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Abstract
New eco-friendly approaches were proposed for the synthesis of cis-cyclopentene-annulated heterocyclic compounds con-
taining a tetrahydroquinoline moiety. For the first time we implemented a one-pot three-component cyclocondensation of 
aromatic amines (aniline, 5-aminoquinoline, o-phenylenediamine), aldehydes, and cyclopentadiene (CPD) in water and in 
the ionic liquid. The effect of synthesized substituted 3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolines on the reproduction 
of house fly imago and on the initial stage of offspring ontogeny was evaluated in comparison with the effect of natural insect 
hormone using biological screening (Musca domestica). The most probable factors of stabilization of prepared compounds 
7–10 in the active site of the Heliothis virescens receptor were identified using AutoDock 4.2, AutoDock Vina, and GOLD 
Suite molecular docking software. According to the results of three scoring functions, 4-(3-chlorophenyl)-8-fluoro-3a,4,5,9b-
tetrahydro-3H-cyclopenta[c]quinoline forms the most stable complex with the chosen receptor. The results of bioassays and 
molecular docking indicate that these compounds may be considered as potential ecdysone agonists.
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Introduction

The growing demand for the development of environmen-
tally safe chemical processes more and more often attracts 
the attention of synthetic chemists focusing on the synthesis 
of pure chemical compounds for health care, increasing life 
standards, and environmental safety. The humanistic nature 
of green chemistry is reflected by its twelve rules, proposed 
in 1998 by P. Anastas and J. Warner, for the development 
of new chemical processes ranging from the used feedstock 
to efficiency and waste safety (Anastas and Eghbali 2010).

Natural and synthetic compounds with a tetrahydroquino-
line moiety possess a broad spectrum of biological activities 

(Ghashghaei et al. 2018; Muthukrishnan et al. 2019), such 
as anti-inflammatory (Gosmini et  al. 2014), antitumor 
(Chen et al. 2016; Dayal et al. 2020; Hanashalshahaby et al. 
2019), antituberculosis (Chavan et al. 2019; Kumar et al. 
2011), antifungal (Chander et al. 2016; Chavan et al. 2019; 
Ozaki et al. 2019), antibacterial (Diaz et al. 2018; Kimura 
et al. 2019; Martínez et al. 2019; Onyedibe et al. 2021), 
and antimalarial (Bendale et al. 2007; Van Voorhis et al. 
2007) activities. Not long ago, it was found that tetrahyd-
roquinoline derivatives are non-steroidal agonists of Aedes 
albopictus mosquito ecdysone receptor, responsible for their 
development and reproduction (Kitamura et al. 2014; Ueno 
et al. 2021; Yokoi et al. 2019), and that they possess a larvi-
cidal activity, which offers prospects for practical use for the 
development of new pest control agents (Fig. 1).

The most popular and optimal approach to the syn-
thesis of substituted tetrahydroquinolines is the Povarov 
(aza-Diels–Alder) reaction, which consists in formal 
[4 + 2]-cycloaddition of aromatic imines (Schiff bases) to 
electron-rich olefins catalyzed by Lewis or Brønsted acids 
(Povarov 1967). The three-component one-pot version of 
the Povarov reaction proved to be a synthetically conveni-
ent and atom-economic method for the preparation of this 
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type of structures (Glushkov and Tolstikov 2008; Tolstikov 
et al. 2014b). However, the catalysts and solvents used in 
this reaction (Glushkov and Tolstikov 2008) often suffer 
from drawbacks such as high cost, water sensitivity, poor 
availability, and toxicity. This complicates scaling up of 
the synthesis for both engineering and economic reasons. 
Therefore, it is necessary to develop modern approaches that 
would comply with green chemistry principles (Anastas and 
Eghbali 2010; Van Aken et al. 2006) for the synthesis of 
tetrahydroquinoline derivatives. The search for cheap acid 
catalysts free from heavy metals and for green solvents for 
the Povarov reaction and the synthesis of polysubstituted tet-
rahydroquinoline derivatives is a relevant task (Petronijević 
2017). Ionic liquids (ILs) have occupied a decent place in 
organic synthesis in recent decades and are postulated as 
green reagents, owing to their stability, low toxicity (Rogers 
and Seddon 2003), and reusability (Sheldon 2005). Exam-
ples of the use of ILs to promote aza-Diels–Alder reactions 
with microwave or electrochemical assisted are described 
(Bortolami et al. 2021; Mert-Balci et al. 2013).

In order to develop eco-friendly approaches to the syn-
thesis of polycyclic compounds containing a tetrahydroqui-
noline moiety, we implemented a one-pot three-component 
cyclocondensation of aromatic amines (aniline, 5-aminoqui-
noline, o-phenylenediamine), aldehydes, and cyclopentadi-
ene (CPD) in water and in ILs. Biological screening of the 
obtained tetrahydrocyclopenta[c]quinolines was carried out 

using the Musca domestica insect. The results are analyzed 
in comparison with the data of molecular docking.

Results and discussion

The possibility of synthesizing Schiff bases from aromatic 
aldehydes and S-methyl, S-benzyl, and S-n-octyl-dithio-
carbazates and thiosemicarbazides both in water and with 
lemon juice catalyst was reported previously (Ali et al. 
2020). The authors noted that the yield of the target product 
in the developed eco-friendly procedure was higher than that 
in the conventional procedure implying heating in ethanol. 
In another study (Petronijević 2017) describing the synthe-
ses of 3,4-dihydro-2(1H)-quinoxalinones and 3,4-dihydro-
1,4-benzoxazin-2-ones, diluted (1:10) freshly squeezed 
lemon juice was used as the biocatalytic medium for the 
condensation of aromatic amines with enolates.

