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Abstract
In this study, triethylene glycol (TEG) regeneration process, which is a critical step in natural gas (NG) dehydration, was 
investigated. Machine learning (ML) approach was used to develop robust models that could assess the impacts of operative 
variables on TEG regeneration. A supervised multilayer feed-forward neural network was employed to develop the models, 
and the k-fold cross-validation technique was used during the training phase. The impacts of TEG flowrate, pressure of 
distillation column, and temperature of reboiler on energy consumption and TEG purity were investigated. The optimal 
conditions for TEG regeneration was found using a genetic algorithm (GA) based on the developed models. The R2 values of 
test dataset were 0.9998 and 0.9989 for TEG purity and reboiler duty, respectively, demonstrating the reliability of optimally 
tuned models. Overall, this study sheds light on the factors that affect TEG regeneration and provides a useful framework 
for optimizing the NG dehydration process.
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Introduction

Natural gas (NG) production has been rising steadily for 
decades, and it is anticipated that this trend will continue as 
more environmentally friendly and cleaner energy sources 
are sought after (Karimi and Abdi 2009). NG is a clean 
and efficient energy source that has received a great deal of 
attention recently to address a variety of problems, includ-
ing climate change and global warming (Zhang et al. 2021). 
Compared to coal and oil, NG is considered to be the clean-
est fossil fuel (Xu et al. 2022). Up until 2030, the demand 
for NG is expected to increase by 3% annually (Arya et al. 
2022). The US department of energy predicts that between 
2015 and 2035, gas demand would rise by around 31% 
(Alnoush and Castier 2019). As of 31st December 2022, the 
world NG reserves is 202,179 billion cubic meter (BCM). 
40% of these reserves are located in Middle East, 33% in 
Russia and central Asia, 8% in Africa, 8% in North America, 

and 11% in other areas (Eni World Energy Review 2022). 
Accordingly, it is obvious that the main NG reservoirs are 
usually far from consumption places. Therefore, NG trans-
portation receives high importance.

NG transportation can be performed in the gaseous phase 
by pipeline or in the liquid phase as liquefied natural gas 
(LNG). In this aspect, NG dehydration is of important espe-
cially for distribution of NG. Hydrate formation due to the 
presence of water and hydrocarbons in NG is the main rea-
son for pipeline plugging (Tagliabue et al. 2009). The differ-
ent methods for NG dehydration process include absorption 
by triethylene glycol (TEG), adsorption by solid desiccants, 
and condensation (Netusil and Ditl 2011). By injecting the 
stripping gas or stripping solvent into the TEG regeneration 
column, the performance of TEG regeneration is improved.

Developing a mathematical model is an essential tool for 
investigation the effects of operational factors on process 
performance as well as optimization (Moghaddam and Sar-
golzaei 2015; Rezaei Behbahani et al. 2023). But in many 
cases, there is a lack of knowledge about the process or the 
relationship between operating parameters and responses 
is too complex to find. Therefore, a robust and reliable 
mathematical model will not be available. The design of 
experiment (DoE) approach is a potent tool for examin-
ing how operative factors affect the efficiency of a process 
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and developing a statistical model. In different processes 
response surface methodology (RSM), a subset of DoE, has 
been applied (Ravald et al. 2023; Aslanzadeh et al. 2023; 
Hedayati Moghaddam et al. 2013; Kanakasabai et al. 2023; 
Hedayati Moghaddam 2022a; Tian 2023; Zeynali et al. 2017; 
Alara et al. 2023; Masoudi et al. 2018). In the previous work, 
the NG dehydration using TEG was investigated and mod-
elled by statistical approach (Hedayati Moghaddam 2022b). 
Machine learning (ML) algorithms serve as robust tools to 
find out the input–output relationship where they are compli-
cated and difficult to investigate. There are several examples 
where ML techniques were used to model and simulate the 
input–output relations (Hedayati Moghaddam et al. 2017; 
Singh et al. 2023; Mahmoudian et al. 2022; Bakhtom et al. 
2023; Moghaddam et al. 2012; Salam et al. 2022; Rashidi 
and Moghaddam 2021; Vaziri et al. 2020).

