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Abstract
Numerical and experimental studies were carried out for the analysis of hydrodynamics and volumetric mass transfer coef-
ficient (kLa) in a cross-T junction microchannel for gas–liquid, two phase flow system. Initially, CO2–water hydrodynamics 
simulation was performed using ANSYS-FLUENT 2021 R2 and volume of fluid technique. Through the numerical simu-
lation, fluctuation in pressure drop with variation in volume fraction was calculated for the slug flow in a 1 mm hydraulic 
diameter microchannel. After that mass transfer equations were coupled with the flow equations for CO2–ethyl glycol, 
CO2–water, and CO2–ethyl alcohol systems to understand the mass transfer mechanism using two film theory concepts. 
Computational fluid dynamics model was validated by comparing results with the experimental data. An empirical co-relation 
was also developed to measure the bubble length with its position in the direction of fluid flow. CO2 and solvents velocities 
were 0.21–0.424 m/s for both the phase. Effect of solvents and film thickness (0.01–0.05 mm) on volumetric mas transfer 
coefficient were investigated at different temperatures range i.e., T = 298.15 K and 303.15 K (experimental approach) and 
298.15–318.15 K (numerical approach). The results obtained in numerical simulation and experimental work show that 
the total volumetric mass transfer coefficient (range 0.1–0.8 1/s) increases with the gas velocity however, it decreases with 
increasing film thickness (0.01–0.05 mm) and temperature (T = 298.15 K and 303.15 K). The present work gives an advan-
tage over the conventional channel (e.g., packed bed column) and the other type of T-junction microchannel (e.g., symmetric 
T-junction) by providing a high mixing rate, interfacial area, and high mass transfer rate.
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Introduction

Through time people are progressively shifting their 
life towards industrialization and operating such indus-
tries entails a lot of energy. To attain a huge amount of 
energy the big resource is the combustion of fossil fuel 
(Mahmoudi Marjanian et al. 2021; Aghel et al. 2018). 
With instant advantages of these industries like refineries, 
coal fire-power plants, transportation, etc., are responsi-
ble for the present as well as the future condition of the 
environment (Aghel et al. 2018; Davison 2007; Guo et al. 
2020) where acid gases (Kundu and Bandyopadhyay 
2006) becoming the major origin of the numerous diffi-
culties around the world. From prior literature data and 
the factual observations that give information about the 
recent state of the atmosphere such as a rapid change in 
climate (Tan et al. 2012; Buckingham et al. 2021), the 
rise of earth's temperature due to greenhouse gases (Wang 
et al. 2021), and solution to the control this problem is 
the major concern of the researchers (Ochedi et al. 2020; 
Ahmed et al. 2020). The composition of greenhouse gases 
is Carbon dioxide, Methane, Nitrous oxide (Extavour and 
Bunje 2016), Water vapor (Modak and Jana 2018), and 
Fluorinated gases (Yoro and Daramola 2020) which CO2 
is highly responsible for the major environmental problem. 

According to Energy Agency (IEA 2022), the concen-
tration of CO2 emission ranges to the average value of 
412.5 ppm in 2020, and the climate service of India (IMD 
2022) reported the effect of CO2 emission on the tempera-
ture rise and divergence in rainfall is represented in Fig. 1.

Furthermore, researchers have suggested several tech-
niques and methods that are represented in Fig. 2. For sepa-
ration/capturing of CO2 like absorption (Lee et al. 2013), 
adsorption (Ahmed et al. 2020; Bhown and Freeman 2011), 
cryogenic (Göttlicher and Pruschek 1997), and membrane 
(Leung et al. 2014; Kenarsari et al. 2013), and calcium 
looping (Criado et al. 2017) use in conventional equipment 
(Rouzitalab et al. 2020; Zhang et al. 2016) that provide effec-
tive results (Mukherjee et al. 2019; Bonaventura et al. 2017).

For the different ranges of temperatures (Gul 2022), pres-
sures (Khan et al. 2017), and gas absorption is the most 
utilized and promising method that can be used to capture 
or separate CO2 (Ye et al. 2013). Removal of CO2 can be 
enhanced by providing sufficient contact time and interface 
area by the use of different solvents like Water (Zunlong 
et al. 2021), NH3 (Liu et al. 2009), H2S (Huang et al. 2017), 
KOH (Rastegar and Ghaemi 2022), NaOH (Krauβ and Rze-
hak 2017), Na2CO3 (Rodríguez-Mosqueda et al. 2018) or 
Na2CO3 integrated with CaCO3 (Barzagli et al. 2017), Alco-
hols (Gui et al. 2011), Amines (Simons et al. 1975; Adak 
et al. 2020), Glycols (Hayduk and Malik 1971), Nanofluids 

Fig. 1   Anomaly time series of temperature (°C) and rainfall (%depth) reported by IMD Ministry of Earth Sciences
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(Zhang et al. 2018), Ionic fluids (Ramdin et al. 2012), equip-
ment other than conventional channels e.g., mini/microflu-
idic-devices (Khatoon et al. 2022; Yao et al. 2014; Kuhn and 
Jensen 2012) using experimental (Ghadyanlou et al. 2022) 
and numerical method (Harkou et al. 2021; Li et al. 2022).