Analysis of the published protocols stimulated us to 
implement one-pot cyclocondensation (Povarov reaction) 
under conditions complying with the green chemistry prin-
ciples. Previously, tetrahydro-3H-cyclopenta[c]quinolines 
were synthesized in acetonitrile or using  CF3CO2H as the 
catalyst (Tolstikov et al. 2014b). There are few reported 
examples of eco-friendly atom-economic one-pot synthesis 
of polycycles with a tetrahydroquinoline moiety (Li et al. 
2015). We accomplished three-component cyclocondensa-
tion of 4-fluoroaniline 1 with an equimolar amount of ethyl 
glyoxylate 3 and a threefold molar excess of cyclopentadi-
ene (CPD) in aqueous lemon juice (1:1), which afforded the 
target cyclopentene-annulated tetrahydroquinoline 7 in 40% 
yield within 15 min (Scheme 1). When the reaction mixture 
was heated to 70℃for 20 min, the yield of the target product 
considerably increased.

The reaction is diastereoselective, as indicated by the 
homo-and heterocorrelation 1H and 13C NMR spectra of 
the cyclocondensation product 7. Single-crystal X-ray dif-
fraction data for 7 unambiguously prove the structure of 
rel-(3aR*, 4S*, 9bS*)-4-ethoxycarbonyl-8-fluoro-3a,4,5,9b-
tetrahydro-3H-cyclopenta[c]quinoline (Fig. 2).

Fig. 1  Tetrahydroquinoline derivatives as potent ecdysone agonist

Scheme 1  Synthesis of 4-substituted-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolines 7–10 
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An attempt to carry out three-component cyclocondensa-
tion of 4-fluoroaniline 1 with aromatic aldehydes 4–6 under 
the developed conditions resulted in the formation of only 
Schiff bases (Celik and Kuzu 2019; Kerner et al. 2016).

The synthesis of 4-aryl-3a,4,5,9b-tetrahydro-
3H-cyclopenta[c]quinolines 8–10 was affected when the 
three-component cyclocondensation was carried out in IL 
(1-ethyl-3-methylimidazolium tetrachloroaluminate). The 
reaction of amine 1, 2 with aromatic aldehyde 4–6 and CPD 
in 1 mL of IL for 15 min resulted in a quantitative and dias-
tereoselective formation of cis-cyclopentene-annulated tet-
rahydroquinolines 8–10 (Scheme 1). The formation of these 
products was confirmed by coincidence of the physicochem-
ical assignment results with the data reported previously 
(Tolstikov et al. 2014b). The spin–spin coupling constant 
values 3 J (3a, 9b) = 8, 3J (4, 3a) = 3.2 Hz (Tolstikov et al. 
2014b) of compounds 8, 9 and 3J ((3a, 9b), (4, 3a) = 8 Hz 
of 10, proved their cis-orientation and 3aR*, 4S*, and 9bS* 
relative configurations of the stereogenic centers.

In order to extend the potential of the cyclocondensa-
tion reaction taking place in aqueous lemon juice and 
ILs, 5-aminoquinoline 11 and o-phenylenediamine 12 

were used as the amine components. This gave cycload-
ducts 13a, 13c and 15a, 15b (Scheme 2). The formation 
of cyclopentene-annulated 4-ethoxycarbonyl-3a,4,5,11b-
tetrahydro-3H-cyclopenta[c]-1,7-phenanthroline 13a in 
aqueous lemon juice occurred with a low yield (7%), and 
heating and increase in the reaction time did not affect the 
reaction pathway, which led to imine 13b as the major prod-
uct. A change in the reaction pathway toward the forma-
tion of the target product was attained in IL, in which the 
three-component condensation of p-trifluoromethylbenza-
ldehyde, aminoquinoline 11, and CPD resulted formation 
of 4-[4-(trifluoromethyl)phenyl]-3a,4,5,11b-tetrahydro-
3H-cyclopenta[c][1,7]phenanthroline 13c (81%). It is note-
worthy that the product of the eco-friendly cyclocondensa-
tion formed diastereoselectively (dr ˃ 95%) and in a higher 
yield than under the conditions  (CF3CH2OH,  CF3COOH, 
Ar, ~ 25 °C) developed previously for the one-pot synthesis 
of cyclopenta[c]1,7-phenanthrolines (65%) (Tolstikov et al. 
2014a). The spin–spin coupling constants (J (3a,4) = 2.4 
and J (3a,11b) = 8,4 Hz) of the vicinal protons at the newly 
formed C(3a), C(4), and C(11b) asymmetric centers of com-
pound 13c correspond to their cis relative positions.

The condensation of o-phenylenediamine with ethyl gly-
oxylate and CPD in aqueous lemon juice afforded Schiff 
base 14. The target annulation product was formed in an 
ionic liquid. The structure molecules 15a, b are char-
acterized by double set of proton and carbon signals of 
equal intensity in the 1H and 13C NMR spectra, which is 
indicative of syn/anti (1:1, 1H NMR)-isomer composition 
(Savchenko et al. 2022). Under these conditions, the yield 
of the summarized 4,7-bis((4-(trifluoromethyl)phenyl)-
3,3a,4,5,6,7,7a,8,10a,12b-decahydrodicyclopenta[c,i]-
1,10-phenanthroline 15a, b was 64%.

Thus, we developed an efficient diastereoselective one-
pot approach to the three-component cyclocondensation of 
arylamines, aldehydes, and cyclopentadiene consistent with 
green chemistry principles.

Fig. 2  Molecular structure of rel-(3aR*,4S*,9bS*)-4-ethoxycarbonyl-
8-fluoro-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline 7 in the 
crystal

Scheme 2  Cyclocondensation of 5-aminoquinoline 11 and o-phenylenediamine 12 with aldehydes and cyclopentadiene under eco-conditions
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Bioassay

The synthesized compounds 7–10 were tested with 
respect to 24-h-old image of Sh gen strain (F 182) Musca 
domestica. Once out of the puparium, the adult insects 
were placed into 300  cm3 cages (three pairs in each cage; 
two repetitions). The reference compound, 20-hydroxy-
ecdysone (20E), and the test compounds were added to 
the drinking bowls in concentrations of 1 ×  10−8 M during 
4 days. Then the solutions in drinking bowls were replaced 
by pure water, and the insect reproduction was monitored 
for 10 days by placing standard containers with egg-laying 
substrate into the cages. The development of laid eggs was 
observed up to the preparation of larvae for pupation. The 
control cages and drinking bowls contained pure water.

