/IgG) and antigens in serological tests, such 

as enzyme-linked immunosorbent assay (ELISA), lateral 
flow immunosorbent assay (LFIA), and biosensor-based 
diagnostics, as well as CRP in clinical samples, is used to 
determine the stage of the disease (Hazra and Patra 2023 
and Xiao et al. 2023). The major drawback is that antibod-
ies are slow to form in response to the SARS-CoV-2 virus 
(D. f. Li et al. 2023). In this regard, serological diagnostic 
systems provide not only extremely sensitive and specific 
reports but also faster reports, cost-effectiveness, simplic-
ity, and ease of use, making them an excellent alternative 
for biosensor operations (Salahandish et al. 2023). After the 
onset of infection, IgM antibodies can be found in the acute 
phase. In secondary infection, higher levels of viral IgG and 
IgM antibodies can be detected, and the results of detecting 
the amount of IgM and IgG antibodies in the blood sample, 
along with viral RNA, can provide a minute indication of 
the extent of SARS-CoV-2 contamination and resistance in 
an individual. The diagnostic methods for SARS-CoV-2 are 
serologic and molecular systems using clinical specimens 
containing viral proteins or antigens, immunoglobulins/
antibodies (IgM, IgG), and RNA unique to SARS-CoV-2 
(Salahandish et al. 2023). Lymphopenia is an example of 
an immunological abnormality that can be used to predict 
the health status of a SARS-CoV-2-diagnosed individual. 
Table 2 provides an overview of existing methods for detect-
ing SARS-CoV-2 and immunological techniques.

In addition, there are other promising techniques, such 
as CRISPR (clustered regularly interspaced short palin-
dromic repeats), surface-enhanced Raman scattering, next-
generation sequencing, vertical flow assay, amplicon-based 
metagenomic sequencing, nicking endonuclease amplifica-
tion reaction (NEAR), virus neutralization test (VNT), and 
nano-based techniques, such as colorimetric assays, micro-
fluidic devices, magnetic nanoparticle-based separation, 

Fig. 1  Genomic surface protein 
structural representation of 
SARS-CoV-2
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gold nanoparticles, nucleic acid-based biosensors, antibody-
based biosensors, and surface plasmon resonance (Truong 
et al. 2023 and Simon et al. 2023). Nano-based particles have 
been developed to target viral infections due to their unique 
physicochemical properties, such as nanoscale dimensions, 
easily accessible surface modifications, and greater surface 
proximity. Nano-based particles have been used as drug 
delivery systems for the therapy of coronavirus infections. 
Different types of nanoparticles (NPs) can be used as nano-
medicines, such as nano-based vaccines, nano-based gene 
therapy, and nano-based immunotherapy against coronavi-
ruses (McNamee et al. 2023 and Li et al. 2023). The current 
review mainly focuses on the various available diagnostic 
approaches, i.e., molecular, immunological, and platforms 
under development, as well as the future prospects with 
respect to techniques for the detection of SARS-CoV-2. In 
addition, a holistic overview of nano-based therapies against 
SARS-CoV-2 infections is provided.

The data for the current study were acquired from 
renowned academic databases, including Web of Science, 
Scopus, PubMed, and Google Scholar, and covers the pub-
lication period from 2020 to 2023. The following keywords 
used such as “SARS-CoV-2 and Diagnostic Tools”, “Nano-
based Treatment”, and “Nano-based Vaccines” to get the 
most relevant articles. Initially, 692 articles were found 
based on our search keywords. We evaluated the information 
for preliminary assessment based on the abstract and title of 
each publication. We deducted all redundant and withdrawn 
articles, followed by the deduction of non-English-language, 
paid articles and research paper with no outcome. A consid-
erable number of publications related to SARS-CoV-2 were 
found, and we limited ourselves to a selection of 200 articles.

Traditional laboratory diagnostic tools 
for SARS‑CoV‑2 recognition

Virus culture

Viral culture can be carried out using standard methods. 
Vero cells were used to inoculate nasopharyngeal and oro-
pharyngeal samples, which were cultured at a temperature of 
37 °C with 5%  CO2 in Dulbecco’s modified Eagle medium 
in combination with 2% fetal serum (bovine) (Park et al. 
2023a). The particular cytopathic effects were detected 
after 3 days of inoculation. Later, real-time RT-PCR was 
utilized to confirm these effects. By inoculating broncho-
alveolar lavage (BAL) samples, researchers from Wuhan, 
China, were able to isolate 2019-nCoV from human airway 
Vero E6, Huh-7 cell lines, and epithelial cells (Dastoor-
poor et al. 2023). Although the isolation of viruses from 
human airway epithelial cell cultures is a time-consuming 
process, it has been proven to be extremely promising for Ta
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the analysis of human respiratory infections (Subramani-
yan et al. 2023). Using Vero CCL-81 cells, an Indian team 
recently announced the first isolation of SARS-CoV-2 
(Kumar et al. 2023). The inoculated cells were observed for 
particular cytopathic effects for SARS-CoV-2 using naso-
pharyngeal and oropharyngeal samples, then fixed, dried, 
and cut into segments for transmission electron microscopy 
using conventional methods. Coronavirus-specific morphol-
ogy was discovered, as well as virus particle sizes ranging 
from 70 to 90 nm. The virus was also revealed to be present 
in a variety of intracellular organelles, including vesicles. 
The method’s decision to choose real specimens relying on 
the spread of virus loads seen throughout prognostic test-
ing has both strengths and weaknesses, where the clinical 
features and infections were not taken into consideration 
while choosing samples, and it was likely that the specifici-
ties found for PCR-positive samples may have been over-
stated since PCR-positive and PCR-negative samples were 
assessed independently (Park et al. 2023a).

Reverse transcription polymerase chain reaction 
(RT‑PCR)

Currently, available SARS-CoV-2 pandemic diagnos-
tic approaches focus on nucleic acid, protein-based, and 
antibody detections; however, RT-PCR has been accepted 
as the ideal reference for pinpointing viral nucleic acids 
(Du and Wang 2023). Nucleic acid assays provide supe-
rior precision and accuracy relative to currently accessible 

serological investigations, enabling virus identification. 
In February 2020, the US Food and Drug Administra-
tion (FDA) authorized licensed laboratories to undertake 
SARS-CoV-2 diagnostic tests (World Health Organiza-
tion 2020). The initial stage in the procedure is to isolate 
viral RNA and then convert it to cDNA (complementary 
DNA). The biological enzyme Taq DNA polymerase is 
used to expand the cDNA. The overall turnaround time 
can be as long as 2 days, with the danger of cross-con-
tamination, which reduces specificity. In most cases, the 
tests are carried out in hospital laboratories (Islam et al. 
2023). Variations in viral RNA sequencing can affect 
real-time RT-PCR findings, utilizing markers that target 
several virus-related genomic sections. Moreover, false-
negative reports may occur as a result of virus progression 
(Bedoya-Joaqui et al. 2023). The challenges and weak-
nesses of RT-PCR techniques include specimen retention, 
inadequate extraction of nucleic acid, cost, and delayed 
results; even with these drawbacks, the RT-PCR technique 
is still the preferred tool for diagnosing SARS-CoV-2. Fig-
ure 2 shows a schematic workflow of the RT-PCR assay 
starting with the naso-/oropharyngeal swab, taken from the 
subject which can be stored at 2–8 °C for 3 days and fol-
lowed by extraction and purification of RNA. The purified 
RNA is then transcribed reversibly to DNA using specific 
enzymes and markers in an RT-PCR machine. If a positive 
result from the amplification is obtained, then the SARS-
CoV-2 virus is present (Cui et al. 2023).

Fig. 2  Diagrammatic illustration of SARS-CoV-2 recognition by RT-PCR assay
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Reverse transcription loop‑mediated isothermal 
amplification (RT‑LAMP)

Reverse transcription loop-mediated isothermal amplifica-
tion (RT-LAMP) is an additional nucleic acid screening 
approach used to identify SARS-CoV-2. The RT-LAMP 
approach uses four to six oligos (oligonucleotides), DNA 
polymerase, and reverse transcriptase of a specific pattern 
to amplify nucleic acid in a single phase. Turbidity, fluo-
rescence, and colorimetric measurements are employed to 
identify LAMP-based monitoring procedures. The method-
ology is lucid to construct and anticipate, and it produces 
negligible background distortion. Interpretation, experience, 
and reaction optimization are the key limits of LAMP testing 
(Moulahoum et al. 2021). The indication readout capabili-
ties of EvaGreen were larger than those of SYBR® Green 
of the two fluorescent dyes examined (Zhu et al. 2020). RT-
LAMP is a viral diagnostic system based on strips/paper 
incorporated as part of a microfluidic platform (Augustine 
et al. 2020). In the experiment, fluorescein was assigned to 
one primer set, and the reaction was catalyzed by labeled 
RT (Zhu et al. 2020). To develop a perceptible violet pig-
ment with a leucocrystal violet dye, an alternate approach 
for LAMP reliably identified SARS-CoV-2, allowing for the 
detection of 100 duplicates per response. The limit of detec-
tion of the LAMP assay can be extended by deploying a 
closed-unit Penn-RAMP, which integrates RT-recombinant 
polymerase amplification and RT-LAMP in the same unit 
(Moulahoum et al. 2021 and Song et al. 2021). The strength 
of RT-LAMP is that LAMP is more proper than RT-PCR for 

analyzing a pandemic because it has certain intrinsic features 
over RT-PCR, such as proliferation at a static temperature, 
absence of a thermal cycler, a rapid test response, and per-
haps a broader diagnostic capability. The RT-LAMP assay 
sequence is illustrated schematically in Fig. 3. The results 
of the first three phases of the RT-LAMP technique can be 
used as a model for LAMP system response. In phase (i) of 
Fig. 3, LAMP reagents, such as avian myeloblastosis virus 
(AMV) transcriptase, polymerase (Bst 2.0), and deoxyribose 
adenosine triphosphate (dATP), are employed to create the 
amplification solutions. The interaction of LAMP reagents 
with fluorescein isothiocyanate (FITC)-labeled open read-
ing frame 1a/b (F1ab) forward loop primer (LF) (F1ab-LF*) 
and biotin-labeled nucleoprotein (np)-backward loop primer 
(LB)(np-LB*) initiates the isothermal amplification in phase 
(ii). In phase (iii), traceable SARS-COV-2RT-LAMP solu-
tions are offered. FITC/biotin-labeled F1ab-LAMP and 
FITC/biotin-labeled np-LAMP amplicons, as well as the 
results of labeling np-LB* and np-LF* or F1ab-LB* and 
F1ab-LF* for biotin and digoxigenin, are displayed in phase 
(iii). The F1ab primer set, on the other hand, is tagged with 
FITC, and the np-RT–LAMP product is measured with bio-
tin, as well as digoxigenin, whereas the F1ab-RT-LAMP 
result is tagged with biotin and FITC (Song et al. 2021).