Ghiasi et al. (2015) developed two intelligent approaches; 
a least squares support vector machine (LSSVM) algorithm 
and a multilayer perceptron (MLP) neural network to pre-
dict the ideal stripping gas flow rate in NG dehydration sys-
tems. According to the statistical analysis, the values gener-
ated from the predictive tools (such as MLP, LSSVM, and 
empirical equations) and the actual data were found to be 
well matched, and the average absolute relative deviation 
percent (AARD%) was shown to be less than 0.01%. Addi-
tionally, Ghiasi et al. (2014) developed an intelligent model 
based on the conventional feed-forward back-propagation 
neural network for precise TEG purity prediction based on 
reboiler operating conditions. By using several statistical 
factors, the ability of the provided neural-based model to 
estimate the TEG purity was assessed. The proposed smart 
technique was found to replicate the reported data in litera-
ture with an average AARD% of roughly 0.30%. In another 
later study, Ahmadi et al. (2015) investigated the potential of 
LSSVM modelling algorithms to predict the moisture con-
tent of NG dried by calcium chloride dehydrator units. The 
optimal LSSVM model parameters were found using genetic 
algorithms (GA) as population-based stochastic search tech-
niques. According to the findings, the GA-LSSVM was able 
to accurately capture the complicated nonlinear relationship 
between the input and output variables. The GA-LSSVM 
model produced mean absolute error (MAE) and coeffi-
cient of determination (R2) values of 2.7898 and 0.9986, 
respectively.

In addition to MLP and LSSVM, many other ML algo-
rithms have been used for conducting NG dehydration 
research. Okoro et al. (2022a) investigated the performance 
of a supersonic separator during the dehydration of NG 
using a decision tree ML model to examine the effects of 
design and operating parameters (inlet and outlet pressures, 
nozzle length, throat diameter, and pressure loss ratio) on 
the shock wave location. The model's findings indicated 
that the nozzle length and pressure loss ratio are the major 

factors affecting the shock location. Dew point depression 
was shown to be most significantly impacted by the former. 
With a mean average percentage error (MAPE) of 5.98 as 
opposed to 15.44 for the 1-D model, the ML model out-
performed the 1-D iterative approach when accuracy was 
compared. In another study, Okoro et al. (2022b) developed 
three ML models, including the gradient boosted decision 
tree (GBDT), support vector regression (SVR), and radial 
basis function-neural network (RBF-NN) for predicting 
the compressibility factor (z-factor) of NG mixtures with 
a range of Pseudo-reduced pressure (Ppr) and temperature 
(Tpr) of 0–30 and 0.92–3.0, respectively. According to the 
findings, the GBDT model performed better than the other 
used ML models and published correlations. The root-mean-
square error (RMSE) and R2 score for the proposed models 
were highly acceptable, coming in at 0.01033 and 0.99962, 
respectively.

Similarly, Ren et al. (2023) used GDBT for developing a 
process parameter online prediction approach for monitor-
ing the quality of petrochemical equipment and machinery. 
The mapping model was created using an efficient Gaussian 
process (GP), and the online approach for predicting NG 
water dew points for the TEG dehydration unit was also 
examined. It was concluded that the research findings can 
be used to improve the safety of NG dehydration stations 
by enabling prompt monitoring of the water dew point and 
other important process parameters. Furthermore, Wu et al. 
(2023) used four ML models, including MLR, random forest 
(RF), M5 Rule (M5R), and support vector machine (SVM), 
to assess the hydrate formation temperature (HFT) of NG in 
the presence of amino acids. The purpose of the study was to 
capture the relationship between the structural properties of 
amino acids and the strength of their hydrate inhibition and 
choose the best type and concentration to use. The four mod-
els R2 scores were 0.9328, 0.9793, 0.9795, and 0.9980 after 
parameter optimization using the trial-and-error method. 
Since the RMSE of the SVM prediction of HFT was 83%, 
76%, and 69% lower than those of the MLR, RF, and M5R, 
respectively, it outperformed other models.

In the present work, the aim is to develop an artificial 
intelligence (AI)-based model to investigate the effects of 
operating factors on the performance of TEG regenera-
tion process in NG dehydration. The procedure used in this 
work is presented in Fig. 1. At first, the data obtained from 
Aspen-Hysys simulation from the previous work (Hedayati 
Moghaddam 2022b) and the data of performed simulation 
of the present work are gathered. Then, the data are evalu-
ated to remove the anomalous items from the dataset. Before 
starting the model development phase, the data must be shuf-
fled to create a randomized dataset. In the next step, the 
randomized data are split into the two separated sections 
(seen and unseen dataset). The unseen dataset is termed as 
test dataset. On the other hand, the seen dataset is used to 
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develop and validate the model. After determining the struc-
ture of the model and training the network by tuning the 
hyperparameters, the test dataset is fed into the model to test 
the model outputs. Finally, the tested model is used to find 
the optimum condition in companion with GA.