The assessment of effects of tetrahydroquinolines 7–10 
on the adult house fly and the initial stage of offspring 
ontogeny demonstrated that the test compounds tend to 
accelerate the reproductive maturation; as a result, the 
egg-laying period started 2–4 days earlier than that in the 
control. The most pronounced acceleration was observed 
in the presence of compounds 10 (Fig. 3). It is noteworthy 
that this effect was retained when mixtures with 20E were 
used, and ecdysterone, which has a stimulating activity 

toward the house fly imago, completely counterbalanced 
the adverse effect of the compounds on the fecundity: 
Compound 8 only completely suppressed reproduction. As 
a result, the specific fecundity of the females treated with 
mixtures of 7–10 with 20E did not differ from that for 20E 
alone (Savchenko et al. 2015). However, this acceleration 
of the reproduction apparently took a lot of resources of 
the organism and, consequently, the lifespan of the imago 
markedly decreased. The decrease of the lifespan by one-
third of the normal value was enhanced by combination 
with 20E.

The beneficial effect of these compounds was also noted 
for embryogenesis: The hatching of eggs laid by females 
was almost 100%, while in the control groups, no more 
than 70–80% of eggs were hatched (Fig. 4). The differ-
ences between the compounds were observed in the delayed 
effects: Only compounds 8 (in mixture with 20E) and 10 
accelerated the development of larvae emerging from eggs 
and induced the arrival of the larval–pupal transformation 
phase 3–4 days earlier compared to the control.

All of the effects that we detected indicate that com-
pounds 7–10 are incorporated into the regulation of protein 
biosynthesis in the same way as 20E, that is, via the inter-
action with the insulin signaling pathway (Cai et al. 2016; 
Mendes and Mirth 2016). The facts of shortening of the 

Fig. 3  Effects of tetrahydroqui-
nolines 7–10 and their mixtures 
with 20E on the reproductive 
maturation period of the house 
fly imago. Red asterisk means 
significant difference with 
control (p < 0.05)

Fig. 4  Effects of compounds 
7–10 and their mixtures with 
20E on the house fly offspring 
development. Significant dif-
ference with control (p < 0.01) 
noted for variants 7, 9–10 and 
mixtures 8–10 with 20E
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imago lifespan and decrease in the female fecundity, which 
confirm too fast resource utilization, may be indicative of 
incorporation of the obtained compounds into the regula-
tion of carbohydrate and lipid metabolism, resulting in dis-
turbance of metabolism synchronization with the energy 
demand of reproduction (Hou et al. 2015).

Molecular docking

The ecdysone receptor (EcR) has a remarkable ability to 
structurally adapt to various types of ligands. EcR binds 
to ecdysteroids, including 20-hydroxyecdysone (20E) and 
ponasterone A, and non-steroidal synthetic agonists such 
as dibenzoyl hydrazine (DBH) insecticides, e.g., N'-tert-
butyl-N'-(3,5-dimethylphenyl)carbonyl-5-methyl-2,3-dihy-
dro-1,4-benzodioxine-6-carbohydrazide (HWG) (Kitamura 
et al. 2014) (Fig. 5). The concept of receptor adaptability and 
plasticity of ligands was considered in a previous study (Bil-
las et al. 2003). The subsequent structural observations pro-
vided a rational interpretation of the flexible ability of EcR 
to bind to and to be activated by chemically and structurally 
diverse ligands (Browning et al. 2021). Here we report a 
molecular docking study of EcR adaptability toward bind-
ing to potential synthetic agonists of the tetrahydroquinoline 
type in comparison with known data for native ecdysteroid 
and DBH-type synthetic agonist (HWG).

The synthesized structures 7–10 were docked into the 
active site of the target protein that was obtained from the 
isolated crystal structure of the moth Heliothis virescens 
EcR-USP heterodimer complexed with ponasterone A 
(PonA) (1r1k) with a resolution of 2.9 Å. For comparison, 
we also estimated the binding affinity in silico of PonA and 
the synthetic ligand HWG to the same active site of protein 
macromolecule EcR. The computing experiment was car-
ried out using the AutoDock 4.2 (www. ebi. ac. uk), AutoDock 
Vina, and GOLD Suite (www. ccdc. cam. ac. uk) software 
programs.

Known, that three-component Povarov reaction, cata-
lyzed by Lewis or Brønsted acids between aromatic amine, 
aldehyde, and CPD affords the preferential formation of 
endo/exo,cis- tetrahydroquinoline and its minor trans-
isomer (Glushkov and Tolstikov 2008). Although in our 
eco-compatible experiments we observe the formation of 
diastereomer I (endo/exo-cis) mainly (NMR 1H, dr ˃ 98%), 
we decided to conduct molecular docking for the probable 
trans-isomer II too. The isomers endo-cis I and exo-cis I 
(Fig. 6) have the same NMR spectra, and their specific rota-
tion is equal by zero.

The values of the three scoring functions and the root-
mean-square deviations between the solutions obtained for 
endo/exo-cis I and endo/exo-trans II isomers are presented 
in Table 1 and Table 2 SI, respectively. A comparison of 
the results of molecular docking (Table 2 SI) of exo-cis I 
and exo-trans II isomers of the most active compounds 9 
and 10 shows high values of the root-mean-square deviation 
(RMSD ≥ 2), which indicates a low probability of validity of 
the data obtained and makes it possible to exclude the con-
sideration of exo-cis/trans isomers in the subsequent study.

