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Abstract
The β-site APP cleaving enzyme-1 (BACE-1) is one of the key targets for novel drugs to treat Alzheimer’s disease (AD). The 
BACE-1 plays a key role in the amyloidogenic process, leading to the production of amyloid-β (Aβ) plaques in the brain. In 
the present work, we have developed an ML model based on the sulfonamides dataset. The best ML model was built using 
the XGBoost algorithm on PubChem fingerprints. The model had an accuracy, precision, recall and F1 score of 0.89, 0.88, 
0.99 and 0.93, respectively, on the validation set. The same model was used to screen the database of previously synthesized 
and reported in-house compounds. The screening resulted in the identification of two hits, i.e., compound 28 and compound 
37. Both the compounds were screened for their BACE-1 inhibitor activity. The  IC50 value of compound 28 was found to be 
0.431 ± 0.006 µM, and compound 37 showed an  IC50 value of 0.272 ± 0.019 µM. The docking study revealed that compound 
37 also showed interactions with the catalytic dyad of BACE-1, i.e., Asp32 and Asp228.
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Introduction

Β-site APP cleaving enzyme 1 (BACE1) is an aspartyl 
protease of the pepsin family, discovered in 1999. BACE1 
initiates the production of Aβ, which represents the rate-
limiting enzyme in the amyloidogenic pathway. BACE1 
cleaves the Aβ precursor protein (APP) to its membrane-
bound C terminus fragment C99 (CTF) and soluble APPβ 
fragment. The BACE1 is essential for the generation of 
all monomeric units of Aβ, including Aβ42, which plays 
a crucial role in the pathogenesis of Alzheimer’s disease 
(AD). The concentrations and activity rates of BACE1 are 
actively increased in AD brains and body fluids. There-
fore, BACE1 emerged as a primary drug target for decreas-
ing the production of Aβ in the AD brain (Hampel et al. 
2021). BACE1 is a type-1 transmembrane protein that is 
different from other peptidases of the same family. The 
catalytic domains of BACE have two significant motifs 
of the sequence DTGS and DSGT that together forms the 
active site of the enzyme (Vassar 2014). BACE1 consists 
of metal binding sites; it has a copper-binding site in its 
cytosolic domain (Hung et al. 2010). The crystal structure 
of BACE1 reveals that its proteolytic pocket is relatively 
large and is less hydrophobic; therefore, it becomes chal-
lenging for developing small molecule inhibitors using 
high-throughput virtual screening (Turner et al. 2001; 
Ghosh and Osswald 2014).

Sulfonamides as BACE1 inhibitors in human clinical 
trials

Non-peptide BACE1 inhibitors such as sulfonamides had 
some success in preclinical studies as some of the drugs 
were seen in various phases of clinical trials as well.

BACE1 inhibitor MK-8931 (Verubecestat) entered the 
Phase III of clinical trial conducted in mild-to-moderate 
Alzheimer’s patients and was terminated as it failed to 
show efficacy over the placebo. MK-8931 reduced the 
levels of Aβ40 in healthy participants, whereas it showed 
a decrease in cognitive performance compared to the pla-
cebo (Kennedy, et al. 2016).

Phase I clinical trial study of SUVN-502 (Masupirdine) 
revealed that it is well tolerated by healthy young and old 
adult participants. Phase II clinical trial (NCT02580305) 
for SUVN-502 in mild-to-moderate AD patients in combi-
nation with donepezil and memantine was completed but 
failed to show significant benefits.

Phase I clinical trial of SAM-760 was completed and 
well tolerated in healthy subjects and AD patients. Further, 
Phase II was terminated as it failed to show significant 
benefits (Sastre, et al. 2017).

Bertini et  al. developed a series of substituted aryl 
sulfonamides (I, Fig. 1) as BACE1 inhibitors where the 
highest potency of a compound was found to be 1.6 µM 
(Bertini et al. 2017). Kang et al.synthesized a series of sul-
fonamide chalcones (II, Fig. 1) as dual inhibitor of BACE1 
and acetylcholinesterase. The compounds showed activity 
in the micromolar range; the best activity was 0.62 µM. Li 
et al. identified some sulfonamide derivatives via virtual 
screening as BACE1 and PPARγ inhibitors (III, Fig. 1). 
The  IC50 value of one of the identified hits was found to 
be 1.24 µM. Zou et al. developed a series of pyrazole and 
sulfonamide-based BACE-1 inhibitors with potent activ-
ity. The best compound showed an  IC50 value of 0.036 µM 
(IV, Fig. 1).