Microfluidics is the most advanced term in the field of 
research and technology. At the beginning of this field, its 
applications were limited to the heat transfer (Tuckerman 
and Pease 1981) purpose but in recent times it has had sev-
eral applications [hydrodynamics (Khan et al. 2018; Chan-
dra et al. 2016), high rate of heat (Chandra et al. 2015), 
and mass transfer (Pohar and Plazl 2009; Chen et al. 2008; 
Kenig et al. 2013), good reaction control (Renken and Kiwi-
Minsker 2010)] in the different areas like process industries 
(Pua and Rumbold 2003; Palo et al. 2006), biomedical (King 
2006), pharmaceuticals (Huang et al. 2019), emulsification 
(Ganguli and Pandit 2021), and electronics (Dix and Jokar 
2018), etc.

On the other hand, geometrical representation is also an 
important characteristic that plays a very vital role in the 
two-phase flow system. A vast study of literature (Ansari 
et al. 2010; Venkateshwarlu and Bharti 2023; Boruah et al. 
2018; Liu et al. 2016) reported that 1–1 cross-T microfluidic 
junction (less costly and low maintenance required) gives a 
higher rate of mixing (Santos and Kawaji 2011; Qian and 
Lawal 2006) for two-phase flow system (Sarkar et al. 2014; 
Mastiani et al. 2017). Two-phase separation phenomena are 
affected by the different parameters i.e., diameter of the main 
arm, diameter ratio (side arm to the main arm), inclination 
of the main arm, inclination of sidearm, radius of curvature, 
outlet inclination, flow regime, pressure drops (during phase 

separation), densities of phases, mass split ratio, gas/liquid 
superficial velocities, and flow regime in the main pipe (Ejaz 
et al. 2021).

From the study of several kinds of literature (Ni et al. 
2017; Dong and Hibiki 2018; Kreutzer et al. 2005; Lim 
et al. 2019), it is found that in microchannels different types 
of flow patterns like annular, bubbly, slug (Chaoqun et al. 
2013), churn, wavy, etc. (Triplett et al. 1999; Bordbar et al. 
2018), can be obtained with the variation in the fluid veloci-
ties. Fluctuations in flow rate create vibrations in the pipes 
with rising velocities of gas at a constant liquid flow rate 
flow pattern shifted from plug to slug flow. It was seen that 
slug flow appeared for a wide range of velocities/flow rates 
(Yin 2022) with the high-pressure fluctuation in the T-junc-
tion. To maintain the constant slug length in the channels 
it is necessary to choose the accurate inner diameter of the 
channels and fluid flow rates may also have a small effect on 
its stability (Kang et al. 2021).

In the present work to capture/separate the CO2, cross-T 
junction microfluidic equipment, slug flow, with the absorp-
tion method was used but the selection of the solvents was 
the main challenge for this study. The purpose of the recent 
work is the minimization of the processing cost and use of 
energy (energy consumed to recover or regenerate the costly 
solvents) by the utilization of physical solvents i.e., water, 
glycols, and alcohols. Physical solvents drop the chances of 
microchannels from getting blocked and their limit can be 
pulled beyond the limit of chemical solvents.

A numerical gas–liquid-based model was developed for 
the current work and compared with the experimental obser-
vations at two different temperatures in a cross-T-junction 

Fig. 2   CO2 separation processes are broadly categorized as adsorption, membrane-separations, cryogenics, calcium looping, and absorption
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microchannel. Obtained results are related to the hydro-
dynamics and mass transfer study and are associated with 
the literature data for the conventional channel as well. An 
attempt is made the development of empirical co-relation 
for the measurement of bubble length. In conventional, 
mini, and microchannels it was found that microchannels 
offer high CO2 capturing rate with the physical absorption 
method at a particular combination of gas and liquid phase 
velocities.

Material and methods

Computational approach

In the present study, computational fluid dynamics (CFD) 
numerical simulation was performed using the finite volume 
method with the help of the ANSYS 2021 R2 platform. The 
volume of fluid (VOF) is an Eulerian method that is the most 
renowned, reliable, and numerically expensive technique to 
track the interphase for the study of multiphase flow system 
(Nekouei and Vanapalli 2017; Chiriac et al. 2022). Here, 
the VOF method was used for the analysis of a two-phase 
(gas–liquid) flow system, a cross-T-junction in which gas 
enters through the side arm, liquid enters from the main arm, 
and Taylor/slug flow is observed in the running arm.

