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Abstract
Machine learning approaches were used to predict and optimize the precipitation efficiency in the Bayer process. One 
thousand five hundred and sixty real operating data points of the precipitation efficiency from Iran Alumina Company were 
used for the model’s development. Radial basis function (RBF) and support vector machine (SVM) networks were applied 
to develop a black-box model of the process. The input parameters of the models were the concentrations of sodium oxide 
 (Na2Oc) and aluminum oxide  (Al2O3), tank temperature, ambient temperature, residence time, and solid content. To create 
an optimal model, a trial-and-error strategy based on analyzing all potential configurations was used. The network’s predic-
tion performance is further demonstrated through model generalization inside the training data domain. The outcomes of 
both RBF and SVM networks demonstrate a good agreement between the industrial data and the model predicted values 
when considering statistical measures such as correlation coefficients of more than 0.99999, mean square errors, the absolute 
average deviation, and the absolute average relative deviation of less than 0.01%. The outcome of the models was used to 
optimize the operating parameters in such a way as to maximize precipitation efficiency with a minimum concentration of 
sodium oxide. The results show that the average precipitation efficiency of 42% was increased to 47% at optimized conditions.

Keywords Machine learning · Precipitation efficiency · Bayer process · Radial basis function · Support vector machine

Introduction

The Bayer process was studied and patented by Karl Josef 
Bayer and is still the most economic procedure for producing 
1 ton of alumina from 1.9–3.6 t of bauxite ores (Hind et al. 
1999). The process consists of three steps (Bahrami et al. 
2012a; Sidrak and research 2001):

• Bauxite is extracted from the mine and mixed with a hot 
stream of sodium hydroxide before entering the dissolu-
tion tank with digester slurry.

• Precipitation of cooled supersaturated sodium aluminate 
liquor

• Calcination of the aluminum hydroxide to  Al2O3 and 
classification of the deposited crystals based on their size

The most important step for the production of alumina in 
the Bayer process is the precipitation stage. The precipita-
tion step determines the final production efficiency of alu-
minate liquor. Super-saturation of aluminum oxide (Muhr 
et al. 1997), temperature (Liu et al. 2020), seed concentra-
tion (Paspaliaris et al. 1999a), impurities (Dorin and Frazer 
1988; Ostap 1986; Rosenberg 2017; Vogrin et al. 2020; Wel-
lington et al. 2007), and mixing rate affect (Bahrami et al. 
2012b; Misra 2016) the precipitation process (Totten and 
MacKenzie 2003a).

The main step in the Bayer process for producing alu-
mina trihydrate is precipitation. This technique involves 
rapidly forming a frugally soluble solid phase from a liquid 
solution phase (Seecharran 2010). The performance of the 
precipitation step strongly affects the produced aluminum’s 
quality, productivity, and selectivity. The appropriate control 
of this stage is essential to achieving maximum production 
efficiency, minimum operating cost, optimal particle size 
distribution, and high product purity (Geoff Bearne 2017). 
Significant parameters in the precipitation step include 
super-saturation (Ilievski and Livk 2006; Veesler et al. 1994; 
Yu et al. 2020), temperature (Huang et al. 2019), caustic 
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ratio (Satpathyc 2014), stirring rate (Ilievski and Livk 2006; 
Zhou et al. 2018), seed concentration (Zhang et al. 2006), 
residence time, solids content, the presence of any impuri-
ties (Hui-bin Yang 2020; Smeulders et al. 2001; Zhang et al. 
2018, 2006, 2020), and additives (Zeng J  2007; Liu et al. 
2018; Lü et al. 2010; Sahu and Meyrick 2015; Paulaime 
et al. 2003; Yin et al. 2006; Zhang et al. 2009; Zeng et al. 
2008) that decelerate the hydrate growth/agglomeration 
(Sonthalia et al. 2013).