Over the last decade, several research has been done on 
the therapeutic potential of BACE1 inhibition. However, 
despite the fact that inhibitors effectively reduce Aβ levels, 
clinical trials still fail to show benefits in cognitive func-
tion when given to patients with mild-to-moderate AD. This 
raises concerns about the true value of these putative anti-
AD medications as well as the design of the clinical tri-
als. Recent research indicates that starting BACE1 inhibitor 
therapy as soon as possible is the best course of action. A 
critical problem that may help to explain some of the prior 
failures is the best time to begin using BACE1 inhibitors 
(Voytyuk et al. 2018). Furthermore, recent studies report 
multitarget approaches focused on BACE1, whose ligands 
are synthesized as small molecules that can be used to alter 
both BACE1 and other AD-related targets through synergis-
tic pathways due to the complex nature of AD.

Machine learning in drug discovery

Machine learning (ML) techniques have been increasing and 
widely adopted in the early stages of drug discovery pro-
cesses. ML is the branch of artificial intelligence (AI) that 
focuses on developing and applying computer algorithms 
that use raw and unprocessed data to perform a specific 
task (Carracedo-Reboredo et al. 2021). In the field of drug 
discovery, the applications of ML are growing enormously 
among a large number of pharmaceutical companies. The 
goal is to minimize the need for animal testing and primar-
ily use high-throughput screening techniques to reduce the 
work and assist medication disclosure (Gupta et al. 2021). 
ML is classified into four groups based on the methodologies 
as: supervised, semi-supervised, unsupervised and reinforce-
ment learning. These techniques increase decision-making, 
QSAR analyses, hit discoveries and de novo drug designs 
more accurately. In the ML methodology of drug discovery, 
there are the following steps in the experimental setup: (1) 
data collection; (2) generation of descriptors; (3) searching 
best subset of variables; (4) model training; and (5) model 
validation (Carracedo-Reboredo et al. 2021).
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Machine learning algorithms

Random forest

Random forest (RF) is a supervised learning method which 
is composed by the combination of tree predictors such 
that each tree depends on the values of a random vector 
independently and with the same layout for each tree in 
the forest (Breiman 2001). Each tree in random forest is 
transverse in a particular way:

(1) Giving a training dataset N, n random samples with 
repetition taken as training set (Bootstrap).

(2) For each node of the tree, M input variables are deter-
mined, where m <  < M and the value of m remains con-
stant. The node used is the randomly chosen variables.

(3) Every tree is generated to its maximum expansion.

XGBoost classifier

XGBoost stands for extreme gradient boosting and is an 
efficient and scalable machine learning classifier model 
based on the gradient boosting machine (GBM), providing 
parallel tree boosting and enhancing performance by using 
subsampling ratio, learning rate and maximum tree depth 
to avoid overfitting. XGBoost defines additional features 
such as handling missing data with nodes, default direc-
tions and specifying efficiently splitting thresholds during 
split node (Sagi and Rokach 2021). XGBoost produces 
comparable and better predictive accuracy and supports 
the inherent ability to handle highly diverse and complex 
descriptors (Babajide Mustapha and Saeed 2016).

Fig. 1  Sulfonamides as BACE1 inhibitors in clinical and preclinical studies
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LightGBM

LightGBM is another scalable and flexible GBM approach 
that shows comparable performance with the other exist-
ing boosting tools by learning efficiency and accuracy with 
lower consumption of memory (Du et al. 2022). LightGBM 
is a fast, high-performance tree-based learning algorithm, 
used for both classification and regression tasks. It can 
reduce the cost of the gain for each split-up in training. In 
LightGBM, the tree grows vertically and leaf-wise, while 
most decision-tree learning algorithms grow horizontally 
and level-wise (Zhao et al. 2019).