Hydrodynamic model

Two-dimensional (2D) Laminar fluid flow for CO2-different 
solvents is considered for the present work with the follow-
ing assumptions:

1.	 Newtonian and incompressible fluid
2.	 Gravity effect is not considered (due to the small hori-

zontal channel with a small diameter i.e., mm)
3.	 Geometry is not responsible for the change in the physi-

cal properties of the fluid
4.	 No slip condition considered at the wall

5.	 Marangoni effect is neglected so the surface tension 
remains constant during fluid flow in the microchannel

Detail description of geometry

Here, the 2D cross-T junction geometry selected for the pre-
sent study has two inlets (at 90°), with 1 mm hydraulic diam-
eter, one outlet with 1 mm hydraulic diameter, length of the 
main arm, side arm, and running arms are 3 mm, 3 mm, and 
47 mm respectively. This geometry (Fig. 3) was created using 
ANSYS 2021 R2 design modular (DM).

Volume of fluid (VOF) method

The volume of fluid is a numerical technique that is used in 
literature for the analysis of the interface between two or more 
phase flow simply and economically. This method helps to 
find out the continuity of the surface, the physical properties 
of the fluid at the chosen surface, and tangential velocities 
(Hirt and Nichols 1981). Basic equations that were used in 
this method is written in the form of volume fraction (α) which 
play an important role in tracking the interface between two/
multiphase system.

Governing equations

The following equations are written for each phase of two flow 
systems according to the present work (Khan et al. 2018):

where �L , �G , �L , and �L are the density and viscosity of gas 
and liquid phase respectively, while �G is the volume fraction 
of gas. Based the local value of �G the appropriate proper-
ties and variables will be assigned to each control volume 
within the domain.

(1)�L + �G = 1

(2)� = �G + (�L − �G)�L

(3)� = �G + (�L − �G)�L

Fig. 3   Schematic representation of cross-T junction microchannel
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Continuity equation

For incompressible fluid the above equations can be 
rewritten for a two-phase flow system as follows (Chandra 
et al. 2016):

Navier–Stokes equation

Navier Stokes equation was coupled with the continuity 
equation, VOF method, and with the body force, F is body 
force that shows the combined effect of surface tension as 
well as interfacial properties (Liu et al. 2016).

where u is used for the velocity of the fluid, � is surface ten-
sion, � is surface curvature, and P represents the pressure 
(Pham et al. 2012).

Mass transfer equation:

In gas–liquid microchannels available interfacial surface 
area enhances the mass transfer rate several times (Khan 
et al. 2021) by utilizing the absorption concept in the slug 
flow pattern. A generalized transport equation used for the 
mass transfer of gas into liquid is mentioned below (Zunlong 
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et al. 2021; Yao et al. 2014; Yang et al. 2014; Makarem et al. 
2021):

Two film theory mass transfer models were used to track 
the movement of gas molecules into the liquid through the 
interface (Baten and Krishna 2004) (Fig. 4).

where C is concentration, D is diffusion coefficient, R is the 
rate of gas absorption, and k is the mass transfer coefficient 
at a given temperature.

Boundary conditions

All the information that was required for the recent model 
and the values were considered in ANSYS FLUENT 2021 
R2 with the inlet, outlet, and surface boundary conditions 
listed in Tables 1 and 2 respectively.

Selection of mesh size and grid independency test

Selection of an exactly suitable grid was quite challenging 
and it took a lot of time to choose the optimum result for a 
recent study. It's really necessary to predict the degree of 
accuracy to justify the consequential decision. After sev-
eral trials with the size of elements, it was gained around 
0.6 million nodes, fluctuation in the pressure and slug length 
became constant at the precise position of the microchan-
nel, Fig. 5.

Quadrilateral, uniform, and structured mesh type was 
used to study hydrodynamics in cross-T junction microchan-
nel, Fig. 6. For the mass transfer observation, unstructured 
(useful for complex geometry for arbitrary position) and the 
quadrilateral mesh were employed for the reason of the bub-
ble shape, Fig. 7.

(9)𝜌
𝜕Ci

𝜕t
+ u⃗ ⋅ ∇Ci = 𝜌Di∇

2Ci + Ri

(10)Ri = kG

(

PBulk
i

− P
Interface

i

)

= kL

(

C
Interface

i
− CBulk

i

)

Fig. 4   Interfacial representation of Taylor bubble and liquid slug using two film theories
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Experimental approach

The gas–liquid operation was executed for the study of 
hydrodynamics and mass transfer in the laboratory in the 
cross-T junction (Fig. 8), with the similar geometry that was 
explained (used for numerical approach) in section of com-
putational approach. To perform the experiments, a micro-
reactor setup was purchased from Amar Equipment Pvt. Ltd. 
Kurla Mumbai, India. This set up consists two peristaltic 
pumps, microchannel or microreactor, camera, sensors, 
MFC’s to control the fluid flow, control panel, beakers, and 
data acquisition system.