In the precipitating solution, super-saturation degree is 
the most important parameter, which is affected by tempera-
ture, concentration, and caustic ratio and affects the rates of 
various processes, such as nucleation and growth. The solu-
bility of alumina in the precipitation step strongly depends 
on both the tank and ambient temperatures (Bahrami et al. 
2012a). In this regard, as temperatures rise, super-saturation 
and precipitation efficiency decrease. It should be noted that 
reducing the solution’s viscosity reduces the temperature’s 
effect and increases efficiency. Super-saturation and pre-
cipitation rates decrease when the caustic ratio increases, 
resulting in a reduction in particle size and morphological 
irregularities. Another important and limiting parameter in 
the precipitation process is the residence time of aluminum 
hydroxide seed precipitation, which varies approximately 
between 48 and 72 h. As the residence time increases, the 
super-saturation degree decreases and the precipitation effi-
ciency increases (Seecharran 2010).

Zhang et al. (2009) and Sahu and Meyrick (2015) studied 
the effect of the caustic ratio on precipitation efficiency. The 
results show that increasing the caustic ratio reduced the 
precipitation rate.

Yu et al. (2020) measured the influence of super-satura-
tion on the precipitation rate. Due to the increase in driving 
force for the migration of aluminum from the soluble phase 
to the crystal surface, the higher super-saturation led to an 
increase in the precipitation rate. Furthermore, Veesler et al. 

(1994), Ilievski et al. (2006) Barata et al. (1996), and Zhang 
et al. (2009) investigated the super-saturation parameter and 
found comparable results.

Huang et al. (2019) studied the temperature effect on 
the efficiency of the precipitation rate. The results show 
that with increasing temperatures, the precipitation rate 
decreases. Also, Zhang et al. (2009) and Yu et al. (2020) 
reported similar results. However, Sahu et  al. (2015) 
obtained results that contradicted those of other researchers. 
They claimed that increasing the temperature would increase 
the precipitation rate.

Many studies have been conducted to investigate the 
effect of the stirring rate on the precipitation rate. As the stir-
ring rate increases, the precipitation efficiency increases to 
an optimal point and then decreases (Ilievski and Livk 2006; 
Veesler et al. 1994; Zhang et al. 2009; Zhou et al. 2018).

Zhang et al. (2006) studied the effect of seed concentra-
tion on the precipitation rate. The results showed that as the 
seed concentration increased, so did the available surface 
area of ions on the seed surface. Bahrami et al. (Seecharran 
2010) detected a similar trend in the effect of seed concentra-
tion on precipitation efficiency.

The effect of different additives (i.e., methanol, mono-
hydroxyl alcohol, ether crone, ethylene diamine-tetra-acetic 
acid (EDTA), urea, and tetracarbon) on precipitation rate 
was also investigated. The positive effect of these additives 
on the precipitation efficiency in the Bayer process is evi-
dent (Satpathyc 2014; Zhang et al. 2007; LÜ et al. 2010; 
Yin et al. 2006; Ying Zhang et al. 2009; Zeng et al. 2008). 
Table 1 illustrates the effect of different parameters on the 
precipitation efficiency in the Bayer process.

Various methods, such as theoretical, experimental, semi-
experimental, numerical, artificial neural networks (ANN), 
and machine learning approaches, can be used to model the 
precipitation efficiency in the Bayer process. For this purpose, 
experimental data on the parameters affecting the precipitation 

Table 1  Effects of different parameters on the precipitation efficiency

Parameters Effect Refs

Super-saturation Increase Huang et al. (2019), Hui-bin Yang (2020), Ilievski and Livk (2006), Ostap 
(1986), Sidrak and research (2001)

Temperature Increase Huang et al. (2019), JingTao and Tan (2001), Sahu and Meyrick (2015), Ostap 
(1986)