Methodology and procedure

Water absorption process & TEG regeneration

In NG dehydration facility, wet NG after passing a flash 
drum enters into a contact column. TEG and wet NG 
flow counter currently in a tray or packed column. Lean 
TEG and wet NG flows downward and upward, respec-
tively. Exiting from the base of the contact column, the 
enriched TEG that is termed weak or rich TEG enters a 
heat exchanger where exchanges of heat with water vapor 
flow out from the TEG regeneration column. Next, the 
heated weak TEG passes a flash drum to remove a por-
tion of absorbed water. Then the TEG after passing a heat 
exchanger enters into a distillation column where water 
is completely separated from it. Due to prevent degrada-
tion of TEG, the reboiler temperature value should be set 
to less than 205 °C. Generally, one of the main disad-
vantages of separation based on the difference in boiling 

temperature (distillation process) is the possibility of ther-
mal degradation. More details about the process can be 
found in previous work (Hedayati Moghaddam 2022b).

Data gathering

The source data used for AI model development were 
obtained from the previous work (Hedayati Moghaddam 
2022b), where the effects of flowrate of TEG, pressure of 
distillation column, and temperature of reboiler as input fac-
tors on the reboiler duty of distillation column and TEG 
purity as responses were investigated using a statistical 
approach (central composite design). Note, more informa-
tion about the way of design layout, simulation, data gather-
ing, and statistical analysis was presented in previous work. 
In this study, to develop the robust models, several excess 
runs have been conducted to increase the size of data. The 
operative ranges of the input factors are shown in Table 1.

Fig. 1  Implemented procedure in developing the optimum model and subsequent optimization

Table 1  The range of operative parameters

Operative parameter Unit Range

TEG flowrate kgmole/h 2.8–3.1
Column pressure kpa 40–85.9
Reboiler temperature °C 136–205
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Data assessment

In Table 2, the specifications of the dataset are shown. 
Since data with unusual variance leads to incorrect model 
terms, before feeding data into the model development 
phase, data clarification should be performed. In Fig. 2, 
the values of reboiler duty and recovered TEG purity for 
performed simulations have been presented. In this case, 
there is no null or missed data. Further, unusual variance 
was not observed. So, there is no outlier. Accordingly, 
there is no need to remove any line of the dataset.

Note, the existence of correlation between opera-
tive parameters is not of interest. So, this issue should 
be checked. In Fig. 3, the correlation between operative 
parameters have been shown graphically. The closer the 
correlation coefficient between two parameters is to one 
or minus one, it means that there is a higher correlation 
between these two parameters. It is obvious that there is no 
considerable correlation between the operative parameters.

Before developing the regression models, data normali-
zation should be performed. In this study, only operative 
parameters were normalized. The normalized value (yn) is 
calculated according to the following equation:

where ymax. and ymin. are highest and lowest values of opera-
tive parameter. So, the normalized input factors range from 
0.05 to 0.95.

Model development

ML has several subsets including regression, data classifica-
tion, data clustering etc. Note, in regression problems, the 
response is a continuous parameter, while in classification 
problems, the response is discrete. A precise model based on 
multi-layer feed forward neural network (MLFFNN) was cre-
ated using a single hidden layer. Note, there is no feedback 
from outputs of neurons toward their own inputs or the inputs 
of other neurons.

In training process, the weights and biases are set in a way 
to reduce the average of the squared differences, also known 
as mean squared error (MSE). The definition of MSE can be 
expressed in the following manner:

(1)y
n
= 0.05 +

y − y
min.

y
max.

− y
min.

× 0.9

(2)MSE =

∑n

i=1

�
y
f
− y

�2

n

Table 2  The description of 
dataset

TEG flowrate 
(kgmole/h)

Pressure (kpa) Reboiler tem-
perature (°C)

Reboiler duty (kw) TEG purity

Mean 2.960800 64.535000 176.062500 54.826250 0.904864
Std 0.096953 15.083316 21.963019 10.724206 0.052914
Min 2.800000 40.000000 136.000000 32.660000 0.783822
25% 2.892500 55.000000 157.500000 46.220000 0.898338
50% 2.985000 63.200000 175.000000 54.305000 0.905992
75% 3.012500 76.250000 196.250000 64.417500 0.946879
Max 3.100000 85.900000 205.000000 68.900000 0.964880

Fig. 2  Values of reboiler duty and TEG purity
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Note, yf, y, and n are the forecasted value, target value, 
and size of dataset, respectively.