In the present work, we have collected a dataset of sul-
fonamides as BACE-1 inhibitors and then developed and 
validated an ML model to classify the BACE-1 inhibitors 
and used this model to screen our in-house library of sulfon-
amides. The identified hits were then screened for BACE-1 
activity using an in vitro assay.

Materials and methods

Dataset collection

The dataset for BACE1 was obtained from BindingDB 
(https:// www. bindi ngdb. org/), a public web-accessible data-
base (Gilson et al. 2016). Only the compounds containing 
the sulfonamide group were selected further. The KNIME 
analytical tool was used to filter the compounds with mul-
tiple entries and  IC50 values. The compounds having  IC50 
values less than 500 nM were marked as active (recognized 
as 1), while compounds with  IC50 more than 500 nM were 
marked as inactive (recognized as 0). Hence, total of 327 
actives and 194 inactive compounds were obtained (Berthold 
2009).

Fingerprint descriptors

KNIME analytical tools were used to generate the finger-
prints descriptors for the BACE1 dataset using Fingerprints 
and Fingerprints expander nodes. The five fingerprint 
descriptors, viz. MACCS, Estate, PubChem, ECFP4 and 
ECFP6, were obtained.

Data splitting

The dataset of BACE1 inhibitors was split into training 
(80%), validation (10%) and test (10%) sets by train_test_
split by using the scikit learn python module having a ran-
dom state of 2529. Training dataset was used for model 
development, and other two subsets (i.e., test and validation) 
were used to evaluate training model performance against 
new data.

Machine learning classification algorithms

Random forest (RF), gradient boosting machine 
(XGBoost) and LightGBM machine learning algorithms 
were used for classification models using Python library 
Scikit learn. Grid search using GridsearchCV was per-
formed to identify the optimal combination of values for 
the hyperparameters.

Random forest classifier

Three different parameter combinations were used to deter-
mine the RF, that is, the number of trees in the random forest 
(n_estimators), maximum depth of the tree (max_depth) and 
minimum number of samples required to split an internal 
node (min_samples_leaf) (scikit-learn 1.2.2). A grid search 
was performed to obtain the maximum accuracy using fol-
lowing parameters:

• n estimators- 50, 100, 200, 300, 400 and 500
• Maximum depth ranges from 5 to 50 with an increment 

of 5.
• Minimum sample split ranges from 2 to 10.

XGBoost classifier

XGBoost or extreme gradient boosting classifier can work 
well in smaller datasets (XGBoost 1.7.5). A grid search was 
performed to tune hyperparameters, and based on accuracy 
score, the best model was selected. XGBoost provides large 
range of hyperparameters such as:

• Maximum depth of a tree (max_depth)- 5,7,9,11,13, and 
15.

• Learning rate ranges from 0.01 to 0.1.
• Gamma- 0, 0.25 and 1.
• Lambda (reg_lambda) ranges from 0 to 15.
• scale_pos_weight used for imbalanced classes having 

values 3,5,7,9 and 11.
• Subsample is the ratio of training instances having a 

value of 0.8.
• colsample_bytree is the subsample ratio of the column 

having value of 0.5.
• Tree construction algorithm (tree_method) used ‘gpu_

hist.’

LightGBM classifier

LightGBM works on a histogram-based algorithm that 
results in faster and more accurate results compared to 

https://www.bindingdb.org/
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XGBoost (LightGBM 3.2.2). The most critical hyper-
parameters used by the LightGBM are:

• ‘num_leaves’: 10–50,
• ‘reg_alpha’: [0.1, 0.5],
• ‘lambda_l1’: [0–5],
• ‘lambda_l2’: [0, 1],
• ‘min_data_in_leaf’: 30–100,
• ‘learning_rate’: 0.9–0.001

Performance evaluation

Accuracy: Accuracy is the percentage of the total correctly 
classified outcomes from the total outcomes.

Precision: Precision refers to the number of true positives 
divided by the total number of the positive predictions (i.e., 
sum of true positives and false positives). Precision indicates 
the quality of the positive predictions made by a model.

Recall: Recall is the ratio between the true positives to 
the sum of true positives and false negatives.