Saliva testing

The presence of SARS-CoV-2 RNA in saliva studies, par-
ticularly in nasopharyngeal samples, is essentially irrelevant 
to the etiology of the disease. On the other hand, human 

Fig. 3  Schematic representation of SARS-CoV-2 recognition by RT-LAMP assay
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saliva is becoming increasingly popular as a diagnostic 
tool for the diagnosis of infection (Ning et al. 2021). Spu-
tum is a noninvasive and easy-to-use sampling method. 
Unfortunately, a weakness in the test is that 72% of SARS-
COV-2 patients are unable to provide an adequate sample 
volume (Galderisi et al. 2023). Saliva is a valuable bio-
logical medium because it contains nucleic acids, proteins, 
hormones, and electrolytes derived from a variety of local 
or systemic sources. Saliva contains approximately 30% of 
the biomolecules that are also found in blood, which can 
be used in the diagnosis of diseases and infections caused 
by microbes and viruses (Miller et al. 2021). In addition, it 
has a benefit, as the saliva samples can be stored in emol-
lient solutions and sent to the testing center many days later 
(Johannsen et al. 2021). The use of RT-PCR to detect res-
piratory infections in saliva, including two seasonal human 
coronaviruses, has resulted in matches (Bogdan et al. 2023). 
Figure 4 shows a schematic workflow of a saliva test. A 
sample of the subject’s saliva is collected. The saliva sample 
is processed to obtain gene material (RNA) tagging with 
biomarker for identification and then run for the test. A posi-
tive result from the test for viral RNA indicates the sample 
of saliva contains the SARS-CoV-2 virus.

Fecal test

When nasopharyngeal samples were virus-negative, a high 
prevalence and viral persistence in feces were reported (Xiao 
et al. 2020). It is worth noting that the viral strain can be 
determined in stool specimens up to one month after the 
commencement of the infection. The dangers of healthcare 
workers being exposed to the feces of diseased patients are 
well-established, especially in operations that generate a 

lot of aerosols. Whereas cough and fever are well-known 
symptoms, confirmed gastrointestinal symptoms suggest 
fecal–oral transmission pathways (Nobel et al. 2019). The 
European Centre for Disease Prevention has urged continued 
self-isolation based on the persistent virus detaching in feces 
and respiratory samples 14 days after release. According 
to studies, the live virus may also be isolated from feces 
samples, which suggests fecal–oral transmission. SARS-
CoV-2 can be tracked through wastewater, which enables 
community monitoring and might be beneficial in tracking 
SARS-CoV-2 spread (Xiao et al. 2020).

Radiographic testing

The main diagnostics tool for SARS-CoV-2 is viral nucleic 
acid RT-PCR testing based on qualitative and quantitative 
analysis, although their sensitivity for nasal (63%) and oro-
pharyngeal (32%) swab samples is still low (Wang et al. 
2020a). As a result, suspected cases, whether or not they 
have been tested by RT-PCR, require further confirmation. 
The combinatorial radiographic and antigen-based molec-
ular strategies are the leading methods of assessment of 
SARS-CoV-2 in research prospects (Hosseiny et al. 2019). 
Following the onset of breathing complications and the 
identification of SARS-CoV-2, a patient’s first examina-
tion generally includes a radiographic imaging assessment, 
which includes diagnostics techniques such as chest X-ray 
(CXR) (Liu et al. 2019). However, the imaging character-
istics of a conventional CXR are frequently non-specific. 
The disease’s radiographic signs include extensive radio-
logical spots on the lower-left corners and upper lobe of 
the lung. More well-defined radiographic characteristics 
appear as the illness progresses, increasing the authenticity 

Fig. 4  Schematic representation 
of SARS-CoV-2 recognition by 
saliva testing
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of a SARS-CoV-2 diagnosis. Whereas a CXR is the most 
important test for confirming lung illness, it does not rule 
out other diseases, especially when SARS-CoV-2 symptoms 
are present, because it is not specific. Meta-analyses of indi-
viduals with lower respiratory infections, particularly those 
admitted to an intensive care unit, support the utility of CXR 
(Johannsen et al. 2021).

Computed tomography (CT) and magnetic 
resonance imaging (MRI)

SARS-CoV-2 supplemental diagnostic testing confirms 
viral infection and allows for ongoing surveillance. For 
initial identification of SARS-CoV-2-related lung illness, 
conventional CXR has a sensitivity of almost 60% (Hasan 
et al. 2023). The bilateral lower zone, hazy opacities, and 
peripherally prominent consolidation are among the CXR 
abnormalities (Wong et al. 2020). CT scans also reveal sep-
tal thickening, as well as a ‘reversed halo’ pattern (Bernheim 
et al. 2020). Consolidated pulmonary opacities and bilateral 
lung parenchymal ground glass with a sometimes-rounded 
shape and marginal lung dissemination are observed on CT 
scans. Individuals infected with SARS-CoV and MERS-
CoV present with lung engrossment with a peripheral pre-
ponderance. A computed tomography scan of the chest with 
pulmonary ground-glass opacification and association is 
more likely to divulge SARS-CoV-2 virus infection (Wang 
et al. 2022a). Chest CT scans might be utilized as an aux-
iliary assessment technique in conjunction with recurring 
RT-PCR tests to diagnose patients with negative RT-PCR 
test results. High-resolution CT scanning is essential for 
confirmatory analysis and evaluation of disease severity in 
individuals with possible SARS-CoV-2 infection (Hosseiny 
et al. 2019). In a survey of 1014 individuals carried out at 
Tongji Hospital in Wuhan, 59% (i.e., 601 patients) had tested 
positive by RT-PCR, whereas 88% (i.e., 888 patients) had 
tested positive by chest CT scans. Even though despite chest 
CT scans showed a sensitivity of 97% for SARS-CoV-2, 75% 
(308 of 413 patients) had tested positive by chest CT scans 
despite negative results from RT-PCR (Liu et al. 2019). The 
immunological activation of SARS-CoV-2 causes the syn-
thesis of chemokines and cytokines, which typically leave 
inflammatory cells visible on CT scans as yellow discol-
orations. Healthcare practitioners should restrict employing 
MRI in SARS-CoV-2 individuals, according to the Ameri-
can College of Radiology. The American College of Radi-
ology’s implemented protocols suggest that other imaging 
methods can also be utilized to scan persons who have tested 
positive or are suspected to have contracted SARS-CoV-2 
infection. The main drawback is that disinfecting MRI scan-
ners is time-consuming and involves of several challenges. 
HEPA (high-efficiency particulate air) filter methods, which 

are commonly used to improve air interchange, are incom-
patible with MRI (Khalili et al. 2020).

Ultrasound

Patients with SARS-CoV-2 are also examined using pul-
monary ultrasonography. Although lung ultrasound (LUS) 
does not appear to be specific for SARS-CoV-2 pneumonitis 
or pneumonia, it is recommended to identify the infection 
location. The merits of LUS are that it might be informa-
tive in the prompt detection of SARS-CoV-2 pneumonia as 
an expensive method of determining the site of infection; 
owing to its high sensitivity to positive terminal outflow, 
LUS results are more sensitive than CXR. LUS has several 
characteristics, including pulmonary consolidation in severe 
local illnesses. LUS revealed more apparent signs of SARS-
CoV-2 pathogenesis in the posterior and inferior pulmonary 
regions in individuals with SARS-CoV-2 infection, similar 
to what was detected with CXR or chest CT. The infection 
usually spreads from the peripheral area to the center of the 
pulmonary tissues. LUS observations of pulmonary edema 
are frequently used by intensive care unit staff to position 
SARS-CoV-2 patients therapeutically (Poggiali et al. 2020).