In most cases, the coordinates of synthesized structures 
calculated using two different scoring functions (GOLD 
Suite and AutoDock Vina) coincided within the error, 
RMSD = 0.5 Å (Table 1). In the case of estimation of the 
ligand affinity to the target protein using three scoring func-
tions (GOLD Suite, AutoDock 4.2, and AutoDock Vina), 
an allowable deviation of the obtained coordinates from 
one another was observed for stereoisomers 9(I), 9(II), and 
10(II) (Table 1). The best agreement between the docking 
solutions regarding both the calculated ligand coordinates 
and binding energies to the protein was found for ligands 
9(I), 9(II), and 10(II). The most pronounced differences 
between the estimated coordinates and scoring functions 
were observed for ligands 7(I, II) 8(I, II), and 10(I) (Table 1, 
RMSD ≥ 2). For example, the convergence of solutions 
obtained for ligands 8(I) and 9(II) was demonstrated using 
discussed docking programs (Fig. 7). This differences in the 

Fig. 5  Structural formulas of agonists EcR

http://www.ebi.ac.uk
http://www.ccdc.cam.ac.uk
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docking results are due to different methods for estimating 
the steric and energy matching of the ligands to the ligand-
binding cavity of EcR inherent in these software programs.

The results of simulation of EcR complexes with com-
pounds 7–10, obtained using three scoring functions of vari-
ous types (AutoDock 4.2 (ADT), AutoDock Vina (AV), and 

GOLD), are summarized in Table 3 SI. Same Table 3 SI 
gives detailed description for all factors ensuring effective 
binding of the test ligands to the receptor active site.

As an example, Fig. 8 shows the docking solution for 
tetrahydroquinoline 9(I), which resides in the same spatial 
area of the protein as the cyclic part of the native ligand 

Fig. 6  Structures of the stereoi-
somers I and II of tetrahydro-
quinolines 7–10 

Table 1  GOLD, AutoDock, 
and AutoDock Vina scoring 
functions of the studied endo-
cis I and endo-trans II isomers 
of tetrahydroquinolines 7–10 
and root-mean-square deviation 
of the obtained coordinates

PLP* fitness—the values of the scoring function of GOLD Suite
ADT2*—the values of the scoring function of AutoDock
AVina*—the values of the scoring function of AutoDock Vina
RMSD*—root-mean-square deviation of the coordinates obtained by two different scoring functions

No. PLP* fitness ADT2*, kJ/mol AVina*, kJ/mol RMSD*, 
Å (Gold vs 
ADT2)

RMSD*, Å 
(GOLD vs 
AVina)

RMSD*, Å 
(ADT2 vs 
AVina)

7(I) 66.32 − 7.46 − 8.4  ≥ 2 0.387  ≥ 2
8(I) 62.85 − 8.16 − 8.8  ≥ 2 0.470  ≥ 2
9(I) 66.33 − 9.03 − 10.0 0.384 0.347 0.080
10(I) 66.30 − 8.55 − 8.7  ≥ 2 0.352 2 ≥ 
7(II) 69.27 − 7.58 − 8.3  ≥ 2 0.176 2 ≥ 
8(II) 83.21 − 8.48 − 9.7  ≥ 2 0.461 2 ≥ 
9(II) 76.38 − 8.77 − 9.7 0.461 0.469 0.202
10(II) 73.22 − 8.14 − 9.7 0.469 0.466 0.086
PonA 98.86 –14.14 − 12.40 0.188 0.188 0.1>
HWG 55.57 − 9.08 − 6.2  ≥ 2  ≥ 2 1.4
20E 97.83 − 13.53 − 10.80 0.132 0.129 0.1>

Fig. 7  Comparison of the solu-
tions obtained for 9(I) and 8(II) 
using different molecular dock-
ing programs: a 9(I) in GOLD 
and AutoDock 4.2; b 8(II) in 
AutoDock 4.2 and AutoDock 
Vina
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ponasterone A. Stabilization of the position of studied 
ligand in the EcR active site is enhanced by hydrogen 
bonds and by hydrophobic interactions with the nearby 
amino acid residues of the H1, H3, H5, and H6 helices and 
β-sheet (Table 3 SI). In particular, this ligand is stabilized 
in the active site of the receptor owing to hydrogen bonds 
with THR346, MET380; hydrophobic interactions with 
VAL395, ARG387, VAL384, LEU420; and to π-π-interac-
tions with PHE397.

The endo-isomers (I, II) of compounds 7–10 in the in 
silico obtained EcR complexes are arranged as two closely 
spaced clusters. For example, Fig. 9 shows the location of 
the 9(I) and 9(II) isomers belonging to different clusters 
relative to ponasterone A and HWG in the active site of 
target protein. Compounds 7(I)–10(I) form the first cluster 
of docking solutions. These ligands occupy an area of the 
cyclic part of ponasterone A and interact with the amino acid 
residues of H1, H3, H5, and H6 helices and β-sheet. In the 
considered case, a high level of steric complementarity with 
EcR according to the results of three scoring functions was 
found for ligand 9(I) (see Table 1). The docked positions of 
ligands 7(I)–10(I) relative to PonA and HWG are illustrated 
in SI (Fig. 1).

Compounds 7(II)–10(II) form the second cluster of dock-
ing simulations, because the positions of these ligands are 
shifted toward the side chain of PonA in the docked model. 
One of the aromatic rings of these molecules occupies the 
same cavity of the binding pocket as the HWG ligand’s aro-
matic moiety (Fig. 10). According to the results of the three 
computational methods, stereoisomers 9(II) and 10(II) show 
the highest binding affinity to the target protein among the 
tested products of the second cluster. The docked position 
of the synthetic ligand (HWG) takes place of the side chain 
of PonaA in the binding site of EcR (Fig. 9), and it demon-
strates a lower level of affinity in silico to the EcR compared 
to ponasterone A (Table 1).