F1 score: F1 score measures the model’s accuracy for a 
dataset. It combines the scores of precisions and recall of a 
model and made a correct prediction for the entire dataset.

where TP is the true positive, FP is the false positive, TN is 
the  true negative and FN is the false negative.

Screening database preparation

The in-house database of previously synthesized and 
reported sulfonamides in our laboratory was prepared using 
DataWarrior V5.5.0 (Swetha et al. 2019; Ganeshpurkar 
et al. 2018; Kumar et al. 2018). The database consists of 
129 reported sulfonamide derivatives. The database was 
screened with the best model to identify the hits (Sander 
et al. 2015).

BACE‑1 inhibition assay

The identified hits were evaluated for their BACE1 inhibi-
tion potential using fluorescence resonance energy transfer 

Accuracy (%) =
TP + TN

TP + TN + FP + FN
× 100

Precision (%) =
TP

TP + FP
× 100

Recall (%) =
TP

TP + FN
× 100

F1 (%) = 2 ×
Precision × Recall

Precision + Recall
× 100

(FRET)-based BACE-1 fluorescence assay kit (Catalog No. 
CS0010, Sigma-Aldrich). The kit consists of fluorescent 
assay buffer, stop solution, substrate (7-methoxycumarin-
4-acetyl [Asn670, Lue671]-amyloid βA4 precursor protein 
770 fragment 667-676-(2,4 dinitrophenyl) Lys-Arg-Arg 
amide trifluoroacetate salt) and BACE1 enzyme. Differ-
ent concentrations of test compounds were prepared. The 
fluorescence intensity was measured immediately after the 
addition of BACE-1 enzyme with the wavelength of excita-
tion and emission was set at 320 nm and 405 nm, respec-
tively. All the measurements were performed in triplicate. 
The percentage inhibition was calculated using the following 
formulae: [(Io–Ii)/Io] × 100, where Io and Ii are the fluores-
cence intensities obtained in the absence and presence of an 
inhibitor, respectively, and the  IC50 values were calculated 
using linear regression graph (GraphPad Prism 5.1, Graph-
Pad Software Inc.).

Docking study

The docking study was performed to study the binding 
pose and interaction of the identified hits with the BACE-1 
protein.

Grid generation and validation

The amino acid residues involved in the protein–ligand 
interactions of the selected protein (PDB ID-6EQM) were 
identified by using BIOVIA Discovery studio visualizer. The 
identified residues were used to construct a grid box around 
the active site as the reference points. The Autogrid 4.0 was 
used to calculate grid maps of interaction energies having 
various atom types present in the ligand (A, C, HD, N, NA, 
S, OA, Br, Cl and I) (Hampel et al. 2021). The grid size was 
set to xyz points at 60 × 60 × 54, having a grid spacing of 
0.336 Å, and the grid centers were placed at the coordinates 
X: 28.936, Y: 79.442, Z: 18.584, respectively. Further, the 
obtained grid was validated by redocking ligand (BUH) and 
the root-mean-square deviation (RMSD) value was calcu-
lated between experimentally obtained co-crystalized ligand 
and docked pose using Maestro. The RMSD was found to be 
0.389 Å. Precision docking was performed using AutoDock 
4.2 by engaging Lamarckian genetic algorithm (LGA) with 
the genetic algorithm runs kept at 100.

Result and discussion

Machine learning models

The training dataset had total of 521 compounds out 
of which 416 were taken for training set and remaining 
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compounds were equally divided into test set and valida-
tion set using stratified splitting (Table S1 of S.I).

Random forest classifier

Random forest is an ensemble of decision trees. Table 1 
summarizes the performance of random forest classifiers 
build using different fingerprints on the training and test 
set. The summary of hyperparameters of all the models 
is summarized in Table S2 of Supplementary Informa-
tion (S.I.). The result indicates that the model build using 
PubChem fingerprints had the best F1 score of 0.91. The 
model had an accuracy, precision and recall score of 0.86, 
0.84 and 0.98, respectively. The model build using Estate 
fingerprint showed recall score of 1.0 on training and test 
set but the precision score was low.