Virus detection from breath

For the objective of monitoring SARS-CoV-2, the explo-
ration of expelled breath may be a less intrusive form of 
analysis (Škapars et al. 2023 and Einoch Amor et al. 2023). 
However, screening for severe acute respiratory syndrome 
SARS-CoV-2 from expelled breath has proven to be quite 
complicated. Aspects of these investigations, which are 
especially significant, reveal that SARS-CoV-2 individuals 
breathe billions of severe acute respiratory syndrome coro-
navirus RNA molecules each hour (Ma et al. 2019). Expira-
tory breath exhibited a higher affirmative incidence (26.7%) 
than air (3.8%) and surface (5.4%) specimens, according to 
scientific interpretation. Moreover, it was indispensable to 
assemble the specimen for a prolonged period by adopting 
a distinctive methodology called expelled breath conden-
sate (EBC) in an attempt to immediately pinpoint the virus 
from the expelled breath. Current investigations have shown 
that nonvolatile components, including viruses, bacteria, 
DNA, and RNA, may be readily detectable and observed by 
extracting and analyzing the aqueous fraction of the expelled 
breath (expelled breath aerosol (EBA) or EBC) (Lamote 
et al. 2020). Depending on these two factors, an EBC sys-
tem can effectively capture various droplets: (1) the propor-
tion of SARS-CoV-2 virus that is still alive after extraction 
and (2) the ratio of the percentage of particulates extracted 
to the total percentage of particulates in the air. Haick and 
colleagues conducted an introspective scientific analysis 
in Wuhan, China, for SARS-CoV-2 in March 2020, which 
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included testing with a breath analyzer device that follows 
the principle underlying chemo-resistive sensors made up 
of gold nanoparticles in combination with machine intelli-
gence algorithms (Škapars et al. 2023 and Shan et al. 2020). 
In another experiment, investigators explored preliminary 
markers of enhanced generation of reactive oxygen species 
in SARS-CoV-2 swab specimens (Miripour et al. 2020). In 
this approach, exposing swab specimens to an electrochemi-
cal sensor nanostructured with carbon nanotubes revealed 
97% real affirmative recognition readings in 30 s.

Immunological/serological techniques 
for SARS‑CoV‑2 recognition

Considering molecular approaches have limitations, novel 
methodologies that employ antibodies or antigens in 
inpatient specimens to identify SARS-CoV-2 have been 
developed.

Antibody testing

Capillary blood sampling is the most common sample source 
used in antibody screening. The specimens are analyzed for 
patient antibodies, viz. IgA, IgM, and IgG, that are sensitive 
to a viral epitope to confirm the existence of SARS-CoV-2. 
The most prevalent antibody candidates for detection are 
IgM, IgA, and IgG antibodies. As a result of viral multipli-
cation, the viral load in the samples fluctuates with time. As 
a consequence, the quantity of viral infection is a constraint 
of serological approaches. SARS-CoV-2 screening is now 
carried out using a variety of point-of-care (POC) diag-
nostic methods. These techniques include quick enzyme-
linked immunosorbent assays (ELISA), proteome peptide 
microarrays (PPM), and lateral-flow diagnostic tests. The 
main drawback is that the predictive value of the test (false-
negative report) is commonly reported (Kohmer et al. 2021).

Enzyme‑linked immunosorbent assays (ELISA)

Antibodies, antigens, hormones, proteins, and glycopro-
teins are all ubiquitously identified and characterized using 
ELISA (Kohmer et al. 2021). Three distinct types of ELISA 
techniques are deployed to pinpoint SARS-CoV-2. These 
techniques comprise indirect ELISA, direct ELISA, and 
sandwich ELISA. Antibodies/antigens are exploited in both 
indirect and direct ELISA to pinpoint viral infection. Viral 
epitopes are spotted in sandwich ELISA after they adhere 
to detection and capture antibodies. The individual SARS-
CoV-2 antibodies/antigens from human specimens are 
immobilized overnight on 96-microwell plates in all three 
procedures. An enzyme–substrate coupling enables these 
antibodies/antigens to adhere to the polystyrene surface 

(Sebbar and Choukri 2023). Antiviral antibodies from 
human specimens adhere to the surface when the pathogenic 
protein is expressed. A supplementary tracer antibody that 
gives a visual indication can be used to identify the anti-
body–protein aggregates (Kohmer et al. 2021). The median 
time required to obtain a response is 2–5 h. In contrast to 
IgA, IgM, and IgG antibodies, proinflammatory cytokines, 
such as interleukin-6 antibodies, are incorporated in ELISA 
to distinguish the existence of viral antibodies (Sebbar and 
Choukri 2023). The ELISA approach has significant advan-
tages over nucleic acid analysis techniques to identifying 
SARS-CoV-2, which include high accuracy and sensitiv-
ity (Park et al. 2023b). Another feature of ELISA is that it 
takes less time to execute than other approaches to nucleic 
acid analysis. Furthermore, using gold nanoparticles (AuNP) 
with an ELISA assay enhances the efficiency of colorimetric 
antigen recognition for SARS-CoV-2 spike antigen (Brad-
ley et al. 2023). An assessment of the several methods of 
ELISA-based techniques revealed that each has significant 
advantages in identifying the existence of viral antigens or 
antibodies in afflicted individuals. Direct ELISA minimizes 
the possibility of cross-reactivity with secondary antibodies 
because it only employs primary antibodies. Indirect ELISA 
is convenient, as it is very adaptable and may be used with 
various primary antibodies. Sandwich ELISA is the most 
sensitive of the three varieties (Yadav et al. 2023). Irrespec-
tive of its advantages, there are numerous pitfalls to adopting 
ELISA for viral antigen or antibody detection. For instance, 
some commercial diagnostic tools are designed for research 
study purposes and have never been used in a clinical con-
text. Secondly, in an ELISA test, monoclonal antibodies are 
inadequate to capture the mutant SARS-CoV-2 virus (Żak 
et al. 2021).

Chemiluminescence immunoassay (CLIA)

CLIA is a method for identifying the prevalence of anti-
gens or antibodies in human blood samples. Presently, 
protein-coated and magnetic microparticles are adopted in 
this methodology. Chemiluminescence immunoassays are 
identical to direct ELISA in terms of concept. The primary 
variation is that the outcomes are interpreted using lumines-
cence. The CLIA methodology has numerous advantages. 
First, because of the strong signal magnitude and lack of 
interference emission, CLIA can achieve better specificity 
and sensitivity to SARS-CoV-2 than other serological pro-
cedures, such as ELISA and LFIA. CLIA has a cumulative 
sensitivity of 97.8% quantifying IgG/IgM antibodies. LFIA 
has a sensitivity of 66%, whereas ELISA has a sensitivity 
of 84.3% (Rahayu et al. 2023). The introduction of protein-
coated and magnetic microparticles to CLIA improves the 
sensitivity of the technique. The high cost and requirements 
for a sophisticated apparatus and highly skilled specialists 
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to detect SARS-CoV-2 are a few of the key constraints of 
CLIA (Liu et al. 2020a).

Lateral flow immunoassay (LFIA)

The lateral flow immunoassay is a subjective separation 
technique used to detect the involvement of a specific bio-
marker in an unknown specimen. This procedure often uses 
fluids from nasal swabs, capillary blood sampling, urine, and 
saliva as specimen materials. These specimens are investi-
gated the occurrence of the SARS-CoV-2 virus by screening 
the human antibodies (IgA, IgM, and IgG) that are sensitive 
to pathogenic antigens in several target sites. Spike (S) gly-
coproteins (receptor-binding area S1 and S2 subunits) and 
nucleocapsid (N) proteins are among the antigens that have 
been identified as targets (Wu et al. 2020). LFIA is usu-
ally designed as a band with an absorbent pad, a conjugate 
pad, a membrane zone, a sample pad, and a visualizing zone 
(Fig. 5). The mechanism of LFIA is dependent on capillary 
forces transferring a sample fluid across multiple regions 
of a band. A pathogenic antigen is coupled to fluorescent 
or gold particles to identify SARS-CoV-2-associated anti-
bodies. The pathogenic antigen is effectively stabilized on 
the conjugate pad, and the antibodies in the human speci-
men adhere to it. SARS-CoV-2-targeting antibodies interact 
with the gold-conjugated antigen of SARS-CoV-2 if they are 
expressed in a specimen. Then, the antibody–antigen com-
plexes flow to the device-capturing zone. The antibody–anti-
gen complexes interact with additional antibodies in the 
capturing zone, triggering color development. The LFIA 
concept is used by a variety of sophisticated laboratories 
and organizations to manufacture kits. These systems exist 

in a variety of packages, including casings and cassettes that 
are analogous to those employed in pregnancy testing (Ma 
et al. 2019). The LFIA implementation of antigen/antibody 
screening to discern the overall status of SARS-CoV-2 has 
significant potential. First, LFIA is equipped to generate 
results promptly. Generally, SARS-CoV-2 is identified by 
LFIA, which takes around 10–30 min. Secondly, two weeks 
after exposure to infection, LFIA accuracy and sensitivity 
for detection of SARS-CoV-2 improved. Thirdly, LFIA is 
low-cost, and the findings are accessible to the human eye 
(Kim et al. 2021).

Antigen testing

Antigen testing is a method used to detect SARS-CoV-2 
infection. In this method, serological approaches and anti-
gen tests primarily use nucleocapsid proteins (N) and spike 
glycoprotein (S). When identifying the SARS-CoV-2 spike 
(S) glycoprotein with the LFIA technique, Baker et al. sug-
gest that glycans are used as the capture moiety (Baker et al. 
2020). Nasopharyngeal and nasal swabs are the most com-
monly used sample sources. These samples are tested for 
specific antigens at different target sites (nucleocapsid pro-
tein and spike glycoprotein) to confirm SARS-CoV-2 infec-
tion. Antigen testing has several advantages, including high 
efficiency and sensitivity, immediate results, high specificity, 
and low cost (Mitchell and Ventura 2020).