Thus, docking results against Heliothis virescens EcR-
USP heterodimer complexes with the synthesized com-
pounds 7–10 were indicated that all exceed the synthetic 
HWG ligand in terms of affinity in silico, but they are 
inferior to natural ecdysteroids. However, the difference in 
the values of the scoring functions that were obtained for 
natural ligand and for the considered tetrahydroquinoline 
molecules indicates the potential strength of the interac-
tion between protein with synthesized ligand.

Fig. 8  Simulated interactions of synthesized ligand 9(I) with amino 
acid residues in the active site of the target protein (EcR)

Fig. 9  The docked positions of ligands 9(I) and 9(II) relative to 
HWG and PonA in the active site of the protein EcR (AutoDock 4.2, 
AutoDock Vina, and Gold Suite software): the HWG ligand (gray), 
the PonA ligand (blue), 9(I) (yellow), 9(II) (red)

Fig. 10  The docked position of reference ligand with code HWG 
and ligands 7(II)–10(II) in the active site of the protein EcR (1r1k) 
(AutoDock 4.2, AutoDock Vina, and Gold Suite software): the HWG 
ligand (gray), 7(II) (yellow), 8(II) (magenta), 9(II) (green), 10(II) 
(cyan)
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Experimental

General methods

One-dimensional (1H and 13C) and two-dimensional 
(COSY, NOESY, HSQC, and HMBC) NMR spectra of 
compounds were recorded on Bruker Avance 400 HD 
Ascend spectrometer (400.13 MHz for 1H and 100.62 MHz 
for 13C) and Bruker Avance II 500 HD Ascend spec-
trometer (500.17 MHz for 1H and 125.77 MHz for 13C) 
using standard Bruker pulse sequences. For NMR data, 
the chemical shifts are reported in δ (ppm) referenced to 
residual solvent protons and 13C signals in deuterated chlo-
roform or methanol. Coupling constants (J) are expressed 
in Hertz (Hz). High-resolution mass spectra (HRMS) 
were measured on an instrument («MaXis impact», 
Bruker) using a time-of-flight mass analyzer (TOF) with 
electrospray ionization (ESI). In experiments on selec-
tive collisional activation, the activation energy was set 
at maximum abundance of fragment peaks. A syringe 
injection was used for solutions in MeCN (flow rate 5 
µL/min). Nitrogen was applied as a dry gas; the interface 
temperature was set at 180 °C. Column chromatography 
and TLC were performed using silica gel (< 0.06 mm) 
and pre-coated silica gel (Silufol plates), respectively; 
spots were processed by treatment with a solution of 
4-hydroxy-3-methoxybenzaldehyde in ethanol, acidified 
with sulfuric acid. Melting points were determined on 
Boetius hot-stage microscope. Crystal of the compound 
7 mounted on glass fiber was studied with an Xcalibur 
Gemini Eos automated four-circle diffractometer (graphite 
monochromator, MoKα radiation, λ = 0.71073 Å, ω-scan 
mode, 2θmax = 62°) at ambient temperature (293–298 K). 
Collected data were processed using the program CrysA-
lisPro (CrysAlisPRO 2012). Structures determination was 
carried out with the OLEX2 program (Dolomanov et al. 
2009). The structures were solved by direct methods and 
refined using the full-matrix least-squares method in the 
anisotropic approximation for non-hydrogen atoms. All 
hydrogen atoms are generated using the proper HFIX com-
mand and isotropically refined using the riding model. The 
calculations were performed using the SHELX program 
package (Sheldrick 2008). The key crystallographic data 
and X-ray experiment details for compound 7 are presented 
in Supplementary data. The molecular plots were drawn 
using Mercury (Macrae et al. 2020). Crystallographic data 
from compound have been deposited with the Cambridge 
Crystallographic Data Center as Supplementary Material 
number CCDC–2210899 (7). Copies of the data can be 
obtained free of charge on application to CCDC, 12 Union 
Road, Cambridge CB2 1EZ, UK. E-mail:deposit@ccdc.
cam.ac.uk.

Molecular docking

The crystal structure of the heterodimer EcR/USP of the 
moth Heliothis virescens was considered as a target protein, 
which was obtained from Protein Data Bank in the form of 
an heterodimer complex with PonA (1r1k) with a resolu-
tion of 2.9 Å (https:// www. rcsb. org/). The computational 
experiment was carried out using the programs AutoDock 
4.2 (Goodsell et al. 1990; Khairutdinov et al. 2014; Morris 
et al. 2009), AutoDock Vina (Gaillard 2018; Trott and Olson 
2010), and GOLD Suite (Gaillard 2018; Trott and Olson 
2010). Ligands for calculations were selected taking into 
account the most probable stereoisomerism. The structures 
of the natural ecdysteroid, 20-hydroxyecdysone, were posi-
tioned in the same active center as well as the native ligand 
of the complex EcR–Ponasteron A (taking into account the 
stereoisomerism of these biologically active substances).

The geometric parameters of ligands 7–10 were opti-
mized by molecular mechanics by application of the 
MMFF94 force field using the MarvinSketch program, ver-
sion 19.19 (www. chema xon. com), and by the semiempirical 
PM6 method using the GAUSSIAN09 (Frisch M. J. 2009). 
The subsequent preparation of the structures of ligands 
7–10 and 1r1k macromolecules was carried out using the 
AutoDockTools (Goodsell et al. 1990; Khairutdinov et al. 
2014; Morris et al. 2009) and HERMES (www. ccdc. cam. 
ac. uk) software. Prior to calculations, all water molecules 
were removed from the protein. The files with the results 
were converted to Mol2 and PDBQT formats with addition 
of the lacking hydrogen atoms and partial atomic charges 
calculated by the Gasteiger method (Gaillard 2018; Goodsell 
et al. 1990; Khairutdinov et al. 2014; Morris et al. 2009; 
Trott and Olson 2010).