Caustic ratio Decrease Sahu and Meyrick (2015), Ostap (1986)
Stirring rate Increase–decrease Hui-bin Yang (2020), Ilievski and Livk (2006), Liu et al. (2018), Ostap (1986)
Seed concentration Increase–decrease Heidari et al. (2016), Liu et al. (2020)
Additives Methanol Increase Ostap (1986)

Ether Crone Increase Paspaliaris et al. (1999a)
Tetracarbon Increase Paspaliaris et al. (1999b)
Monohydroxy alcohol Increase Paulaime et al. (2003)
EDTA Increase Rosenberg (2017)
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step were obtained from the Iran alumina factory. Several 
configurations were evaluated in the development of the 
machine learning algorithms, and the network performance 
was checked by changing the number of hidden layers, the 
number of neurons, the training algorithm, and the variance to 
obtain the best network for predicting precipitation.

According to some authors, ANN has been used to esti-
mate alumina recovery in the Bayer process. Multiple linear 
regression analysis (MLRA) was used by Đurić et al. (2012) 
to model alumina recovery during the leaching process. They 
investigated the effect of bauxite composition, sodium alu-
minate solution composition, and caustic module composi-
tion on the degree of alumina recovery before and after the 
leaching process. In another study, radial basis function (RBF) 
and multilayer perceptron (MLP) as neural networks and the 
multiple linear regression (MLR) method were used to pre-
dict the alumina recovery efficiency (A.R.E.), the amount of 
produced red mud (A.P.R.), the red mud settling rate (R.S.R.), 
and bound soda losses (B.S.L.) based on the lime-to-bauxite 
ratio and chemical analyses in the Bayer process (Mahmou-
dian et al. Spring 2016). MLP, RBF, and MLR networks were 
used to estimate bound soda losses in Iran Alumina Complex 
solid residue (red mud) using regression and neural networks 
(AAN) (Ghaemi et al. 2018). Chelgani et al. (2009) investi-
gated the relationship between alumina leaching recovery and 
the chemical modules of bauxite using regression and ANN 
methods. Since the modeling of the precipitation stage in the 
Bayer process has not been done so far with machine learning 
approaches, an attempt was made to observe the performance 
of available operating parameters affecting the precipitation 
efficiency with two RBF and SVM networks.

In the present study, the modeling of precipitation effi-
ciency in the Bayer process for alumina production in the 
Iran Alumina factory was investigated using data collected 
during the period 2020–2021 (521 days). The precipitation 
efficiency is predicted using regression and machine learn-
ing algorithms. To achieve this goal, radial basis function 
(RBF) and support vector machine (SVM) networks were 
used. The results of the two networks were compared in 
terms of the correlation coefficient (R2), mean square error 
(MSE), absolute average deviation (AAD), and absolute 
average relative deviation (AARD). Sensitivity analysis 
was applied to investigate the effect of input parameters on 
precipitation efficiency. The prediction performance is fur-
ther demonstrated through model generalization inside the 
training data domain.

Practical implications and data set

The Hall–Heroult process converted alumina into the pri-
mary raw material for aluminum production. Alumina is 
typically extracted from bauxite using the Bayer process. 

Depending on the ore’s quality, one ton of alumina typi-
cally requires between 1.9 and 3.6 tons of bauxite. Digesting, 
clarifying, precipitating, and crystallizing are the main steps 
in the Bayer process (Paspaliaris et al. 1999b).

The precipitation step is the most crucial step in the Bayer 
process for producing alumina. The precipitation process is 
primarily influenced by the degree of aluminum oxide super-
saturation in the input solution, variations in temperature 
during precipitation, the specific surface area of the bud, 
impurities in the liquor solution, and the mixing intensity 
in the precipitation tanks (Totten and MacKenzie 2003b). 
The production conditions influence the chemical quality 
and physical properties of alumina products, such as particle 
size, wear resistance, fracture, and shear properties. Under-
standing the mechanisms of the precipitation process, which 
include nucleation, growth, and agglomeration, is essential 
due to the conflict between the production of a high-quality 
product and a large quantity of the product.