Proteome peptide microarrays (PPMs)

The proteome peptide microarray approach is extensively 
applied to explore antibody–protein relationships in the 

Fig. 5  LFIA for anti-SARS-CoV-2 antibody detection. The speci-
men material circulates horizontally down the band, which contains 
several zones, including as a sample pad, an absorbent pad, adhesive 
pad, conjugate pad, and membrane pad. The conjugate pad comprises 
antibodies specific to the targeted molecule, as well as antibodies 

complexed with signaling markers, i.e., gold and fluorescent particles. 
The screening columns (IgM and IgG columns) and the reference col-
umn are positioned on the nitrocellulose membrane. The final region 
is the absorption pad, which hinders liquid reflux
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amino acid domain (Holenya et al. 2021). This approach 
provides insights into affinity mapping and viral protein 
motif recognition for antibody interaction toward SARS-
CoV-2 domains. High-density proteome peptide microarrays 
have recently been exploited to investigate the interactions 
between antibodies in a patient’s serum. This approach can 
aid in defining infection indications by aiding in the com-
prehension of antibody responsiveness to the SARS-CoV-2 
protein. The underlying feature of the PPM approach is that 
it offers an exhaustive overview of antibody sensitivities to 
the viral protein (Wang et al. 2020b). The advantages and 
limitations of the above-mentioned methodology in the diag-
nosis of SARS-CoV-2 are depicted in Table 3.

Impending techniques for SARS‑CoV‑2 
detection

Clustered regularly interspaced short palindromic 
repeats (CRISPR/Cas)

In contrast to established PCR approaches, the nucleic acid 
screening strategy based on CRISPR/Cas was designed using 
the attributes of affordability, accuracy, quickness, and sensi-
tivity (Hillary et al. 2021). Wang et al. designed a technique 
for diagnosis with as few as ten duplicates of SARS-CoV-2 
within 45 min that does not require specific equipment and 
demonstrated high accuracy with the qPCR technique (Wang 
et al. 2020d). Technologies based on CRISPR diagnostics 
(CRISPR-Dx) provide intriguing solutions for the detection 
of viruses. The CRISPR bacterial technology can distin-
guish and digest extraneous genetic substances. To support 
target-binding CRISPR RNA (crRNA), the CRISPR-asso-
ciated (Cas) proteins, namely Cas13 and Cas12, exclusively 
bind to RNA and DNA strands (Casati et al. 2022). DNA 
endonuclease-targeted CRISPR trans reporter (DETECTOR) 
and specific high-sensitivity enzymatic reporter unlocking 
are the names of the Cas12- and Cas13-based detection sys-
tems (SHERLOCK), respectively. Utilizing SHERLOCK 
in lateral-flow configurations, information can be inter-
preted in less than 60 min to find viruses, pathogens, and 
tumors. Loop-mediated isothermal amplification (LAMP) 
and recombinase polymerase amplification (RPA), which do 
not necessitate advanced technology, have been coupled with 
Cas-mediated nucleic acid identification to obtain consider-
able accuracy (Kevadiya et al. 2021).

Wang et al. successfully generated SARS-CoV-2 read-
ily bounded, interspaced brief palindromic repetitions 
of RNAs, a single-stranded DNA reader, and Cas12a 
proteins. They further tagged the single-stranded DNA 
reader with a quenching green fluorescence marker read-
ily fragmented by proteins of Cas12a under the existence 

of nucleic acid of SARS-CoV-2 in the monitoring device, 
ensuring that the green illumination would be visible to 
the naked human eye by using a 485-nm wavelength light, 
facilitating on-site detection (Wang et al. 2020d).

An RNA-targeting molecule called Cas13 provocatively 
cleaves non-target nucleic acids in samples. In order to 
determine femtomolar quantities, the enzyme cleaves 
specific nucleotide molecules, such as various RNA mol-
ecules (collateral cleavage). A thermostatic pre-amplifica-
tion stage has been employed in Cas13 and detected by the 
SHERLOCK method. This SHERLOCK CRISPR SARS-
CoV-2 kit has been granted emergency use authorization 
(EUA) for the purpose of detecting SARS-CoV-2 and the 
test is having merits where currently, more than 160 viral 
variants can be detected using SHERLOCK-based multi-
plexed diagnostics. By using the CRISPR-Cas12a/guide 
RNA complex and a fluorescent sensor with RT-PCR or 
isothermal recombinase polymerase amplification, the tar-
geted amplicons are obtained by employing viral F1ab and 
nucleocapsid area markers that capture two RNA variants. 
A negative RT-PCR report can provide a positive result in 
fluorescent detection based on CRISPR (Kevadiya et al. 
2021).

The fabrication and validation of nucleic acid are based 
on Cas-13 techniques that use freeze-dried chemicals and 
swift specimen ablation at normal temperatures. The 
screenings, namely SHINEv.2 (for “streamlined empha-
sizing of diseases to manage epidemiological emergen-
cies, version 2”), expedite the previously published 
RNA-extraction-free SHINEv.1 technique by doing away 
with the heating process and reagent storage (cold con-
dition). By utilizing lateral-flow techniques and incubat-
ing in a thermal bath at 37 °C, SHINEv.2 can pinpoint 
SARS-CoV-2 in nasopharyngeal specimens in less than 
1 h 30 min with 90.5% vulnerability and 100% accuracy 
(as compared to RT-qPCR). Additionally, SHINEv.2 ena-
bles the morphological distinction of the SARS-CoV-2 
subtypes omicron (O), delta (δ), gamma (γ), beta (β), and 
alpha (α) and may be used without efficiency shortfalls by 
utilizing body temperature (Arizti-Sanz et al. 2022).

Earlier research, known as PAC-MAN (prophylactic 
antiviral CRISPR in humans), evidenced that virus-tar-
geting crRNAs and Cas13d may restrict influenza-A virus 
(IAV) and SARS-CoV-2 sequencing. SARS-CoV-2 gene 
mutation escape has been demonstrated to be restrained 
by Cas13b, whereas Cas13a was recently found to block 
the influenza virus or SARS-CoV-2 in laboratory animals. 
The ability of CRISPR to attack numerous newly emerging 
SARS-CoV-2 and related coronavirus variants as a broad-
spectrum antiviral is still uncertain, but it can be used as 
a pandemic preparation tool for future strains of concern 
(Kevadiya et al. 2021).
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Nicking endonuclease amplification reaction

Nicking endonuclease amplification reaction (NEAR) is 
used to exponentially amplify short oligonucleotides. Both 
nicking endonuclease enzymes and strand-displacement 
DNA polymerase (e.g., Bst polymerase) are used (Cao et al. 
2022). The first step consists of combining a sample with 
nicking primers P1 and P2, each containing a restriction 
or stabilization site, a binding sequence, and a nicking site. 
The displacement extension, nicking, and primer-binding 
activities result in double-stranded DNA with restriction 
sites at both cleavages. Second, the restriction sites of the 
duplex are then cleaved by nicking enzymes, resulting in two 
free-ending templates that are unstable at 55 °C and ready 
for separation (NguyenVan et al. 2021). The advantage of 
this method is the amplification of the products, which is 
achieved by repeating the polymerization and single-strand 
cleavage on each template. These products also hybridize 
to the primers and support bidirectional amplification until 
the reaction mixture components are depleted. Thousands 
of copies can be made with a single restriction site, making 
NEAR a unique amplification technology with maximum 
efficiency. A key drawback of NEAR is the generation of 
non-specific yields that lower detectability and increase the 
diagnostic approach. Identifying the ideal reaction condi-
tions (e.g., nicking enzyme content,  Mg2+ content, and gen-
erated heat of reactivity) could help to solve this problem 
(Cao et al. 2022). ID NOW tests for influenza and group A 
streptococci are already on the market, favoring the rapid 
market introduction of ID NOW SARS-CoV-2. This assay 
was created to identify an array of RNA-dependent RNA 
polymerase (RdRp) segments in the SARS-CoV-2 genome, 
and the LOD result was 0.125 copies/mL; the assay has 
received FDA-EUA approval for SARS-CoV-2 (Nie et al. 
2020).

Recombinase polymerase amplification

The principle of analogous DNA recombination is used to 
replicate double-stranded DNA in recombinase polymerase 
amplification (RPA) (Bai et al. 2022). These compounds 
look for homologous structures in the focused DNA and 
subsequently occupy appropriate locations. After the restric-
tion enzyme has unpacked the nucleoprotein-bonded strand, 
the DNA polymerase displaces strand extension. Activated 
recombinases develop to produce fresh nucleoprotein strands 
for subsequent cycles, and the changed strand is maintained 
by uni-stranded binding proteins during this phase. Upon 
completion of this procedure, the targeted double-stranded 
DNA is extensively replicated (Jiang et al. 2022). Xia et al. 
described RPA primers targeting regions of the N gene to 
detect SARS-CoV-2. To enhance SARS-CoV-2 one-spot 
RNA reverse transcription, standard RPA solution was Ta

bl
e 

3 
 (c

on
tin

ue
d)

M
et

ho
do

lo
gy

A
dv

an
ta

ge
s

Li
m

ita
tio

ns
Re

fe
re

nc
es

PP
M

It 
pr

ov
id

es
 a

 c
om

pr
eh

en
si

ve
 v

is
ua

l r
ep

re
se

nt
at

io
n 

of
 a

nt
ib

od
y 

be
ha

vi
or

 w
ith

 re
sp

ec
t t

o 
vi

ru
s-

in
fe

ct
ed

 p
ro

te
in

s
Po

st-
tra

ns
la

tio
na

l m
od

ifi
ca

tio
ns

 o
r c

on
fo

rm
at

io
ns

 m
ay

 h
av

e 
al

te
re

d 
th

e 
ep

ito
pe

s o
f n

um
er

ou
s S

A
R

S-
C

oV
-2

 a
nt

ib
od

ie
s. 

D
ep

en
di

ng
 o

n 
w

hi
ch

 v
ira

l s
tra

in
 is

 p
re

se
nt

 in
 th

e 
sa

m
pl

e,
 

th
e 

te
st 

re
su

lts
 m

ay
 v

ar
y

W
an

g 
et

 a
l. 