In AutoDockTools, a three-dimensional box (26 Å size) 
was generated, and the test ligands were placed into the box. 
The position of the reference HWG agonist was taken as the 
center of the box (www. rscb. org). The range for the ligand-
binding cavity of the target protein in the GOLD Suite pro-
gram was 12 Å; in this case, the position of ponasterone A 
was taken as the center.

The optimal positions of the ligands in the receptor 
active site were identified using the Lamarckian genetic 
algorithm (Fuhrmann et al. 2010; Kerzmann et al. 2008; 
Morris et al. 2009, 2008; Rurainski et al. 2009) and the 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) local search 
algorithm. The docking procedure took into account the 
crystal structure of the target protein and implied full con-
formational flexibility of the ligands.

The estimation of the ligand affinity to the target protein 
in the GOLD program was based on calculation of the piece-
wise linear potential (CHEMPLP) scoring function. The 
AutoDock 4.2 and AutoDock Vina scoring functions acted 
as tools for parameterization of the energy contributions of 

https://www.rcsb.org/
http://www.chemaxon.com
http://www.ccdc.cam.ac.uk
http://www.ccdc.cam.ac.uk
http://www.rscb.org
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receptor–ligand interactions according to AutoDock and 
AutoDock Vina, respectively.

When searching for potentially bioactive conformers 
using the evaluation function of the AutoDock 4.2 pro-
gram, the angle of internal rotation around all single bonds 
in ligands was 30°, and the movement of ligand molecules 
as a whole in space was also carried out with an angle of 
30° relative to the initial conformations. In the AutoDock 
Vina and GOLD Suite programs, molecular docking was 
performed with default parameters. Ligand conformations 
characterized by the minimum value of evaluation functions 
were taken as the optimal solution for the search of bioac-
tive conformation in the AutoDock 4.2 and AutoDock Vina 
software. In the GOLD Suite program, the values of the 
obtained affinity parameters were directly dependent on the 
steric complementarity and energy correspondence between 
the studied compounds and the EcR protein. The assessment 
of the quality of ligand positioning in the active center of 
EcR was characterized by the RMSD value, which is the 
standard deviation of the position of the ligand after docking 
from its native position in the simulated complexes. Dock-
ing solutions were clustered based on RMSD = 2.0 Å. The 
RMSD value estimated by comparing the coordination of 
ponasterone A calculated by the molecular docking method 
with its native position in the active center of the recep-
tor was in the range of 0.010 – 0.180 Å, which indicates the 
applicability of the evaluation functions of the AutoDock 
4.2, AutoDock Vina, and GOLD programs to the modeling 
of agonists and antagonists of the receptor.

Procedure for lemon juice‑catalyzed Povarov reac‑
tion

Freshly distilled cyclopenta-1,3-diene (3 mmol, 0.25 mL) 
and ethyl glyoxylate 3 (1 mmol, 0.1 mL) were added sequen-
tially to a solution of amine 1 (1 mmol, 0.095 mL) or 5-ami-
noquinoline 11 (1 mmol, 144 mg) in hot lemon juice (5 mL). 
The mixture was stirred while heating to 70–80 °C for 0.25 h 
until the amine disappeared (TLC monitoring). The reaction 
mixture was extracted with  CH2Cl2 (3 × 5 mL), the solvent 
was evaporated, the residue was purified by column chro-
matography  (SiO2, petroleum ether/ethyl acetate, 10:1) to 
isolate products 7 and 13a.

rel‑(3aR*,4S*,9bS*)‑4‑ethoxycar‑
bonyl‑8‑fluoro‑3a,4,5,9b‑tetrahydro‑3H‑cyclopenta[c]
quinoline 7

 White solid, Yield: 76%, m.p. 72–74  °C (hexane). 1H 
NMR (500 MHz,  CDCl3) δ 6.69–6.77 (m, 2H, H-7, H-9), 
6.58–6.61 (m, 1H, H-6), 5.71 (m, 2H, H-1, H-2), 4.24–4.38 
(m, 2H,  OCH2), 4.06 (m, 2H, H-4, H-9b), 3.34–3.36 (m, 1H, 
H-3a), 2.33–2.39 and 2.46–2.52 (m, 2H, H-3), 1.28–1.36 (m, 

3H,  CH3). 13C NMR (125 MHz,  CDCl3) δ 171.74 (OCO), 
156.58 (d, J = 235 Hz, C-8), 140.09 (C-5a), 133.57 (C-1), 
130.37 (C-2), 127.38 (d, J = 6 Hz, C-9a), 116.49 (d, J = 7 Hz, 
C-6), 114.71 (d, J = 22 Hz, C-7), 113.13 (d, J = 22 Hz, C-9), 
61.25  (OCH2), 56.81 (C-4), 46.71 (C-9b), 40.41 (C-3a), 
32.67 (C-3), 14.26  (CH3). HRMS (ESI-TOF) m/z  [M+] Cal-
culated for  C15H16FNO2: 261.1165; Found: 261.8601.

rel‑(3aR*,4S*,11bS*)‑4‑ethoxycarbonyl‑3a,4,5,11b‑tetrahy‑
dro‑3H‑cyclopenta[c][1,7]phenanthroline 13a

Yellow solid, Yield: 7%, m.p. 114–116  °C (hexane). 
1H NMR (400 MHz,  CDCl3) δ 8.77–8.78 (m, 1H, H-8), 
8.15–8.18 (m, 1H, H-6), 7.49–7.51 (m, 1H, H-10), 7.34–7.36 
(m, 1H, H-11), 7.26–7.29 (m, 1H, H-7), 5.84 (s, 1H, H-1), 
5.64 (s, 1H, H-2), 4.94 (s, 1H, NH), 4.24–4.29 and 4.33–4.37 
(m, 2H,  CH2), 4.21 (m, 2H, H-4,11b), 3.39–3.42 (m, 1H, 
H-3a), 2.31–2.35 and 2.45–2.50 (m, 2H, H-3), 1.31–1.35 
(m, 3H,  CH3). 13C NMR (100 MHz,  CDCl3) δ 171.94 (CO), 
149.42  (C8), 147.54  (C5a), 137.93  (C9a), 133.88  (C1), 130.62 
 (C11), 130.09  (C2), 128.65  (C6), 120.74  (C11a), 120.03  (C10), 
119.66  (C7), 118.68  (C5b), 61.44  (CH2), 55.98  (C4), 46.63 
 (C11b), 41.07  (C3a), 32.21  (C3), 14.30  (CH3). HRMS (ESI-
TOF) m/z  [M+] Calculated for  C18H18N2O2: 294.1368; 
Found: 294.1365.