The phenomena of nucleation, growth, and agglomera-
tion necessitate that the solution be supersaturated with the 
dissolved substance. There are two distinct categories of 
nucleation: primary and secondary. Primary nucleation is 
accomplished in a supersaturated solution devoid of crystals 
of the soluble substance and is referred to as “nucleation.” 
Obviously, primary nucleation is also classified as homo-
geneous or heterogeneous. In homogeneous type, primary 
nucleation occurs in a solution devoid of solid particles, 
whereas in heterogeneous type, primary nucleation is caused 
by exogenous solid particles. Secondary nucleation involves 
the formation of nuclei in the vicinity and the presence of 
soluble material particles. By adding the bud to the solu-
tion, secondary nucleation is induced, making this form of 
nucleation the primary cause of nucleation during the pre-
cipitation process (Ilievski and Livk 2006). After nucleation 
in the precipitation process, particle growth occurs. Shape, 
behavior, size, purity, and tensile and wear resistance are 
the particle qualities that influence the growth stage. There 
are three distinct stages of crystal growth. The first stage, 
called volumetric diffusion, involves the growth units dif-
fusing the fluid mass to reach the particles’ surfaces. The 
second stage, called surface diffusion, involves the growth 
units diffusing the particles’ faces. The third stage, called 
junction diffusion, involves the growth units diffusing the 
kink sites, where the energy is the lowest. The diffusion 
phase controls the rate in systems when the solubility of the 
dissolved substance is very high in the solvent. The surface 
reaction phase controls the growth process in low-solubility 
solutions. Agglomeration is a crucial step in the Bayer pro-
cess that raises the original particle size. During this stage, 
the fine crystals added to the solution and the fine nuclei 
formed are connected. The solution must be supersaturated, 
which is one of the requirements for agglomeration (Bah-
rami et al. 2012b). According to the stated concepts, it can 
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be concluded that the precipitation step is the most critical 
step in the aluminum hydroxide production process.

In order to model the precipitation efficiency with 
machine learning algorithms, the precipitation unit daily 
data set of the Iran Alumina Factory has been used from 
2020 to 2021 (1560 data points from 521 days). As men-
tioned before, the precipitation unit efficiency is affected by 
various parameters. Due to the importance of the sodium 
oxide concentration ( Na2Oc ), aluminum oxide concentration 
( Al2O3 ), solid content, residence time, ambient/tank tem-
peratures, their significant effect on the precipitation effi-
ciency, and limitation of collected data from Iran Alumina 
Factory were used as input parameters for the network. It is 
obvious that the precipitation efficiency considers the output 
parameter of the network.

Various definitions have been proposed for precipitation 
efficiency, but the simplest definition is based on precipita-
tion rate per volume according to Eq. (1) (Bahrami et al. 
2012a):

α (%) is the alumina module and is generally used to 
express efficiency as follows (Bahrami et al. 2012a):

where C and A represent the Na2Oc concentration and Al2O3 
concentration in the solution phase (gr/lit), respectively.

The ranges of the data set are given in Table 2. To limit 
the range of a set of values, the data set must be normalized 
before being submitted to the network and regression mod-
els. As a result, the data were normalized using the following 
equations to adapt them to the transfer or activation func-
tion and place the input and output values in the same order 
between 0 and 1. (Ganguly 2003). The normalized values of 
the data are also given in Table 2.

Here, x
���

 and x
���

 are the minimum and maximum of 
data sets, respectively. d

���
 and d
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minimum desired values of the output range, respectively 
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operating data were fed as inputs for training RBF and SVM, 
whereas normalized precipitation efficiency was kept as an 
output.