20
20

b



2138 Chemical Papers (2024) 78:2123–2154

combined with transcriptase and RNase inhibitors. Avail-
able fluorescent or lateral-flow probing tools were used to 
identify the enhanced targets. At an LOD of 0.2 copies per 
microliter, the response takes approximately half an hour to 
complete. However, instead of studying extracted viral RNA 
samples, the outcomes remain confined to utilizing artificial 
RNA (Xia and Chen 2020).

Virus neutralization test

The viral neutralization test (VNT) is a key indicator of 
a person's evolving antibody status against a target virus. 
An advanced kind of immunoassay used to identify anti-
bodies capable of preventing viral reproduction in vitro is 
the live virus neutralization test (VNT). The live VNT is 
regarded as the gold-standard technique for evaluating neu-
tralized antibodies (nAbs) and was utilized to establish a 
lower serum threshold value to screen against SARS-CoV-2 
infection (Harcourt et al. 2020). Several types of neutraliza-
tion tests are available, where studies have been performed 
with SARS-CoV-2. In the plaque reduction neutralization 
test (PRNT), colony-forming cells are quantified on an 
agar or carboxymethyl cellulose-coated cell layer, whereas 
neutralizing antibody titers are calculated using immuno-
colorimetric analysis in the focus reduction neutralization 
test (FRNT). A recent study evaluated the efficacy of FRNT 
and PRNT testing for specified RBD IgG reactions produced 
by SARS-CoV-2 individuals 6 days after PCR analysis and 
discovered a substantial association among the tests (Suthar 
et al. 2020). Additionally, pseudo-virus-based neutralization 
assays (PBNAs) have been developed by several research-
ers, employing pseudo-virus (PSV) as a preferable (biosafety 
level 2) alternative for the detection of SARS-CoV-2 (Wang 
et al. 2020e). PSV was created by integrating the S protein of 
SARS-CoV-2 in the envelope of a pseudo-type of vesicular 
stomatitis virus, further revealing that neutralizing antibody 
titers peaked 10–15 days following the initiation of the ill-
ness and then remained steady (Mitchell and Ventura 2020). 
In a study, almost 30% of recuperated subjects (n = 175) had 
minute concentrations of neutralizing antibodies; this find-
ing could have consequences for how serologic tests are 
applied and interpreted to detect previous SARS-CoV-2 
infection. The main strength of this test is that it acts as a 
good indicator, and also helps to comprehend the promi-
nence of protective immune response in asymptomatic and 
symptomatic cases (Guo et al. 2022).

Next‑generation sequencing

Next-generation sequencing is a technology that, in con-
junction with existing methods, is intended to simultane-
ously establish the pattern of numerous microscopic DNA 
extracts (Chiara et al. 2021). Next-generation sequencing 

has proven effective in identifying and studying infec-
tions (SARS-CoV-2) when integrated with bioinformatics 
approaches (Hillary et al. 2021). This technology facilitates 
the retrieval of knowledge from a viral genome while also 
recognizing the occurrence of a pathogen in a specimen. 
This potentially efficient methodology was designed by 
Illumina (Carter et al. 2020). This technology having the 
advantage of indicating the appearance of several coronavi-
ruses (SARS-CoV-2) variants in a specimen, as well as the 
presence of diverse pathogenic entities (Wang et al. 2020d).

Amplicon‑based metagenomic sequencing

Amplicon-based metagenomic sequencing is an additional 
high-throughput sequencing approach for recognizing 
SARS-CoV-2. This approach, analogous to next-generation 
sequencing, recognizes and characterizes the microbiota in 
nasopharyngeal samples by integrating the base amplicon 
with metagenomic sequencing. By enhancing viral evolu-
tionary analyses, genomic epidemiological investigations, 
and contact mapping, this amplicon-based sequencing 
approach advances the identification of SARS-CoV-2 infec-
tion. This approach is having the strength to be utilized in 
determining the extent to which a genomic expression has 
deviated (Moore et al. 2020).

Vertical flow assay

A vertical flow assay is an innovative technique for iden-
tifying SARS-CoV-2. This method is identical to a lateral 
flow assay, although devoid of a horizontal flow sequence, 
instead adopting a vertical flow sequence. These techniques 
encompass the development of antibody–antigen interaction, 
the adsorption of the capturing antibodies into a readout sur-
face, and the adsorption of the tagged detecting antibodies 
to create a visual indication (Lei et al. 2022). Vertical flow 
assays furnish multiple features, including the utilization of 
extrinsic factors, viz. capillary and gravitational forces, and 
the ability to quickly duplicate the analysis. Furthermore, 
the detection advantage of a vertical flow assay is more rapid 
than that of a lateral flow assay, and the assay insights can 
be interpreted by inexperienced personnel (Kim et al. 2021).

Detection of SARS‑CoV‑2 by nano‑based 
diagnostic techniques

Colorimetric assay

When the rate of SARS-CoV-2 infection is intense, a simple, 
rapid, and accurate “naked-eye” colorimetric SARS-CoV-2 
diagnostic assay is required. Colorimetric assays make use 
of gold nanoparticle (AuNP) optical features and target 
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antisense oligonucleotides (ASOs), aiming at the phos-
phoprotein of SARS-CoV-2 altered with conjugated thiol 
(Duan et al. 2021). After RNA isolation, the detection is 
completed within 10 min. When the targeted SARS-CoV-2 
RNA sequence is present, the ASO-modified thiol binds the 
AuNP combination, resulting in a shift in the surface plas-
monic resonance, as shown in Fig. 6. The RNA strand is 
broken from the DNA-RNA fusion when RNase H is added, 
followed by the fabrication of a visible deposition aided by 
AuNP accumulation. In the manifestation of RNA of viral 
MERS-CoV, the LOD utilizing this approach was 0.18 ng/L 
of RNA with a SARS-CoV-2 viral load. A colorimetric anal-
ysis using a comparable method was also used to identify the 
occurrence of the Middle East respiratory syndrome corona-
virus (MERS-CoV) (Moitra et al. 2020).

Microfluidic devices

Microfluidic devices offer an alternative way to conduct 
a proof-of-concept study where the chip is only the size 
of a palm inscribed with micrometer-sized networks and 
response compartments composed of paper, polydimethyl-
sulfoxide, or glass, with benefits such as small size, rapid 
identification time, and low sample volume. The essential 
premise of these microfluidic chips is that they use capillary 
action and electrokinetic capabilities to mix and separate 

liquid samples (Kumar et al. 2022). Multiple antibodies 
toward three sexually transmitted diseases can be identified 
of using microfluidic devices and a smartphone presentation 
connection, exhibiting 87% exactitude and 100% intensity. 
These devices can be adapted to detect the presence of RNA 
(SARS-CoV-2) or proteins, owing to their convenience and 
durability (Kumar et al. 2021a). Several modalities of study 
utilizing a microfluidic channel are shown in Fig. 7.

Gold nanoparticles (AuNPs)

The use of AuNPs in biopharmaceutical and clinical con-
texts has advanced significantly. AuNP innovations have 
the advantages of being sensitive, expeditious, simple, and 
versatile, in addition to permitting quantitative analysis with 
outstanding combinatorial abilities. The sensitivity ranges 
of AuNP-based technologies for the recognition of antibod-
ies and nucleic acid are equivalent to or superior to those 
of commercial ELISA kits that are not based on AuNP and 
RT-PCR. As a result, AuNP-based SARS-CoV-2 screening 
is a plausible substitute for RT-PCR, presenting opportuni-
ties to address this major unmet biological need, particularly 
in venues with inadequate facilities (Wang et al. 2022b). 
Research conducted in vivo and in vitro revealed that the res-
piratory syncytial virus was irreparably deformed by AuNPs 
with extended chains of mercaptoethanesulfonic acid (MES) 

Fig. 6  SARS-CoV-2 detection utilizing gold nanoparticles (AuNPs) in a swab sample
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and sulfonate undecanesulfonic acid (MUS). A molecular 
interaction exposes the combination of AuNPs and MUS, 
which is connected to the virus in a multivalent association. 
The structure of the capsid also disintegrates as a result. This 
multivalent bonding consequently offers a compelling plan 
of approach for COVID-19 treatment. In one study, AuNP 
was also used against an RNA virus, which may be used 
to treat SARS-CoV-2. Based on the immunochromatogra-
phy of gold nanoparticles, a commercialized SARS-CoV-2 
antibody testing kit was developed using the colloidal gold 
method. Although the test has to be validated on entire viral 
RNA sequences from human specimens, it may ameliorate 
the present stress on PCR-based diagnostics (Asdaq et al. 
2021).

Magnetic nanoparticle‑based separation

Molecular analysis for SARS-CoV-2 detection begins with 
the isolation of nucleic acids from a medical specimen, 
which is a slow and tedious process. Magnetic nanoparticles 
encapsulated in carboxyl polymer (pcMNP) were produced 
to facilitate the extraction of viral RNA for the diagnosis of 
SARS-CoV-2 RNA (Zhao et al. 2020). RT-PCR can also 
be performed with pcMNP–RNA complexes, providing a 
number of benefits over standard column-based extraction 
methods, including the ability to adhere viral RNA, as well 
as enhanced sensitivity. In addition, the pcMNP–RNA com-
plex generated during MNP extraction can be used with a 
number of isothermal amplifying methods, such as LAMP. 
As a result, this technology may be utilized to create proof-
of-concept systems (Khizar et al. 2022).