To check the performance of trained models, determina-
tion coefficient (R2) of test dataset is used. R2 is calculated 
as follows:

where y is the mean value of targets.
The average relative error (ARE) is an index to evaluate 

the preciseness of model and is calculated as follow:

After building any machine learning model, a portion of 
the data termed the training dataset is fed into the model 
to train the model. Subsequently, the other portion of the 
data termed testing dataset is used to test the model accu-
racy. If the predicted output on the test dataset and the target 
response match well, this implies that the constructed model 
has the capability to forecast the results with a satisfactory 
level of precision. Usually, the accuracy of model on the 
given data (training dataset) is high. However, this is not 
enough since the model accuracy should be examined over 
unseen data (test dataset). If the model output matches well 
with the goal on the training dataset while weak prediction 
ability is observed on test dataset, this means that over-fitting 
is happening. On the other hand, if the developed model has 

(3)R2
= 1 −

∑n
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yf − y
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(4)ARE =
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|
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|
× 100

not been trained well so this model will have poor predic-
tion ability even on training dataset. This situation is called 
under-fitting.

In this work to assess the model prediction ability during 
the training process, a cross-validation technique is used. In 
Fig. 4, k-fold cross-validation technique is presented. The 
size of seen data is 40 × 5. Therefore, this dataset includes 
three features (operative parameters) and two responses. The 
values of each row is related to one run. In each iteration, 
4 rows are selected as validation dataset. Accordingly, in 
this work, k is equal to 10. For training the network, Leven-
berg–Marquardt (LM) procedure is used.

Results and discussion

Tuning hyper parameters

As previously stated in the earlier section, reboiler duty and 
TEG purity were modelled in terms of input factors. The 
value of R2 corresponded to validation dataset is an index to 
adjust the hyper parameters of the best-performing model. 
In this work, MLFFNN with a single hidden layer was cho-
sen to continue as a platform for developing the models. 
The values of validation R2 and validation ARE regard-
ing the quantity of neurons in the hidden layer for reboiler 
duty and TEG purity are shown in Fig. 5. As presented in 
Fig. 5a, the highest possible value of validation R2 of TEG 
purity and reboiler duty is 0.9993 and 0.9984, respectively. 
These values corresponded to 5 and 4 neurons in hidden 

Fig. 3  Correlations between parameters for a TEG purity and b reboiler duty
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layer, respectively. It is clear that for networks that have over 
10 neurons in the hidden layer, a substantial reduction in 
the magnitude of validation R2 is observed. According to 

Fig. 5b, the minimum values of validation ARE of TEG 
purity and reboiler duty are observed when the hidden layer 
consists of 3 and 11 neurons, respectively.

Fig. 4  Schematic of K-fold cross-validation technique

Fig. 5  Validation-R2 and Validation-ARE values versus number of neurons in the hidden layer
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After selecting the structure of the optimum models 
for TEG purity and reboiler duty, the model training was 
repeated 10 times to ensure the predictive ability of the 
models by comparing the validation-R2 values of each run. 
In Fig. 6, the R2 values of each run for TEG purity and 
reboiler duty have been shown. The average values of R2 
of these 10 runs were 0.9969 and 0.9981 for TEG purity 

and reboiler duty, respectively. These results confirm that 
the optimally tuned models are reliable.

Figure 7 illustrates the values of errors (predicted—
Hysys values) for responses. As shown in Fig. 7a, the 
absolute value of positive and negative error mean is about 
1 ×  10–4 that is acceptable.

Fig. 6  Validation-R2 values for optimum structure versus run number

Fig. 7  Error values of predicted TEG purity and reboiler duty
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In previous section, robust model were built, trained, and 
validated. In this section, an unseen (test) dataset with 10 
rows is fed into the optimum tuned network to test the model 
accuracy. Figure 8 depicts a comparison between data gener-
ated by Hysys simulator and AI model. It is evident that the 
prediction of the AI-based model is reliable and R2 value 
is vicinity 1 that implies good agreement between the data 
generated by Hysys and AI model. It is found that R2 value 
of validation dataset is similar to the test dataset ones. So, 
the developed models can predict the process performance 
with high precision.

So, in the left portion of this paper, these two optimum 
models are used to examine the impact of operational varia-
bles on the performance of process and process optimization.

TEG flowrate‑pressure interaction

The effects of TEG flowrate and column pressure are dem-
onstrated in Fig. 9 while the reboiler temperature was fixed 
at 170.5 °C. In this situation, the maximum and minimum 
amounts of TEG purity are 95.14% and 88.82%, respectively. 
Further, the minimum and maximum values of reboiler duty 
are 53.92 and 58.47 kW, respectively. According to Fig. 9a, 
an increase in column pressure results in a decrease in TEG 
purity. The phenomenon can be attributed to the fact that 
an increase in column pressure raises the bubble point of 
the mixture, leading to lower TEG purity. According to 
Fig. 9c, for column pressure of 40–70 kpa, the purity of TEG 
remains largely unaffected by an increase in the flowrate of 
TEG. For column pressure of 85 kpa, an increase in TEG 
flowrate from 2.8 to 2.9 kg mol/h causes a mild increase 
in TEG purity, and for higher values of TEG flowrate, no 
change is observed.