Network model implementation

The artificial neural network (ANN) is a modern computa-
tional method for machine learning, knowledge demonstration, 
and the use of learned knowledge to predict output responses 
from complex systems. The main idea of ANN is based on the 
biological neural system method for data processing and infor-
mation learning (JingTao and Tan 2001; Yao et al. 1999). The 
key component of this idea is the creation of new structures for 
data processing systems. The structure is made up of a large 
number of interconnected processing elements called neurons 
that operate together to model the system. Radial basis func-
tion (RBF), support vector machine (SVM), and multilayer 

perceptron (MLP) networks are the most common and practi-
cal structures of machine learning approaches. Figure 1 shows 
the work cycle algorithms of RBF and SVM networks.

The goal of this study is to use RBF and SVM to predict 
precipitation efficiency in the Bayer process. Four performance 
metrics were computed for each series to compare the results 
between the stated networks: the regression coefficient (R2), 
mean square error (MSE), absolute average deviation (AAD), 
and absolute average relative deviation (AARD). The regres-
sion coefficient (R2) is stated by (Heidari et al. 2016):

The following equations define the mean square error 
(MSE), absolute average deviation (AAD), and absolute 

(6)R2 =

∑
i(xi−x)

�
di−d

�

N�
∑

i

�
di−d

�2

N

�
∑

i(xi−x)
2

N

Fig. 1  Work cycle algorithms a RBF and b SVM networks
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average relative deviation (AARD), respectively (Baş and 
Boyacı 2007; Heidari et al. 2016):

The experimental and computed responses are yi and 
ydi , respectively, and N is the number of experimental data. 
(N = 1560 data points). Due to high-temperature changes 
during the year, the data were divided into two parts, and 
the modeling for the first half of 2020 and 2021 (1023 data 
points) and the second half of 2020 (537 data points) was 
done separately.

Radial basis function (RBF)

The radial basis function was used in 1988 due to its gener-
alizability and simple structure, which prevented extended 
and unnecessary calculations. RBF is made up of three pre-
cursor layers that receive the input vector in the first layer 
and propagate the results to the middle layer to generate the 
network output in the last layer. In RBF, the general form of 
the approximation function is presented as follows (Vt and 
Shin, 1994):

Weights ( wi ) can be obtained using the least squares 
method by having or estimating ci and � for each intermedi-
ate neuron.

Support vector machine (SVM)

Support vector machine (SVM) is a highly supervised 
machine learning technique that was originally developed for 
organization problems and then extended to regression tasks 
in 1995. In order to minimize error, SVM uses structural 
risk minimization (SRM) principles that work better than 
experimental risk minimization (ERM) principles (Andras 
2002). By selecting a function, SVM estimates the target’s 

(7)MSE =
1

N

N∑

i=1

(
yi − ydi

)2

(8)AAD =
1

N

N∑

i=1

(||yi − ydi
||
)

(9)AARD =

((
N∑

i=1

||yi − ydi
||∕yi

)
∕N

)
× 100

(10)G(x) =

M�

i=1

wi�(‖x − ci‖)

(11)�(s) = e
−

s2

2�2

true value as close to the reference value as possible. Then, 
it measures the overall pattern and the maximum permis-
sible deviation of the targets from the estimated values for 
all training data. Finally, the input parameters are transferred 
to the multidimensional region using a nonlinear mapping 
function of the Gaussian nucleus, in which a linear model is 
estimated according to Eq. (13) (Byvatov et al. 2003):

where �
(
xi,j

)
 is the internal multiplications of the vectors 

in the multidimensional region, which can be represented 
by the kernel function according to Eq. (14) (Byvatov et al. 
2003).

where l represents the support vectors number, a∗
i
 , ai , and 

b are the Lagrange coefficients and bias, respectively, and 
K
(
xi, xj

)
 is the kernel function.

Results and discussion

Machine learning approaches are a set of interconnected 
mathematical neurons that create a model of complex func-
tional relationships. With the weights and biases specified 
during training, this model should be able to compute output 
values from input values derived from internal calculations.