Surface‑enhanced Raman scattering (SERS)

Surface-enhanced Raman scattering spectroscopy takes 
place in a robust investigative platform with the aim of 
molecular characterization (especially detection of viral 
antigens and DNA sequences), which can be extremely 
convenient for diagnosing applications when integrated 
with the intrinsic chemical and optical attributes of nano-
particles (Cha et al. 2022). SERS improves conventional 
fluorescence-based screening techniques with respect to 
specificity, sensitivity, and screening of distinct constitu-
ents in a blend, which is becoming increasingly relevant 
for therapeutic diagnosis. However, no outcomes have been 
reported to date with respect to the ability of SERS to rec-
ognize SARS-CoV-2 (Berry et al. 2021).

Surface plasmon resonance (SPR)

Surface plasmon resonance is a versatile visual platform 
that is often used to analyze the refraction index alteration 
of plasmonic components in real-time surfaces (Bahl et al. 
2021). The term LSPR (localized surface plasmon reso-
nance) refers to a photon-driven combined alternation of 
transmission band electrons on the planes of relatively small 
plasmonic sensible configurations (such as metal NPs). The 
plasmonic field exhibits remarkable reactivity, with an 
alteration in refractive index and molecular adherence of 
the LSPR sensing systems in the proximity of tiny structures 
(nanoscale range). As a result, LSPR may be used as a typi-
cal system for label-free, real-time diagnosis of very small 
amounts of samples (Qiu et al. 2020). A rapid and effective 
multi-use biosensor based on LSPR was devised recently 

Fig. 7  Microfluidics approaches for coronavirus detection utilizing antibodies against SARS-CoV-2
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by combining plasmonic sensing attributes and photother-
mal abilities to identify the viral SARS-CoV-2 nucleic acid 
(SC-NA) on a singular plasmonic nanoabsorber chip made 
of gold nanoislands (AuNI) (Jiang et al. 2021a). Ultimately, 
this setup allows for the label-free and real-time exposure 
of any nucleic acid sequence, especially E genes, RdRp-
COVID, and ORF1ab COVID from SARS-CoV-2. Moreo-
ver, this biosensor of LSPR can determine the availability 
of samples at quantities greater than 0.22 pM and provides a 
simply realizable diagnostics phase, which, when combined, 
could increase diagnostic accuracy and minimize reliance on 
PCR-based assays (Qiu et al. 2020).

Biosensors

Biosensors represent a rapid, high-efficiency diagnostic 
technology. Qiu et al. designed a double plasmonic biosen-
sor that identifies SARS-CoV-2 by integrating the localized 
surface plasmonic resonance with the plasmonic photother-
mal effect (Qiu et al. 2020). The researchers employed a 
biosensor based on a field-effect transistor that can recognize 
SARS-CoV-2 from a human specimen (Seo et al. 2020).

Nucleic acid‑based biosensors

A double-function plasmonic biosensor was created for the 
sensitive detection of SARS-CoV-2 nucleic acid. Plasmonic 
photothermal (PPT) response and local surface plasmon 
resonance sensing transduction are combined in this bio-
sensor. A cDNA receptor for the E gene, ORF1ab, or RdRp 
is immobilized via gold-thiol linkage on an assimilated chip 
derived from two-dimensional gold nanoislands (AuNIs). 
This approach applies the concept of RNA conjugation with 
a LOD of 0.22 pM to ascertain SARS-CoV-2 RNA. The 
device’s increased sensitivity is due to an improvement in 
the hybridization kinetics of the complementary strands 
resulting from the heat-generating capability of the local 
PPT of the AuNI plasmonic chips (Qiu et al. 2020). The 
action of biosensors in clinical specimens is still being inves-
tigated. Another test combines a nanoparticle-based LFIA 
with multiplex analysis, LAMP amplification, and reverse 
transcription (SARS-CoV-2 RT-LAMP-LFB). With no 
cross-reactivity, this LOD platform was estimated to yield 
12 replicas per response. The SARS-CoV-2 N genome, two 
LAMP primer groups, and ORF1 antibodies were all ampli-
fied and identified simultaneously using coated polymer of 
streptavidin nanoparticles (Pouresmaieli et al. 2021).

Antibody‑based biosensors

A novel biosensor based on antibodies was purportedly 
applied to diagnose the spike protein of SARS-CoV-2. As 
antigens, nasopharyngeal samples were taken from clinical 

patients and used to encapsulate the respective viral antibody 
on graphene sheets of a field-effect transistor (FET) (Kang 
et al. 2021). The biosensor-developed limit of detection 
(LOD) was reported to be 100 and 1 fg/mL in a basic trans-
port vehicle and saline solution. The virus was furthermore 
discovered in a growing medium, showing a detectable limit 
of 1.6 ×  101 pfu/mL according to this sensor. Recent research 
found that with a limit of detection of 2.42 ×  102 copies/
mL, the SARS-COV-2 FET sensor can categorize diseased 
and fit individuals (Chiara et al. 2021). An ELISA kit based 
on recombinant S and N proteins was used to detect IgM 
and IgG antibodies, which were produced and tested on 
patients. A positive rate of 80.4 and 82.2% for N protein 
and S protein, respectively, were detected by these kits (Liu 
et al. 2020c).

Commercial kits based 
on the above techniques

Various COVID-19 commercial testing kits from different 
countries have been summarized based on their techniques 
or principles of detection like RT-PCR, RT-LAMP, bio-
sensor, CRISPR, antigen testing, antibody testing, LFIA, 
ELISA, and CLIA by also highlighting the various target 
proteins which are responsible in aiding in the detection of 
SARS-CoV-2 and are being listed in Table 4.

Nano‑based vaccine candidates 
against coronaviruses

Vaccination is a well-established biomedical approach to 
life-threatening infectious conditions; however, rapid and 
complex genetic alterations in SARS-CoV-2 viruses have 
made vaccine research and deployment challenging (Kurup 
and Schnell 2021). To mitigate these challenges, a plethora 
of attempts have been made to design vaccines that elicit a 
robust immunological response. Considering breakthroughs 
in vaccine innovation, vaccination prevalence remains con-
strained. Through the continuing advancement of nano-sci-
ences, the concept of nanomaterials for vaccine development 
appears enticing, offering phenomenal potential, owing to 
the inimitable attributes of nanoparticles that render them 
excellent vectors for vaccine conveyance by safeguarding 
vaccines from immature deterioration while promoting 
the vaccine’s optimum consistency, augmenting cellular 
transport via endocytosis mechanisms, improving depot 
response, and eliciting both cellular and humoral immu-
nity. SARS-CoV-2 viral components (proteins and RNA) 
can undergo structural analysis and analogs to form virus-
like particles, which can be utilized as nano-vaccines. The 
viral components can also be separated and inactivated. The 
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inactivated components are incorporated into nanoparticles 
(NPs) to form vaccine-loaded NPs. Additionally, the inacti-
vated components can directly be used as a vaccine, which 
is depicted in Fig. 8 (Butkovich et al. 2021 and Gale et al. 
2021). Importantly, NPs serve as adjuvants or immunostimu-
latory molecules, significantly improving the sensitivity of 
antigens (SARS-CoV-2). It has also been demonstrated that 
certain nano-vaccines promote increased polyclonal anti-
body response (Gale et al. 2021). Table 5 provides a com-
prehensive list of nano-vaccines in the pipeline.

DNA‑based vaccines

Entos Pharmaceuticals, a Canadian healthcare research 
organization, introduced a DNA vaccination utilizing its 
Fusogenix nanomedicine system (Muthiah et al. 2022). The 
Fusogenix system uses a proteolipid vehicle that integrates 
a neutral lipid biomaterial containing fusion technology 
of tiny permeability protein molecules to enable optimal 
merging and effectual transport of genomic cargo immedi-
ately to the cytoplasm of targeted cells. Entos Pharmaceuti-
cal intends to introduce a pancoronavirus vaccine design 

that could encrypt numerous autoantigens of SARS-main 
CoV-2 immunogenic molecules, enabling a substantial and 
formidable defensive immunological response against the 
virus’s complex architectural subunits. In vivo preclinical 
investigations were undertaken, leading to the advancement 
of Covigenix (Fusogenix DNA) vaccines targeting SARS-
CoV-2, as shown in Fig. 9A, which exhibited significantly 
higher neutralizing antibody responses, regulated CD4 T cell 
immunity, high sensitivity, and effectiveness. Subsequent 
confirmations of this vaccine candidate, i.e., its immuno-
genicity, safety, and effectiveness, have been accomplished 
satisfactorily in phase 1 and 2 human clinical studies, with 
the vaccine candidate advancing to phase 3 investigations 
(Muthiah et al. 2022).