In this experiment, fluid flow data is inserted with the 
help of computer programme. As per given instructions 
to the computer, gas introduced in to one inlet and the 
solvent from the other inlet with the help of peristaltic 

pump. First step was related to the hydrodynamics of the 
CO2–water system to check out the range where Taylor/
slug flow can be obtained. Once slug flow pattern was 
attained at a particular combination of velocity for a dif-
fusing system (CO2–water), this velocity data was uti-
lized for the study of hydrodynamics and mass transfer 
study of the other diffusing system i.e., CO2–ethyl alcohol 
and CO2-glycols. Mixture of gas–liquid system was col-
lected in a beaker from the outlet of cross T-junction. 
For the present work, solvents were chosen with physical 
absorption criteria, no reactions were considered for both 
(numerical and experimental) approaches.

An online method (Yao et al. 2014) was used to calculate 
the mass transfer coefficient values from the experimental 
data for each diffusive system and validated with numerical 
results. As the CO2 started to absorb in the liquid, the size 
of the bubble ongoing to shrink. The mass transfer rate from 
a gaseous phase to the liquid phase for the unit slug length 
(Fig. 9) can be calculated from the following equation:

The volumetric mass transfer coefficient ( kLa ) was obtained 
from the equation that is mentioned below (Yue et al. 2007):

By solving Eqs. 11 and 12, the length of the bubble (gase-
ous phase) can be expressed in terms of bubble position i.e., 
x (Eq. 13):

where expansion of a, b, and c are listed below:

(11)
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P
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x
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⋅

VLRTus

P
,

(15)b =
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)
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⋅

VLRTus

P

Table 1   Model, methods, and initialization conditions for the present 
work (Fluent Thoery Guide 2013)

Model
Viscous model Laminar

Multiphase Model VOF
Number of Eulerian phases 2 for each case
Volume fraction formulation Explicit
Body force formulation Implicit body force
Interface modelling Sharp
Courant number 0.25
Modelling of surface tension CSF (Brackbill et al. 1992)

Methods

Pressure–velocity coupling PISO

Pressure PRESTO
Momentum Second order upwind
Volume fraction Geo reconstructs

Initialization

Initialization methods Standard

Gauge pressure 0 Pa
Velocity 0.424 m/s
The volume fraction of Liquid 1
The volume fraction of Gas 0
0 < 𝛼 < 1 Interphase

Table 2   Initial boundary 
condition for each system in the 
cross-T junction microchannel

Number of cases Systems Boundary condition

Inlet 1 Inlet 2 Outlet

Flow rate (ml/
min)

Flow rate (ml/
min)

Pressure (kPa)

Case 1 CO2 + water 10 20 101.325
Case 2 CO2 + ethyl alcohol 10 20 101.325
Case 3 CO2 + ethyl glycol 10 20 101.325
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It was considered overall volumetric mass transfer coef-
ficient ( kLa ) is a combination of the film bubble length side 

(16)c =
kLa

us

( kLaFilmBubbleLengthSide ) and film bubble cap side volumetric 
mass transfer coefficient ( kLaFilmBubbleCapSide ), Eqs. 17, and 
18 (Zunlong et al. 2021).

Fig. 5   Diagram shows the effect 
of the number of nodes on the 
slug length and pressure drop 
(GIT)
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Study of solvent performance

In the literature, several solvents give good solubility of CO2 
without chemical reactions. The selection of solvent in the 
physical absorption process is an important criterion that 
highly depends on the functional group (OH, COO, C=O, 
–O–), temperature, and pressure (Gui et al. 2011; Simons 
et al. 1975). For the present study water, ethyl alcohol, and 
ethyl glycol were chosen solvents to capture the CO2 in the 
cross-T junction microchannel, listed in Table 3. The physi-
cal properties of all fluid are in mentioned Tables 4 and 5.

(17)kLa = kLaFilmBubbleLengthSide + kLaFilmBubbleCapSide

(18)kLaFilm =
DGL

�

Results and discussion

To understand the performance of any equipment and trans-
port phenomena characteristics it is always necessary to 
went through a detailed study of the hydrodynamics (change 
in velocities, pressure fluctuation) in that equipment. So, one 
can enhance the optimization condition of the system. In the 
present work, a hydrodynamic model was developed for case 
1 with the help of continuity and Navier Stokes equation 
using the VOF method and obtained slug/Taylor flow for 
a wide range of velocities in the microchannels. After that 
developed model was used for the numerical simulation of 
case 1, 2, and case 3, obtained results were compared with 
experimental data. A mass transfer study is also performed 
to obtain the volumetric mass transfer coefficient value and 
also checked the effect of gas velocities, and bubble length 
on this parameter.