Application of RBF

Designing RBF networks depends on adjusting the radial 
function’s parameters to provide the best possible approxi-
mation error for training data. Determining the number of 
radial, center, width, or variance functions and the weight 
coefficients for these functions is the key problem in design-
ing such networks. The spread factor is used to measure the 
dispersion of data. The spread factor narrows the available 
options, whereas a higher number provides more flexibility. 
The centers of the basic functions need not be fully adapted 
to training samples, but they should be distributed uniformly 
through the feature vector space. To put it another way, RBF 
networks conceptually provide a local approximation of the 
main function in the neighborhood of each center, and by 
combining these local approximations, a general approxima-
tion of the considered function is supplied throughout the 
entire feature vector space.

(12)f (x) =
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(
a∗
i
− ai

)
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xi
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+ b
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Typically, the RBF network learning process consists 
of two steps: (i) Learning the centers and widths of radial 
functions in the hidden layer; (ii) Learning the weights con-
necting the middle layer to the output layer. Neurons in an 
RBF network are often chosen through trial and error. The 
learning method is initialized with a large number of neurons 
in the hidden layer, and then the number of neurons is gradu-
ally decreased. As the number of neurons in the network is 
reduced, the training method converges to the desired error, 
which may be determined by testing the network with its 
untrained inputs. Table 3 depicts the design of the RBF net-
work and the results of the statistical tests (R2, MSE, AAD, 
AARD, and run time) that compare the actual and predicted 
precipitation efficiency for the training and test data, regard-
less of the number of neurons and spread factor.

The spread factor, or variance, and the optimum number 
of neurons are the parameters gained by trial and error in 
RBF training. 85% and 15% of the total data were used for 
training and testing, respectively. Table 4 shows the optimal 
RBF network layout and the results of statistical tests (R2, 
MSE, AAD, AARD, and run time) comparing actual and 
predicted precipitation efficiency for training and testing 
data. As a result, the effect of these two parameters on RBF 
network optimization can be observed.

 Then, the RBF network with a spread factor of 0.1 and 
100 neurons for the first half of 2020 and 2021 and a spread 

factor of 0.2 and 53 neurons for the second half of 2020 was 
trained for the inputs and target data of the precipitation pro-
cess. The results of statistical tests between the experimental 
and predicted precipitation efficiency for training and testing 
data are shown in Fig. 2. It should be noted that the proposed 
ANN model’s parameters, such as neuron values, weights, and 
biases, are accessible via an Excel file provided as supplemen-
tary material.

Application of SVM

The support vector machine uses a method called the kernel 
trick. This method contains functions that convert the input 
space of low dimension to the space of higher dimension. 
This transformation turns a non-separable problem into a 
separable problem. These are referred to as kernel functions. 
Kernel functions are more useful in nonlinear separation 
problems. These functions transform some extremely com-
plex data and then find a process that can be used to separate 
the data based on some user-defined labels.

Typical methods for RBF network design are unnecessary 
for the SVM network. The numbers of radial functions uti-
lized, as well as the centers of those functions, determine the 
feature space dimensions in this network automatically. The 
complexity of the problem is independent of the dimensions 

Table 3  Design of the RBF 
network and the results of 
the statistical tests (R2, MSE, 
AAD, AARD, and run time), 
regardless of the number of 
neurons and spread factor

MSE R2 AAD AARD (%) Run time (s)