RNA‑based vaccines

The vaccine potential, i.e., mRNA-1273, for the therapeu-
tics of SARS-CoV-2 designed by Moderna in coordina-
tion with the National Institute of Allergy and Infectious 
Diseases (NIAID), a division of the National Institutes of 
Health (NIH) in the United State of America, is a marketed 

Table 4  Summary of COVID-19 commercial testing kits

Technique Commercial kit Target protein Manufacturer References

RT-PCR Fosun COVID-19 RT-PCR kit E, N, ORF1ab Fosun, (Shanghai, China) Garg et al. 2021
Allplex 2019-nCoV assay E, N, RdRP See gene (Seoul, Korea) Garg et al. 2021
Patho Detect RT-PCR kit E, RdRP Mylab (Maharashtra, India) Garg et al. 2021

RT-LAMP SENSObiz COVID-19 (SARS-
CoV-2) LAMP Assay

ORF1ab, RNaseP, Spike (S) 
protein, and Nucleocapsid (N) 
protein

NANOBIZ TECHNOLOGY 
(Ankara, Turkey)

Artik et al. 2022

Veriplex™ RT-LAMP Membrane (M) protein SNPSig NOVACYST GROUP 
(Camberly, UK)

Rödel et al. 2020

Biospeedy SARS-CoV-2 Variant 
Plus Kit

ORF1ab, RNaseP, Spike (S) 
protein, and Nucleocapsid (N) 
protein

BIOEKSEN R and D Technolo-
gies (Istanbul, Turkey)

Artik et al. 2022

Biosensor USB Electrochemical Biosensor 
Prototype

Antigenic viral gene targeting S 
protein

Innovative Sensor Technology 
IST AG Biosensors (Ebnat-
Kappel, Switzerland)

El-Sherif et al. 2022

CRISPR All In One Dual CRISPR Cas 
12a (AIOD-CRISPR)

Detector of Nucleic acid Sigma-Aldrich (Darmstadt, 
Germany)

Ding et al. 2020a

Antigen testing GB SARS-CoV-2 Multiplex Targeted genes of RdRP and 
ORF1b

GENERI BIOTECH Ltd. 
(Kralovehradecky Kraj, Czech 
Republic)

Dankova et al. 2021

Antibody testing cPass SARS-CoV-2 Neutraliza-
tion Antibody Detection Kit

Inhibit RBD domain ACE-2 
receptor interaction

GenScript (Piscataway, NJ, 
USA)

Papenburg et al. 2021

LFIA Ig-M and Ig-G qSARS-CoV-2 
Ig-M/Ig-G Rapid  Test20

Spike protein Cellex Inc. (Morrisville, NC, 
USA)

Yüce et al. 2021

Ig-M and Ig-G Anti-SARS-
CoV-2 Rapid  Test20

Spike protein Autobio Diagnostics Co Ltd. 
(Zhengzhou, China)

Yüce et al. 2021

ELISA COVID-19 ELISA Ig-G Anti-
body  Test20

Ig-G mediated target Mount Sinai Laboratory (New 
York, NY, USA)

Yüce et al. 2021

CLIA LIASON SARS-CoV-2 S1/S2 
Ig-G20

Ig-G mediated target DiaSorin Inc. (Saluggia, Italy) Yüce et al. 2021
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accessible SARS-CoV-2 booster and was the first to be 
evaluated in individuals (Fig.  9B) (Szabó et  al. 2022). 
An mRNA version of the novel SARS-CoV-2 consists of 
prefusion-stabilized spike protein embedded within an 
experimental lipid nanoparticle matrix consisting of the 
exclusive ionizable SM-102, lipid, and three conventionally 
provided lipids, i.e., polyethylene glycol 2000 dimyristoyl 
glycerol, distearoyl phosphatidylcholine, and cholesterol. 
Moderna successfully developed an mRNA candidate vac-
cine entrapped in cationic phospholipid  NPS targeting the 
SARS-CoV-2 viruses using an identical approach. The vac-
cines feature entire epitope viral (S/S1/S2) proteins from a 
virus that created a significant concentration of neutralizing 
antibodies in rodents (Szabó et al. 2022).

Virus‑like particle (VLP) vaccines

Virus-like particles are an intriguing, innovative strategy 
for vaccine design, as they imitate the original hierarchy 
of viruses and suggest a pathway to the immunological 
response for rapid identification and consequent modula-
tion. Medicago, a biopharmaceutical firm based in Canada, 
has accomplished the preliminary process of researching a 
vaccine candidate by efficiently manufacturing VLPs of the 
SARS-CoV-2 virus, utilizing its plant-based VLP synthesis 
method (Kang et al. 2021). Nicotiana benthamiana plant 
are exploited by the firm as mini biofactories to establish 

virus-like particles and restorative molecules for vaccine 
manufacturing. The vaccine has been in phase 3 clinical 
testing since 20 March 2021 (England et al. 2023).

Nano‑based immunotherapy 
against coronaviruses

Immunomodulatory drugs in nanomaterial form have 
achieved encouraging results in the context of regulating 
immune system activity and minimizing immunomodu-
lation-related damage (Bonam et al. 2021). Importantly, 
nanomaterials have the competence to assimilate numerous 
antigens on their interface for more robust immune system 
stimulation. As a result, nanoparticles can perform as pro-
spective immunological adjuvants, as well as pharmaceu-
tical vehicles. Carbon nanotubes, dendrimers, inorganic 
nanoparticles, liposomes, and polymer-based materials have 
all been explored as promising immunological venues to 
date (Andresen and Fenton 2021). Nanoparticles, includ-
ing liposomes and poly (lactic-co-glycolic acid), can trig-
ger  CD4+/CD8+ T lymphocyte cells and facilitate antigen 
cross arrangement, resulting in efficacious antigen convey-
ance (Shinn et al. 2022). However, inorganic nanoparticles, 
especially gold nanoparticles, can connect with dendritic 
cells, elevating the performance of proinflammatory markers 
(viz., tissue necrotic factor-α, interleukin-6, interleukin-1, 

Fig. 8  Graphic depiction of the creation and delivery of traditional vaccines and nano-based vaccines
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interleukin-12, and interferon-α) while suppressing the 
expression of anti-inflammatory mediators (viz., interleu-
kin-10 and tissue growth factor-β1) (Dykman et al. 2020). 
AuNPs also triggered immunological activation in T cells 
and augmented dendritic cell phagocytic action. Despite 
breakthroughs in the clinical use of NPs in immunotherapy, 
basic research on the use of nanoparticle-based immunother-
apy targeting SARS-CoV-2 is still limited (Yang et al. 2020).

Nano‑Based Gene Therapy for coronaviruses

Small interfering RNA (siRNA) is efficacious in inhibit-
ing the replication of RNA viruses, i.e., coronaviruses (Liu 
et al. 2022). The success of siRNA-based therapeutics is 
entirely reliant on the precise tailoring of the virion genetic 
pattern and the delivery of restorative siRNA to the target 
cells (Nooraei et al. 2021). From this perspective, nontoxic, 
biomaterial nanoparticles made of nanohydrogels, iron 
oxide NPs, dendrimers, lipids, silica, AuNPs, polymers, 
or lipid/polymer hybrid NPs are seen as potential siRNA 
delivery carriers. By hindering enzymatic breakdown, 
these nanocomposites can improve siRNA longevity (Idris 
et al. 2021). Lipids, polylactic-co-glycolic acid (PLGA), 
and polymer nanocomposites are appropriate for deliver-
ing antiviral siRNA in respirable form and aerosol-based 
cardiopulmonary administration of antiviral siRNA (Wu 
et al. 2021). Moreover, cholesterol-loaded lipid  NPS were 
recently reported to achieve good performance in conveying 
SARS-CoV-2 vaccines relying on mRNA (Le et al. 2020). 
Nanocomposites based on spermine-liposome conjugate 
and histidine-lysine copolymer have also been validated for 
delivery of siRNA to appropriate sites in the SARS-CoV 
gene (Eygeris et al. 2020).

Nanosponges

A new method of developing treatments focuses on the 
impaired recipient tissues instead of the pathogenetic com-
ponent. Cellular nanosponges were designed as therapeutic 
protection against coronavirus infection. These nanosponges 
are made from membranes extracted from mammalian cells 
that are inherently SARS-CoV-2 targets. Two categories of 
cellular nanosponges are generated using plasma cell mem-
branes: either human lung epithelial type-II cells or human 
macrophages. The same protein receptors, both known and 
unknown, that are required for SARS-CoV-2 to infiltrate 
cells are present in each of these nanosponges.

We have learned that SARS-CoV-2 is a distinct virus 
that is responsible for the recent worldwide epidemic, and 
details about it are being discovered day after day. The virus 
has been proven to be rapidly evolving since the initial case 
that was identified at the end of 2019. The advancement 
of medicines and preventative measures is facing signifi-
cant difficulties as a result of this high rate of mutation. 
Both Epithelial-NS and Mɸ-NS revealed a concentration-
dependent neutralization of SARS-CoV-2. The nanosponge 
platform has a distinct advantage over other SARS-CoV-2 
treatments that are under research since the nanosponges are 
possibly viral and mutation-insensitive. Once primed with 
the nanosponges, SARS-CoV-2 is neutralized and rendered 
incapable of infiltrating tissue. Importantly, the nanosponge 
platform is resistant to viral modifications and potential viral 
species, as the virus continues to attack its targeted host cell, 
and the nanosponges are ultimately capable of ejecting it. 
With regard to mutation and other recently developed coro-
naviruses, microsponges offer a wide-ranging defense sys-
tem that is mutation-resistant. Additional testing in suitable 
animal studies is necessary to confirm the effectiveness of 
cellular nanosponges for the management of SARS-CoV-2 

Fig. 9  Diagram of the several 
COVID-19 vaccination propos-
als based on DNA and RNA. 1 
The mRNA -1273 (Moderna) 
vaccine is a comprehensive pre-
fusion-stabilized spike protein 
of SARS-CoV-2 that is encoded 
by an mRNA-based vaccination 
that is embedded in lipid nano-
particles. 2 Covigenix (Entos 
Pharmaceuticals) is a plasmid 
DNA vaccine that manifests key 
antigenic determinants from 
SARS-CoV-2



2147Chemical Papers (2024) 78:2123–2154 

infections. Such testing is currently being carried out and 
will eventually lead to clinical studies. The antiviral effec-
tiveness of such nanosponges can be enhanced by optimizing 
the core composition (Zhang et al. 2020).