XGBoost classifier

It is an ensemble of several weak classifier that uses a 
gradient boosting framework. The hyperparameters of the 
best model for every descriptor is summarized in Table S3 
of S.I. Table 2 summarizes the performance of XGBoost 
classifier on training and test set. The accuracy and F1 
score of models build using XGBoost classifier were bet-
ter than that of RF classifier when evaluated on test set. 
The models built using PubChem fingerprint showed the 
best F1 score on the test set.

LightGBM classifier

It is also a boosting algorithm based on decision tree. It is 
considered to be fast and less computational memory inten-
sive. The hyperparameters corresponding to each fingerprint 
for LightGBM model is summarized in Table S4 of S.I. The 
model build using PubChem showed the best accuracy and 
F1 score on the test set, i.e., 0.87 and 0.92, respectively. The 
model performed better than the other two algorithms. The 
summary of performance of models is given in Table 1.

Performance of ML models on validation set

In order to check the robustness of machine learning models, 
it is necessary to evaluate the models on independent vali-
dation set. The performance of every algorithm on differ-
ent type of fingerprint is summarized in Table 2. The result 
indicates that the model build using XGB classifier with 
PubChem fingerprints showed the best performance on the 
external validation set with accuracy, precision, recall and 
F1 score of 0.89, 0.88, 0.99 and 0.93, respectively. The best 
model was selected, and feature importance was calculated. 
The top 20 features and their importance are summarized 
in a figure (Figure S1 of S.I.), and the top ten fragments are 
shown in Fig. 2.

Screening of in‑house library

The in-house library of compounds was screened virtu-
ally using XGB classifier build using PubChem finger-
prints. The cutoff was kept to 0.5 which is the default 
value for several binary classification algorithms. The 

Table 1  Performance of classification models on the test set

Fingerprints RF classifier XGBoost classifier LightGBM classifier

Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

MACCS 0.84 0.81 0.98 0.90 0.88 0.84 0.99 0.91 0.85 0.87 0.93 0.90
ECFP-4 0.84 0.86 0.93 0.89 0.88 0.87 0.93 0.90 0.90 0.92 0.92 0.93
ECFP-6 0.79 0.87 0.93 0.88 0.88 0.87 0.93 0.90 0.88 0.92 0.92 0.92
PubChem 0.86 0.84 0.98 0.91 0.87 0.87 0.97 0.92 0.88 0.89 0.94 0.92
Estate 0.80 0.79 1.00 0.88 0.82 0.80 1.00 0.89 0.79 0.82 0.92 0.87

Table 2  Performance of ML models on validation set

The Bold signifies the performance of the best model

Classifier Descriptors Accuracy Precision Recall F1 score

RF MACCS 0.85 0.83 0.98 0.90
ECFP-4 0.86 0.86 0.93 0.89
ECFP-6 0.75 0.78 0.93 0.85
PubChem 0.83 0.82 0.98 0.89
Estate 0.80 0.78 1.00 0.88

XGB MACCS 0.87 0.83 0.97 0.89
ECFP-4 0.87 0.88 0.94 0.91
ECFP-6 0.87 0.88 0.94 0.91
PubChem 0.89 0.88 0.99 0.93
Estate 0.83 0.82 0.97 0.89

LightGBM MACCS 0.82 0.86 0.90 0.88
ECFP-4 0.88 0.85 0.89 0.87
ECFP-6 0.89 0.85 0.89 0.87
PubChem 0.88 0.89 0.96 0.92
Estate 0.80 0.83 0.91 0.87
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compounds having score more than the cutoff were 
marked as active and were selected as hit. The screen-
ing resulted in the identification of two virtual hits, i.e., 

compound-28 ((S)-( +)-N-(3-fluorophenyl)-2-phenyl-2-
(phenylsulfonamido) acetamide) and compound-37 ((S)-
( +)-N-(3-methoxyphenyl)-2-phenyl-2-(phenylsulfonamido) 

Fig. 2  Top 10 important PubChem fingerprints

Fig. 3  2D interaction diagram of (a) compound 28 and (b) compound 37 and 3D interaction diagram of (c) compound 28 and (d) compound 37
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acetamide), which were previously reported for acetylcho-
linesterase (AChE) and butyrylcholinesterase (BChE) activ-
ity (Ganeshpurkar et al. 2022). The summary of the reported 
properties of both the hits is given in Table 3.