Ethyl‑(E)‑2‑(quinoline‑5‑ylimino) acetate 13b

Yellow solid, Yield: 76%, amorphous. 1HNMR (400 MHz, 
 CDCl3) δ 9.31–9.33 (m, 1H, H-2). 8.51 (d, 1H, J = 8.4 Hz, 
H-4), 8.13 (m, 1H, H-10), 8.04–8.08 (m, 1H, H-8), 
7.92–7.95 (m, 1H, H-7), 7.73–7.78 (m, 1H, H-3), 7.78 (d, 
1H, J = 7.6 Hz, H-6), 4.27–4.48 (m, 2H, H-12), 1.39 (t, 
J = 7 Hz, 3H, H-13). HRMS (ESI-TOF) m/z [M +  H]+ Cal-
culated for  C13H12N2O2; 228.0898; Found: 229.0985.

Diethyl‑2,2'‑(1,2‑phenylenedi(nitrilo)diacetate 14

White solid, Yield: 70%, m.p. 172–174 °C (EtOH). 1HNMR 
(400 MHz, MeOD) δ 8.21 (s, 2H, CH = N), 7.84 (d, 2H, 
J = 8.0 Hz, CH-Ar), 7.57–7.61 (m, 2H, CH-Ar), 4.20–4.25 
(m, 4H,  OCH2), 1.31 (t, 6H, J = 6.8 Hz,  CH3). 13C NMR 
(100 MHz,  MeOD3) δ 169.06 (OC = O), 150.51 (C = N), 
132.68 (C-Ar), 128.72 (C-Ar), 123.79 (CAr), 60.99  (OCH2), 
12.96  (CH3). HRMS (ESI-TOF) m/z  [M]+ Calculated for 
 C14H16N2O4: 276.1110: Found: 276.1115.

General procedure of synthesis 4‑aryl‑3a,4,5,9b‑tetrahy‑
dro‑3H‑cyclopenta[c]quinolones 8–10

Freshly distilled cyclopenta-1,3-diene (3 mmol, 0.25 mL) 
and appropriate aldehydes 4–6 (1 mmol) were added sequen-
tially to a solution of amine 1 or 2 (1 mmol) in ionic liquid 
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(2 mL). The mixture was stirred while room temperature for 
0.5 h until the amine disappeared (TLC monitoring). The 
reaction mixture was treated with water and extracted with 
 CH2Cl2 (3 × 5 mL), the solvent was evaporated, the residue 
was purified by column chromatography  (SiO2, petroleum 
ether/ethyl acetate, 10:1) to isolate products 8–10.

rel‑(3aR*, 4S*, 9bS)‑4‑((4‑trifluoromethyl)
phenyl)‑8‑fluoro‑3a,4,5,9b‑tetrahydro‑3H‑cyclopenta[c]
quinoline 8 

Yellow solid, m.p. 74–76 °C (hexane). 1HNMR (400 MHz, 
 CDCl3) δ 7.67 (d, J = 8.0 Hz, 2H, H-3', H-5'), 7.59 (d, 
J = 8.4 Hz, 2H, H-2', H-6'), 6.82 (d, J = 2.8 Hz, 1H, H-9), 
6.75 (d, J = 8.4 Hz, 1H, H-7), 6.62 (d, J = 8.8 Hz, 1H, H-6), 
5.85 (br.s,  w1/2 = 8 Hz, 1H, H1), 5.71 (br.s,  w1/2 = 8 Hz, 1H, 
H-2), 4.68 (d, J = 3.2 Hz, 1H, H-4), 4.13 (d, J = 8.8 Hz, 
1H, H-9b), 3.03 (d, J = 8.8 Hz, 1H, H-3a), 1.82 and 2.62 
(d, J = 8.8, J = 9.2  Hz, 2H, H-3). 13C NMR described 
11b(Tolstikov et al. 2014b).

rel‑(3aR*,4S*,9bS*)‑4‑((3‑chlorophenyl)‑8‑fluoro‑3a,4,5,9b
‑tetrahydro‑3H‑cyclopenta[c]quinoline 9 

Yellow solid, m.p. 88–90 °C (hexane). 1HNMR (400 MHz, 
 CDCl3) δ 7.52 (s, 1H, H-2'), 7.42 (s, 1H, H-4'), 7.36–7.38 
(m, 2H, H-5',6'), 6.86 (d, J = 2.4 Hz, 1H, H-9), 6.79 (d, 
J = 8.4 Hz, 1H, H-7), 6.60–6.62 (m, 1H, H-6), 5.88 (m, 1H, 
H-1), 5.74 (m, 1H, H-2), 4.59 (d, J = 3.2 Hz, 1H, H-4), 4.13 
(d, J = 8.8 Hz, 1H, H-9b), 3.03 (d, J = 8.8 Hz, 1H, H-3a), 
2.66 and 1.88 (d, J = 8.8, J = 9.2 Hz, 2H, H-3). 13C NMR 
described (Tolstikov et al. 2014b).

rel‑(3aR*4S*9bS*)‑4‑(2‑fluorophenyl)‑3a,4,5,9b‑tetrahy‑
dro‑3H‑cyclopenta[c]quinoline 10 