Fig. 8   Schematic image of experimental set up and cross-T junction (hydraulic dia = 1 mm) used in the laboratory

Fig. 9   Schematic representation of unit slug length
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Hydrodynamics study for CO2–water system

Effect of velocity

On the several variations in the velocity range (0.2–0.5) of 
the two-phase flow system i.e., gas (CO2) and water (H2O), 
we have obtained a Taylor bubble flow pattern in the micro-
channel at uG = 0.2 m/s and uL = 0.4 m/s, Fig. 10. It was 
observed that the length of the bubble and slug have higher 
dimensions than the diameter of the microchannel and the 
interfacial area in the slug flow pattern (Fig. 10c) is much 
higher than the other two fluid flow patterns (Fig. 10a, b).

Mixing velocity enhances approx. 6 folds at the cross-T-
junction and each slug have high average velocity and cir-
culation rate than the Taylor bubble (Fig. 11).

Study of two‑phase pressure drop in a microchannel

Because of the complicated behaviour of the two-phase flow 
system in microchannels, it is quite difficult to observe the 
pressure fluctuations. ANSYS FLUENT provides the plat-
form for the study of pressure drop fluctuation at each point 
inside the microchannel. It was observed high-pressure fluc-
tuation at the cross-T junction due to high mixing velocity 
(Fig. 12). The value of pressure was high inside the bubble 
than the slug, and bubble cap due to Laplace pressure which 
is also mentioned by different scholars (Yao et al. 2014; 
Abadie et al. 2012).

Change in volume fraction in the direction of flow

In the volume of fluid (VOF) method, the volume fraction 
( � ) term is used to define the fluid phase and interface 
study. Figure 13 is a volume fraction plot that shows the 
variation for each phase at an interface in slug fluid flow 
with a repeated pattern between 0 and 1 values. In the 
plot, solid line was used for single phases and dotted lines 
represent interphase between the CO2–water system.

For detailed tracking of volume fraction, x = 19 mm 
position was selected and endeavored to observe the move-
ment of the bubble through this position with the time that 
is mentioned in Fig. 14.

In Fig. 14, it can be clearly seen that the vertical dotted 
line (probe) inside the running arm of microchannel, at 
time (t) = 0 s the only water was present there and as time 
passes this liquid was pushed by a bubble in the direction 
of flow. With the movement of fluid, in the first step water 
moves along the channel length with a defined position 
(x = 19 mm), after that interface comes in contact with the 
probe (dotted line), and then bubble crosses over there.

Figure 15 gives data about the change of the volume 
fraction in a unit cell and it can be seen the � value is 1 
for water, which started to decrease with time and this 
value tends to decrease towards 0 that means only bubble 
is present in time span t = 0.05–0.1 s. After that � value 
started to increase reaches to 1 which means again water 

Table 3   A selected gas–liquid system for the recent study

System Mass transfer process

CO2 + water Physical absorption
CO2 + ethyl alcohol Physical absorption
CO2 + Ethyl glycol Physical absorption

Table 4   Physical properties of the fluid at different temperature (Gui 
et  al. 2011; Hayduk and Malik 1971; Yao et  al. 2014; Snijder et  al. 
1996)

Ambient 
temperature 
(K)

Fluid Density (kg/
m3)

Viscosity × 
10–3 (Pa.s)

Surface 
Tension 
(N/m)

298.15 CO2 1.833 6.97 –
Water 998 1.003 0.0727
Ethyl alcohol 791 1.189 0.0223
Ethyl glycol 1109.8 17.01 0.0473

303.15 CO2 1.78 1.793 –
Water 995.65 0.798 0.0712
Ethyl alcohol 784 1.023 0.216
Ethyl glycol 1102.5 16.58 0.0469

Table 5   Physical properties 
of the fluid at temperature 
298.15 K (Zunlong et al. 2021; 
Gui et al. 2011; Snijder et al. 
1996; Souvignet and Olesik 
1998)

Parameters

Velocity range (m/s) 0.2–0.5
Diffusivity (m2/s) CO2 + water DCO2−H2O

= 2.35 × 10−6exp
(

−2119

T

)

CO2 + ethyl alcohol DCO2−alcohol
= 3.336 × 10−6exp

(

−2119

T

)

CO2 + ethyl glycol 0.279 × 10–9 (at 298.15 K), 
0.285 × 10–9 (at 303.15 K)

Temperature (K) 298.15, and 303.15
Film thickness range (mm), film 

length (mm)
0.01–0.05, 4.5
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is present again at that position. Fluctuation (decreasing 
and increasing data between 0 and 1) in � value reflects 
the interface between the CO2–water system.