In vitro BACE‑1 inhibitory activity

The identified hits were evaluated for their BACE-1 inhi-
bition using FRET-based assay kit. The molecules were 
initially screened to determine the percentage inhibition 
at 1 µM, and then, they were screened at different con-
centrations to determine their  IC50 values. The compound 
28, containing 3-fluorophenyl group, showed  IC50 of 
0.431 ± 0.006 µM and the compound 37, containing 3-meth-
oxyphenyl group, showed  IC50 value of 0.272 ± 0.019 µM 
(Table 4).

Docking study

The grid validation was performed by redocking the co-
crystallized ligand and calculating the RMSD between the 
docked pose and co-crystallized ligand. The RMSD value 

was found to be 0.389 Å. The docked pose and co-crystal-
lized ligand are represented in Fig. S2 of S.I. The docking 
study revealed that the compound 28 and compound 37 had 
binding energy of − 7.66 and − 7.58 kcal  mol−1, respec-
tively. Their interaction diagram revealed that the compound 
28 showed H-bond interaction with Arg307 and Thr232. The 
compound 37 showed interaction with the catalytic dyad, 
i.e., Asp32 and Asp228 via. H-bond and Pi-anion interac-
tions, respectively (Fig. 3). The summary of docking result 
containing binding energy, ligand efficiency and interactions 
is represented in Table 4.

Conclusion

BACE-1 is a promising target for the treatment of AD. 
Several sulfonamide-based BACE-1 inhibitors have shown 
potential for decelerating the long-term progression of AD. 
Drug discovery pipelines are extremely long and compli-
cated process. In this study, a ML model was developed 
using to classify the BACE-1 inhibitors. The classifica-
tion was based on the range of  IC50 value. The compounds 

Table 3  Summary of reported 
properties for identified hits

Compound code Structure % Inhibition at a concentration of 
50 µM

BChE AChE

28

 

01.23 ± 0.84 05.82 ± 0.78

37

 

41.77 ± 0.62 14.03 ± 0.85

Table 4  Summary of in vitro and docking result of ligands with BACE-1 (PDB ID-6EQM)

a Data expressed in mean ± S.D. (n = 3)

Compound code hBACE—1  IC50(µM) ± S.D.a Binding energy 
(Kcal/mol)

Ligand efficiency 
(Kcal/mol)

Interactions (PDB ID- 6EQM)

Compound 28 0.431 ± 0.006  − 7.66  − 0.284 Arg307 (H-bond), Thr232 
(H-bond), Gly230 (H-bond), 
Tyr71 (Pi-Pi T-shaped), Ala396 
(Pi-Sigma)

Compound 37 0.272 ± 0.019 µM  − 7.58  − 0.271 Asp32 (H-bond), Leu30 (Pi-
alkyl), Phe108 (Pi-Sulfur), 
Asp228 (Pi-anion), Tyr198 
(Pi-Pi T-shaped)
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having  IC50 value less than 500 nM were marked as active, 
and the compound having  IC50 value more than 500 nM 
were marked as inactive. The best ML model had accu-
racy, precision, recall and F1 score of 0.89, 0.88, 0.99 and 
0.93 on the validation set. The model was built using the 
XGBoost algorithm on PubChem fingerprints. The model 
was used to screen the in-house library of potential sulfona-
mides as BACE-1 inhibitors. Upon screening, we obtained 
two hits, i.e., compound 28 and compound 37, which were 
previously reported as weak AChE and BuChE inhibi-
tors. Both the compounds were evaluated for their in-vitro 
BACE-1 activity. The compound 28 showed an  IC50 value 
of 0.431 ± 0.006 µM, and compound 37 showed an  IC50 
value of 0.272 ± 0.019 µM. Docking study revealed that the 
compound 37 showed interaction with the catalytic dyad 
of BACE-1, i.e., Asp32 and Asp228. Thus, the developed 
model has shown reliable prediction and further studies and 
optimizations can be done on the identified hits to make 
them potential lead molecules.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11696- 023- 02982-2.
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