Nanodecoys

Angiotensin-converting enzyme 2 (ACE2), a carboxypepti-
dase that is prevalent in all body tissue and is located in a 
variety of cells, is essential for viral entry into infected cells. 
Through the association of the spike protein with ACE2, 
SARS-CoV-2 selectively targets type II pneumocytes that 
exhibit ACE2 in the pulmonary tract and goblet secretory 
cells in the nasopharynx membrane (Ziegler et al. 2020). 
Resident lung epithelial and mesenchymal cells, with both 
type I and II pneumocytes, make up lung spheroid cells 
(LCS); these cells generate ACE2 as resident lung cells, and 
nanovesicles of the LSC membrane are created as ACE2 
nanodecoys. Therefore, by serving as cell mimetics, these 
nanodecoys adhere to the spike (S) proteins of SARS-CoV-2 
and cause a phagocytic reaction from macrophages, which 
leads to eradication of the virus (Jiang et al. 2021b). A recent 
study reported that nebulized treatment was used to pro-
vide such LSC nanodecoys to mice, where they lasted in 
the respiratory organs for more than 72 h after treatment. 
Moreover, SARS-CoV-2 analogs were rapidly eliminated 
from the lungs after inhalation of LSC nanodecoys, and no 
cytotoxicity was indicated. Four doses of these nanodecoys 
administered through inhalation enhanced viral elimination 
and lessened lung damage in cynomolgus macaques exposed 
to live SARS-CoV-2. The findings imply that LSC nanode-
coys could be used as a medicinal therapy to combat SARS-
CoV-2 (Li et al. 2021).

Exosomes

Exosomes are a form of extracellular vesicular particles 
that are produced spontaneously in the body system, mak-
ing them intrinsic and perfect for delivery of vesicles for 
drug targeting (Stefańska et al. 2023 and Popowski et al. 
2020). Particles are more effective in attacking similar 
recipient cell tissues because they possess and assert the 
proteins, RNAs, and lipids of their original cell, as well as 
the original cell’s surface receptors and proteins (García-
Fernández and Fuente Freire 2023). A study reported a 
vaccine comprising a modified SARS-CoV-2 receptor-
binding domain (RBD) coupled with exosomes derived 
from the lungs, which, in comparison with liposomes, 
improved the accumulation of RBD in all the pulmonary 
airways lined with mucus and in the lung tissue. After 
a trial, the vaccine effectively eliminated SARS-CoV-2 
pseudo-virus in mice by eliciting RBD-specific antibod-
ies (IgG), mucosal IgA reaction, and CD8 + and CD4 + T 

cells with a Th1-like cytokine production pattern in the 
mouse airway. Upon treatment with active SARS-CoV-2, 
double doses of the vaccination in hamsters suppressed 
inflammation and lessened chronic pneumonia. VLPs that 
are inhalable, durable at room temperature, with long shelf 
lives, and potential cost savings as a result of reduced ship-
ping make the modified vaccine more widely available and 
a potentially viable vaccination alternative (Wang et al. 
2022c).

Future perspectives

An increased focus on the novel, moveable diagnostic tech-
nology has been sparked by the plethora of the SARS-CoV-2 
outbreak and its effects on testing accessibility. It is impor-
tant to have diagnostic testing tools with high accuracy, 
fast developing, cost-effective antigen and serological tests, 
which are up to global standards and with the employment 
of new biosensors, nano-based therapy, electrospinning, and 
electrospun nanofibers which can prevent and reduce the 
spread of the virus.

High accuracy

Under ideal conditions and when performed by trained clini-
cians, most nucleic acid amplification tests have a diagnostic 
sensitivity and specificity of approximately 95% or greater. 
However, in practice, sensitivity drops to 60–70%, requiring 
retesting, which wastes time in symptomatic patients. To 
improve accuracy, several countries have introduced dual 
testing of pharyngeal/sputum and nasopharyngeal samples. 
Further studies are needed to assess the efficiency of swab 
testing and RNA yield (Serrano et al. 2020).

Developing fast, cost‑effective antigen tests

For several reasons, including reducing the need for time-
consuming RT-PCR, rapid antigen-based SARS-CoV-2 
assays are needed. The development of nucleic acid ampli-
fication tests (NAATs) is a plausible and reasonable option, 
given their high analytical sensitivity and rapid develop-
ment time. On the other hand, NAATs are often highly pro-
cessed, susceptible to spoilage, and exorbitant (Chen et al. 
2020). Antigen-based screening could represent a special-
ized option for cost-effective identification in outpatient 
clinics. Similar methods have already been developed for 
certain infections, such as influenza (Gentilotti et al. 2022). 
A SARS-CoV-2 antigen test can be performed as a triaging 
method to reduce the need for molecular testing.
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Establishing effective serological tests

Current serological tests have many variations with gener-
ally low reactivity and accuracy. When comparing different 
test kits, virtually all of which are based on the lateral flow 
assay design, some perform significantly better than others 
as a result of the affinity compounds used. To increase the 
accuracy of diagnosis, researchers must first identify and 
synthesize the most immunogenic, high-affinity viral anti-
gens (Whitman et al. 2020). Investigation of interference 
problems is also necessary to determine how medications, 
drugs, and coagulation states affect serologic test results. 
The demand for serologic testing will increase as SARS-
CoV-2 enters its flattening phase. These tests can be used by 
those who are cured or asymptomatic to generate informa-
tion for public pronouncements; community-wide serologic 
surveillance could allow governments to discover the true 
prevalence of the disease (Lassaunière et al. 2020).

Setting up global standards

The analytical validity of novel SARS-CoV-2 tests has led to 
their acceptance, as tested against the manufacturers’ simu-
lated samples. Independent testing has revealed significant 
differences in performance. Global reference standards (e.g., 
viral antigen, antibodies, viral nucleic acids, and pseudo-
viruses) need to be developed to allow for objective compar-
ison between tests (Uğur and Özdemir 2023). Recommen-
dations (e.g., on cost, sensor specifications, and accuracy) 
for various test targets need to be developed; detection of 
acute infections in healthcare facilities and long-term care 
facilities is required, as well as home-based surveillance 
with demographic surveys. These activities will help both 
the clinical and scientific sectors and drive technological 
advances (Ghaffari et al. 2021).

New biosensors

New diagnostic procedures should be developed more 
quickly. Novel sensor techniques, namely optical resona-
tors, nanoplasmonics, and ion-gate transistors, offer excep-
tionally high sensitivity and could be utilized to directly 
detect viruses. A transistor based on graphene with a LOD 
o 2.4 ×  102 viruses/mL and a plasmonic photothermal device 
that recognizes the RdRp target down to 0.22 pM has been 
reported. These techniques must be further explored to over-
come present NAATs and provide rapid on-site diagnoses 
(Qiu et al. 2020 and Seo et al. 2020).

Nano‑based therapy

The search is currently on for a vaccine against SARS-
CoV-2 that is trustworthy, stable, effective, and long-lasting. 

Nanotechnology-based vaccines have been shown to elicit 
significantly more robust immunoreactivity than various 
forms of coronavirus vaccines, as previous research has 
demonstrated. Therefore, further analysis of the use of 
nanotechnology in the analysis of SARS-CoV-2 is needed to 
develop an inventive, nano-based vaccine in appropriate ani-
mal studies to potentially induce long-term immunity (Gale 
et al. 2021). Promising alternatives for dissemination of 
effective drugs against coronavirus include magnetic nano-
particles (MNPs), AuNPs, and silver nanoparticles (AgNPs), 
as well as their associated compounds (Dykman et al. 2020). 
Several nanoparticle vaccines have demonstrated the abil-
ity to induce a strong autoimmune response. In addition, 
further research on the interface of virions with recipient 
cells is needed before smart nanoparticles can be used to 
target altered variants of the highly infectious SARS-CoV-2 
(Bonam et al. 2021).

Electrospinning and electrospun nanofibers

Continuously non-woven nanofibers can be synthesized from 
a variety of polymeric composites using the basic, adaptable, 
and affordable method of electrospinning. With the help of 
polymeric compositions and electrospinning variables, the 
length and shape of nanofibers can be altered. As a result, 
electrospun polymer membranes are typically preferable for 
air-filtering processes and can be used as materials for pro-
tective masks against viruses or bacteria. Furthermore, the 
electrospinning method has been used for drug delivery, and 
scientists are attempting to design scaffolds that can deliver 
drugs against SARS-CoV-2 while regulating the amount of 
a drug absorbed by the body system, which is essential for 
usage as a quick absorbent. Moreover, this novel formulated 
nanotechnology has still not been advanced for application 
with potentially developed therapeutics (Castillo-Henríquez 
et al. 2020 and Ding et al. 2020b).

Conclusions

The identification of SARS-CoV-2 RNA in the upper res-
piratory tract, particularly nasopharyngeal specimens, is 
commonly achieved through polymerase chain reaction 
assays. Although SARS-CoV-2 immunity testing techniques 
are developing, precautions while interpreting results are 
advised because very few test kits on the market have been 
validated. Rapid testing and ELISA antibody analysis show 
a typical antibody response, with IgM production occur-
ring initially, then IgA and IgG. On the other hand, limited 
information is known about how long protective immu-
nity lasts. T cell response assessment test kits are pres-
ently unavailable for diagnostic use. Numerous diagnostic 
techniques are available, each with unique benefits. These 
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techniques include chemiluminescence immunoassay, lat-
eral flow immunoassay, antigen testing, and protein-peptide 
microarray. Innovative techniques such as CRISPR, AuNPs, 
and nano-based technologies have the potential to identify 
more infectious viruses in addition to SARS-CoV-2. NPs 
based on immunotherapy are becoming an exceedingly 
prominent treatment alternative; however,  there are still 
issues with maximizing benefits and reducing side effects. 
Effective immunotherapy requires a thorough understand-
ing of immune responses and immunity regulation. When 
compared to traditional antiviral medications and immuni-
zations, nano-based therapeutic agents particularly siRNA 
antiviral treatment offer benefit in terms of rapid response, 
effectiveness, and low RNA consumption.
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