Hydrodynamics and mass transfer study 
of CO2‑different solvent system

Study of hydrodynamics for the diffusive system

Three sets of the simulation were performed for the 
CO2-different solvent with the velocities (uG = 0.2, and 

uL = 0.4 m/s) that were obtained in Sect. 3.1 with slug flow 
pattern. To simulate the present problem ANSYS FLUENT 
2021 R2 was used with the solvents water, ethyl alcohol, and 
ethyl glycol and found that inlet velocities i.e., uG = 0.2, and 
uL = 0.4 m/s are suitable condition to gained the slug flow 
pattern in each case (Table 6).

Extensive experiments were also performed in the labo-
ratory to validate the above results and see the same slug 
flow pattern in cross-T junction microchannel with almost 
similar velocities (Table 7). For every case, the formation 
of each bubble per unit of time is represented in Table 7. In 

Fig. 10   CO2–water phase con-
tour at different combinations of 
velocities

Velocities (m/s) Contour

Gas Velocity-0.1 

Liquid Velocity-0.2 

(a)

Gas Velocity-0.2 

Liquid Velocity-0.2 

(b)

Gas Velocity-0.2 

Liquid Velocity-0.4 

(c)

Fig. 11   Velocity fluctuation versus position plot in side T-junction microchannel
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both the approaches (numerical and experimental) one thing 
is noticeable on the priority that is bubble length decreases.

Calculation of volumetric mass transfer coefficient 
for the diffusive system

When CO2 started to pass over the solvents in the micro-
channel with slug flow pattern it was observed three different 

results for each diffusive system which can be seen in 
Figs. 16, 17 and Tables 6, 7. As CO2 began to diffuse in to 
the liquid, length of the bubble is almost the same for water, 
ethyl glycol, and has little difference with ethyl-alcohol due 
to different diffusion rate. It happens because of the pres-
ence of hydroxy group and hydrogen bond which inhibit 
the CO2 absorption in the solvents. Ethyl Glycol has two 
hydroxyl groups, while ethyl alcohol and water has just one. 

Fig. 12   Representation of pressure fluctuation in the direction of flow

Fig. 13   Variation in the volume fraction plot with the position in the direction of flow
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Water also having hydrogen bond which acts as a shield 
during absorption process. In Figs. 16 and 17, it can be seen 
clearly that the size of the bubble and the slug reduces with 
position and in the direction of flow as well and it absorbs 
in these three solvents in the given order i.e., ethyl alco-
hol > water > ethyl glycol at temperature (T) = 298.15 K. 
Basically, solubility of CO2 into liquid directly affects the 
bubble size. If the bubble size reduction is faster that rep-
resents higher value of volumetric mass transfer coefficient 
of CO2 in the solvent. It was also observed that CO2–Ethyl 
Alcohol system having more bubble formation than the other 
two systems (CO2–water and CO2–ethyl glycol) in the same 
cross T-junction microchannel. Presence of a greater number 
of bubbles in CO2–Ethyl Alcohol system reduces the size of 
slug lengths.

With the help of an experimental data (Figs. 16, 17), it 
was tried to develop a co-relation between bubble length 
and its position by finding the unknown terms of Eq. 13 i.e., 
a, b, and c. The graph was plotted between the measured 
length of a bubble (during the experiment) and its position 
by performing non-linear analysis regression curve fitting 
in MATLAB tool and the obtained values of a, b, and c are 
listed in Table 8.

Effect of the velocities

To determine the mass transfer coefficient, Eq. 16 (term ‘c’, 
including velocity itself) was utilized for each CO2-solvent 
system, experimentally. CO2 captures in these solvents 
(water, ethyl alcohol, and ethyl glycol) by physical absorp-
tion concept and found that the total volumetric mass transfer 

Fig. 14   Movement of the bub-
ble with time when the bubble 
passes over x = 19 mm

t = 0.00 s t = 0.02 s t = 0.05 s

t = 0.065 s t = 0.085 s t = 0.1 s

t = 0.15 s
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Fig. 15   Change in the value of volume fraction when a bubble passes from x = 19 mm
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coefficient (kLa) value increases with the bubble velocity and 
it decreases with the rise of temperature for each case 1, 2, 
and 3 which is the proper justification of Eq. 16 and diffu-
sion coefficient mention in Table 5. Predicted kLa values can 
be arranged for each solvent in decreasing order e.g., ethyl 

alcohol > water > ethyl glycol (Figs. 18, 19) which follows a 
similar pattern that from the numerical method in ANSYS 
FLUENT platform but these values are quite high and listed 
in Table 9.