Yellow solid, Yield: 79%, m.p.106–108  °C (hexane). 
1HNMR (400  MHz,  CDCl3) δ 7.66 (t, J = 7.2  Hz, 1H, 
H-6'), 7.28–7.32 (m, 1H, H-4'), 7.21–7.25 (m, 1H, H-5'), 
7.08–7.13 (m, 2H, H-7, H-3'), 7.03–7.06 (m, 1H, H-6), 6.82 
(t, J = 7.2 Hz, 1H, H-8), 6.68 (d, J = 7.6 Hz, 1H, H-9), 5.89 
(br. s,  w1/2 = 8.0 Hz, 1H, H-1), 5.69 (br. s,  w1/2 = 7.6 Hz, 
1H, H-2), 5.02 (br. s,  w1/2 = 10  Hz, 1H, H-4), 4.18 (d, 
J = 8 Hz, 1H, H-9b), 3.63 (br. s,  w1/2 = 16 Hz, 1H, NH), 3.20 
(d, J = 8 Hz, 1H, H-3a), 2.63–2.69 and 1.83–1.90 (m, 2H, 
H-3). 13CNMR (100 MHz,  CDCl3) δ 160.14 (d, J = 245 Hz, 
C-F), 145.53 (C-5a), 134.15 (C-1), 130.19 (C-2), 129.97 (d, 
J = 12 Hz, C-1'), 129.04 (C-7), 128.46 (d, J = 8 Hz, C-4'), 
127.24 (d, J = 4 Hz, C-6'), 126.34 (C-6), 126.25 (C-9a), 
124.22 (d, J = 3 Hz, C-5'), 119.47 (C-8), 116.09 (C-9), 
115.25 (d, J = 21 Hz, C-3'), 51.04 (C-4), 46.19 (C-9b), 43.35 
(C-3a), 31.76 (C-3). HRMS (ESI-TOF) m/z  [M+] Calculated 
for  C18H16FN: 265.1266; Found: 265.8655.

rel‑(3aR*,4S*,11bS*)‑4‑[4‑(trifluoromethyl)
phenyl]‑3a,4,5,11b‑tetrahydro‑3H‑cyclopenta[c][1,7]phen‑
anthroline 13c

Freshly distilled cyclopenta-1,3-diene (3 mmol, 0.25 mL) 
and aldehyde 4 (1 mmol, 0.14 mL) were added sequentially 
to a solution of amine 11 (1 mmol, 144 mg) in ionic liquid 
(2 mL). The mixture was stirred while room temperature for 
0.5 h until the amine disappeared (TLC monitoring). The 
reaction mixture was treated with water and extracted with 
 CH2Cl2 (3 × 5 mL), the solvent was evaporated, the resi-
due was purified by column chromatography  (SiO2, petro-
leum ether/ethyl acetate, 10:1) to isolate product 13c. Yel-
low solid, Yield 81%, m.p. 120–122 °C (hexane). 1HNMR 
(400 MHz,  CDCl3) δ 8.84 (d, J = 3.2 Hz, 1H, H-8), 8.16 (d, 
J = 8.0 Hz, 1H, H-6), 7.69 (d, 4H, J = 8.8 Hz, H-2',3',5',6'), 
7.59 (d, J = 8.8 Hz, 1H, H-10), 7.46 (d, J = 8.8 Hz, 1H, 
H-11), 7.35 (d, J = 8.0 Hz, 1H, H-7), 5.99 (m, 1H, H-1), 
5.70 (m, 1H, H-2), 4.84 (d, J = 2.4 Hz, 1H, H-4), 4.31 (d, 1H, 
J = 8.4 Hz, H-11b), 3.14 (d, J = 8.4 Hz, 1H, H-3a), 2.69 and 
1.88 (d, 2H, J = 8.4 Hz, H-3). HRMS (ESI-TOF) m/z  [M+] 
Calculated for  C22H17F3N2: 366.1343; Found: 366.7878, 13C 
NMR described (Tolstikov et al. 2014a).16

4,7‑Bis‑(4‑(trifluoromethyl)phenyl)‑3,3a,4,5,6,7,7a,8,10a,12
b‑decahydrodicyclopenta[c,i]‑1,10‑phenantroline 15 

Freshly distilled cyclopenta-1,3-diene (6 mmol, 0.5 mL) and 
aldehyde 4 (2 mmol, 0.28 mL) were added sequentially to 
a solution of amine 12 (1 mmol, 108 mg) in ionic liquid 
(2 mL). The mixture was stirred while room temperature 
for 0.5 h until the amine disappeared (TLC monitoring). The 
reaction mixture was treated with water and extracted with 
 CH2Cl2 (3 × 5 mL), the solvent was evaporated, the residue 
was purified by column chromatography  (SiO2, petroleum 
ether/ethyl acetate, 10:1) to isolate product 15. Yield: 64%, 
yellow solid, m.p. 108–110 °C. 1HNMR (500 MHz,  CDCl3) 
δ 7.61–7.66 м (8H, Ar), 6.73 and 6.67 (s, 2H, H-11,12), 
5.92 and 5.89 (m, 2H, H-1,10), 5.66 (m, 2H, H-2,9), 4.73 
and 4.59 (s, 2H, H-4,7), 4.16 and 4.14 (d, J = 9 Hz, 2H, 
H-10a,12b), 3.11 and 2.98 (m, 2H, H-3a,7a), 2.59, 2.49, 1.97 
and 1.80 (m, 4H, H-3,8). HRMS (ESI-TOF) m/z [M +  H]+ 
Calculated for  C32H26F6N2: 553.2073; Found: 553.3938, 13C 
NMR described (Savchenko et al. 2022).

Conclusion

Thus, this paper addresses eco-friendly approaches to the 
synthesis of new tetrahydroquinoline compounds 7–10. The 
biological assays of the products carried out using the model 
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Musca domestica insect and analysis of molecular docking 
solutions make it possible to consider the prepared com-
pounds as potential EcR-USP agonists.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11696- 023- 02880-7.
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