From Fig. 9b, it is clear that if the pressure inside the 
column increases, it will result in a reduction of the duty 
required for the reboiler. By increasing the column pressure, 
the rate of upward stream (vapor flowrate) decreases and 

leads to a lower reboiler duty. Figure 9d reveals that if the 
flowrate of TEG increases, it will lead to a corresponding 
increase in the duty required for the reboiler. The reason for 
these observations is that, in fact, with the increase in TEG 
flowrate, the flowrate of column feed increases and leads to 
more reboiler duty.

Reboiler temperature–pressure interaction

Figure 10 represents the impacts of reboiler temperature and 
pressure of column on TEG regeneration performance and 
energy consumption while the TEG flowrate was fixed at 
2.95 kg mol/h. At this value of TEG flowrate, the highest 
and lowest purity values are 97.52% and 71.79.14%, respec-
tively. And, the highest and lowest values of reboiler duty 
are 68.79 and 27.48 kW, respectively. Figure 10a shows 
that an increase in reboiler temperature at any pressure 
leads to higher TEG purity. The reason for this is that as the 
reboiler temperature increases, the flowrate of vapor phase 
rises which causes higher purity of TEG, subsequently. Fig-
ure 10c presents the changes in TEG purity versus column 
pressure for different reboiler temperature. It is clear that 
these changes are more severe for lower reboiler tempera-
tures. According to Fig. 10b, when the reboiler temperature 
increases, there is a corresponding increase energy con-
sumption. Figure 10d shows that for reboiler temperature 
higher than 190 °C, the changes in column pressure have 
no considerable effect on reboiler duty. However, for lower 
temperatures, the trend is descending. This means that, for 
temperatures less than 190 °C by increasing the column 
pressure, the reboiler duty decreases.

Optimization

Based on AI model, GA was used to find the approachable 
minimum and maximum values of responses. Table 3 rep-
resents the values of predicted minimum and maximum 

Fig. 8  Comparison of Hysys and predicted data of test dataset for a TEG purity and b reboiler duty
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values based on AI model and Hysys simulation are shown 
and compared. The values of ARE show good agreement 
between the minimum and maximum TEG purity and 
reboiler duty obtained by AI model and Hysys simulation. 
According to the material of this table, the maximum achiev-
able TEG purity is 97.52% based on AI model and 97.64% 
based on Hysys simulation. This value of TEG purity is 
achieved when TEG flowrate, reboiler temperature, and col-
umn pressure are 2.86 kg mol/h, 205 °C, and 40 kpa, respec-
tively. Since this condition leads to a considerable amount 
of energy consumption, this condition may be applied if the 
energy consumption is not of importance.

Conclusion

Among all types of energy resources, natural gas (NG) 
is considered to be highly environmentally friendly that 
receive high attention due to its advantage over other fos-
sil fuels. The performance of the distillation column in the 
process of regenerating the triethylene glycol (TEG) was 
modelled based on machine learning (ML) techniques. The 
energy consumption of the distillation column and TEG 

purity was modelled using a feed forward-based neural 
network with single hidden layer. The major findings of 
this study were:

• The values of R2 of the test dataset were 0.9998 and 
0.9989 for TEG purity and reboiler duty, respectively. 
These results confirm that the optimally tuned models 
are reliable.

• The effects of TEG flowrate and column pressure on 
TEG purity and Reboiler duty were investigated while 
the reboiler temperature was fixed at 170.5 °C. Accord-
ingly, the lowest and highest values of TEG purity were 
88.82% and 95.14%, respectively. Further, the lowest and 
highest values of reboiler duty were 53.92 and 58.47 kW, 
respectively.

• Further, the impacts of temperature of reboiler and 
pressure of column on TEG purity and reboiler duty 
were investigated while the TEG flowrate was fixed at 
2.95 kg mol/h. At this value of TEG flowrate, the maxi-
mum and minimum values of TEG purity were 97.52% 
and 71.79%, respectively. Also, the maximum and mini-
mum values of reboiler duty were 68.79 and 27.48 kW, 
respectively.

Fig. 9  The purity of TEG and reboiler duty versus pressure and TEG flowrate while the temperature of reboiler remains constant at 170.5 °C
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• Based on AI model, the maximum achievable TEG 
purity was 97.52% which corresponds to a TEG flow-
rate, a reboiler temperature, and a column pressure of 
2.86 kg mol/h, 205 °C, and 40 kpa, respectively.
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