Table 6   Flow pattern contour in the physical absorption process

Case Fluid Flow pattern contour

Case-1 CO2–water

 
Case-2 CO2–ethyl alcohol

 
Case-3 CO2–ethyl glycol

 

Table 7   Slug flow pattern obtained for different CO-system experimentally in microreactor

Fluid Type of flow Velocities (m/s) Experimental Freq (Hz)

CO2–water Bubbly uG = 0.21
uL = 0.21

 

2

Slug uG = 0.21
uL = 0.424

 

1

CO2–ethyl Alcohol Slug uG = 0.21
uL = 0.424

 

1.2

CO2–ethyl Glycol Slug uG = 0.21
uL = 0.424
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Fig. 16   Effect of the solvents on the length of the bubble
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Fig. 17   Effect of the solvents on the slug length
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Effect of the film thickness

In Eq. 17 it has seen that the volumetric mass transfer coef-
ficient is a combination of film bubble length side and film 
bubble cap side coefficients. Here it was tried to observe the 
dominating factor, either the film length side or cap side in 
the total volumetric mass transfer coefficient. We developed 
a model for a single bubble using two film theory concepts 
in ANSYS Workbench and checked the effect of film thick-
ness on the mass transfer coefficient. Figures 20 and 21 show 
that the length side coefficient has a much higher value than 
the cap side mass transfer coefficient (almost negligible) 
because the interfacial area provided by the length side is 
much higher for case 1, 2, and 3. It was also found, as the 
film thickness (δ) increases from 0.01 to 0.05 mm the volu-
metric mass transfer coefficient started to decrease which is 
the justification of Eq. 18 at T = 298.15 K.

Effect of the solvents

It can be seen form the Figs. 22 and 23 that the volumetric 
mass transfer coefficient for CO2 capturing was highest for 
ethyl alcohol and lowest for ethyl glycol. Further at a fixed 
temperature, the reduction in the size of the bubble (bubble 
length) is much higher for ethyl alcohol solvent than the 
other two solvents that happened because of the different 
solubilities of CO2 in these solvents, as discussed above. 
The reduction in bubble length indicates that some amount 

of the gas is transferred to the solvent and the corresponding 
total volumetric mass transfer coefficient values is compara-
tively high from those solvents that having relatively large 
bubble size.

Effect of the temperature

As the temperature increases the solubility of CO2 in the 
solvent is decreasing that can be seen in Fig. 24. Table 9 
gives sufficient information about the values of total 
volumetric mass transfer coefficient which was obtained 
numerically as well as experimentally at T = 298.15 K and 
303.15 K. Experimental and numerical results were also 
compared and deviation in the results are represented with 
the help of Figs. 26 and 27. After successful validation 
of both the methods it was tried to numerically check the 
effect of temperature for the large span. From Fig. 25, it 
can be clearly state that the total gas–liquid volumetric 
mass transfer coefficient decreases in CO2–ethyl alco-
hol, CO2–water, and CO2–ethyl glycol systems with the 
increase in temperature from 298.15 to 318.15 K. It can 
be explained as the temperature increases kinetic energy 
rises. The molecular motion of the gas increases as a result 
of the greater kinetic energy that breaking intermolecular 
bonds and molecules started to escape from the solvent 
and volumetric mass transfer coefficient decreases.

Table 8   Regression coefficient 
and developed co-relation of 
bubble length

System a b c R2 Length of bubble (mm)

CO2–water 3.6 2.41 0.0451 0.991 LB = 3.6 + 2.41e−0.0451x

CO2–ethyl alcohol 2.6 5.872 0.067 0.996 LB = 2.6 + 5.872e−0.0674x

CO2–ethyl glycol 3.9 1.35 0.0375 0.995 LB = 3.9 + 1.35e−0.0375x

Fig. 18   Effect of the veloci-
ties on the bubble length at 
T = 298.15 K
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Fig. 19   Effect of the veloci-
ties on the bubble length at 
T = 303.15 K
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Table 9   kLa values data 
obtained from experiments 
and simulation at different 
temperatures and velocities

Temperature (K) Velocity (m/s) Volumetric mass transfer coefficient (s−1)

Numerical Experimental

Case-1 Case-2 Case-3 Case-1 Case-2 Case-3

298.15 0.2 0.295 0.523 0.115 0.287 0.511 0.107
0.3 0.356 0.627 0.132 0.343 0.611 0.128
0.4 0.412 0.719 0.153 0.396 0.705 0.147

303.15 0.2 0.223 0.445 0.071 0.213 0.432 0.064
0.3 0.313 0.523 0.109 0.291 0.512 0.097
0.4 0.337 0.611 0.132 0.322 0.603 0.121

Fig. 20   Effect of the film thick-
ness on the length side volumet-
ric mass transfer coefficient
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Validation of the results

Total volumetric mass transfer coefficient values obtained 
numerically are validated with the experimental data at 
temperature T = 298.15 K and 303.15 K and found relative 
error is approximately 12% and 15% respectively. The data 
that was obtained from numerical simulation is always 
higher than the experimental values (Figs. 26, 27). During 
numerical predictions the value of mass transfer coefficient 
is always higher than the experimental data as mentioned 
in Table 9 of the manuscript. The reason behind these 
predictions is:

1.	 All the momentum and mass transfer equations were 
solved at ideal conditions.

2.	 In real system, ideal assumptions that were considered 
during simulations are not applicable and real system 
always deviate with the ideal conditions.

3.	 During experimental approach some human error (dur-
ing capturing the bubble image, measuring the length of 
bubble, fluctuations in the flow rate, and etc.) always be 
there.

The present work was compared with the literature data 
for the microchannel as well as the conventional channel. 
Operating conditions for each system (conventional/micro-
channels) are listed in Table 10.

In this work, it was found that the current study gives bet-
ter observations by the use of cross T-junction microchan-
nel than the conventional channel (packed tower) and other 

Fig. 21   Effect of the film thick-
ness on the cap side volumetric 
mass transfer coefficient
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Fig. 22   Effect of the bubble 
length on the cap side volu-
metric mass transfer coefficient 
(T = 298.15 K)
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Fig. 23   Effect of the bubble 
length on the cap side volu-
metric mass transfer coefficient 
(T = 303.15 K)

Fig. 24   Effect of the tem-
perature on the volumetric mass 
transfer coefficient
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Fig. 25   Numerical results to 
check effect of the temperature 
on the volumetric mass transfer 
coefficient for the values 
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types of T-junction orientation with the slug flow pattern 
(Table 11).

Conclusion

In this article, gas–liquid hydrodynamics (velocity contour, 
pressure variation, and change in volume fraction) study 
was performed for CO2–Water, CO2–ethyl alcohol, and 
CO2–ethyl glycol and total volumetric mass transfer coeffi-
cient calculated for a diffusive system by physical absorption 
in a microchannel. Initially, the velocity range is decided 
for slug flow pattern in a microchannel with the help of an 
CO2–water system using volume of fluid method (VOF) in 

numerical simulation and this velocity range was imposed 
on the diffusive system for the calculation of total mass 
transfer coefficient. Obtained velocities from the simulation 
fit for experimental with quite low-velocity data that cre-
ate the approximately 15% error in the coefficient values. 
Numerically, two film theory was the base to calculate the 
film bubble length side and cap side of the bubble volumetric 
mass transfer coefficient and found that kLaFilmBubbleLengthSide 
value is the major part of the total volumetric mass transfer 
coefficient. From the experimental data, an empirical co-
relation was developed for the calculation of bubble size 
with its position in microchannel and cases 1, 2, and 3 that 
also helped to calculate the mass transfer coefficient in slug 
flow. Numerical and experimental results were compared 

Fig. 26   Comparison of the total 
volumetric mass transfer coef-
ficient of the present study by 
both approaches at temperature 
(T) = 298.15 K
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Fig. 27   Comparison of the total 
volumetric mass transfer coef-
ficient of the present study by 
both approaches at temperature 
(T) = 303.15 K
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and found 15% error with uncontrollable human and equip-
ment errors.

It was observed with the increase of bubble velocities 
total mass transfer coefficient also increases, and with the 
film thickness it shows the opposite effect due to dominating 
parameters in the microchannel i.e., surface tension. With an 
increase in temperature, the diffusion coefficient started to 
decrease which slowed down the mass transfer rate. There-
fore, mass transfer coefficient values decrease with the 
slug flow pattern in a cross-T-junction microchannel. For 
the temperature experimentally (298.15 K and 303.15 K) 
and numerically (298.15 K and 318.15 K) mass transfer 
coefficient increases in the given order CO2–ethyl Glycol, 
CO2–water, and CO2–ethyl alcohol system respectively.

It was also noticed that solvent in the physical absorption 
process is an important criterion that highly depends on the 
different functional groups (OH, COO, C=O, –O–, hydrogen 
bond) and for this work, it was estimated that alcohols have 
a greater ability to absorb the CO2 than the hydroxyl group, 
glycol group, and hydrogen bond.

In conventional, mini, and microchannel, it is found that 
cross-T junction microchannel provides the higher value of 
volumetric mass transfer coefficient in the physical absorp-
tion process with the slug flow.
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