Training Testing Training Testing

First half of 2020 and 2021
1.28E-02 9.00E-01 0.81602 0.82168 0.71964639 1.58 78.307343
9.99E-03 7.48E-01 0.8598 0.85361 0.604370464 1.33 91.599782
4.76E-03 5.01E-01 0.93586 0.90534 0.3618397 0.80 177.363896
1.32E-02 9.28E-01 0.80923 0.8149 0.734610257 1.61 60.721893
1.13E-02 8.12E-01 0.83921 0.8401 0.6515561 1.43 237.56233
1.13E-02 8.50E-01 0.84038 0.83285 0.677785304 1.49 55.297084
1.40E-03 1.23E-01 0.9815 0.97749 0.174182402 0.38 227.775486
1.45E-03 1.12E-01 0.98085 0.97949 0.164721367 0.36 218.911562
6.96E-05 1.04E-03 0.99909 0.99983 0.009095159 0.02 267.17947
4.42E-04 4.03E-02 0.99422 0.99273 0.093847186 0.21 182.922093
Second half of 2020
6.00E-03 2.58E-01 0.90661 0.94351 0.45218235 0.98 29.593959
1.79E-03 9.44E-02 0.97302 0.97911 0.223141514 0.49 25.084861
5.26E-04 1.36E-02 0.99217 0.99703 0.105062931 0.23 30.216103
5.45E-03 1.96E-01 0.9155 0.95674 0.430863619 0.94 16.281988
1.50E-03 5.95E-02 0.97749 0.98699 0.195918125 0.43 24.571349
3.06E-04 3.05E-02 0.99544 0.99328 0.08467281 0.18 31.612298
1.79E-03 8.03E-02 0.97307 0.98252 0.20491677 0.45 28.809183
3.92E-04 3.14E-03 0.99416 0.99947 0.033523579 0.08 25.587263
1.45E-03 8.91E-02 0.97823 0.98025 0.104208139 0.24 21.614068
2.27E-03 1.61E-01 0.96575 0.96412 0.265305461 0.58 18.131575
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of the data, and the number of hidden layers and weights are 
chosen automatically.

In order to model the system with the support vector 
machine network and change the network settings, such as 
selecting the kernel function, initial guessing of alpha values, 
data standardization, and kernel function scale, appropriate 
expressions can be applied to the network in the form of the 
input argument of the SVM function. As mentioned earlier, a 
support vector machine is used for an optimization problem. In 
addition, modeling software has the ability to find the optimal 
parameters for this network. First, the network is run with the 
following command to determine the optimal values. Table 5 
shows the optimal values of the SVM network for two data sets.

So, the selected values can be used for optimal network 
design according to Table 5. The SVM network has different 
solvers. To find the correct solver with minimum MSE and 
maximum R2, the SVM network was performed with differ-
ent types of solvers.

 As shown in Table 6, the ISDA solver has the best perfor-
mance among the other solvers. Therefore, using this solver 
and the optimal values in Table 5, the network regression 
diagram for precipitation efficiency is shown in Fig. 3.

Therefore, the SVM network was first obtained with 
optimal values and trained with a Gaussian function. Then, 
regression was performed between network output data and 
target values (experimental), and the regression coefficient 
was 0.99914 and 1 for the two data sets, respectively.

Sensitivity analysis

As can be seen from the previous sections, the RBF network 
has the best performance compared to the SVM network. In 
addition, the RBF convergence was guaranteed due to the 
same results in each run as opposed to the MLP network and 
the lack of need to examine the network convergence, unlike 
the SVM network. The longer run time of the RBF network 

Table 4  Comparison of RBF 
network performance in 
different spread factor with 100 
and 53 neurons and different 
neurons with spread 0.1 and 0.2 
for first half and second half of 
the years, respectively

Bold indicates the best performance of the network

Spread factor (-) MSE R2 AAD AARD (%) Run time (s)

Training Testing Training Testing

First half of 2020 and 2021

0.01 6.96E-05 1.04E-03 0.99909 0.99983 0.009095159 0.02 322.200698
0.05 5.41E-05 1.12E-02 0.99929 0.99797 0.010002 0.02 347.56328
0.1 5.90E-07 1.72E-05 0.99999 1 0.001854046 0.00 351.12005
0.2 2.98E-06 2.60E-04 0.99996 0.99995 0.008140031 0.02 364.19825
0.3 2.28E-05 1.91E-03 0.9997 0.99966 0.0204921 0.04 362.259941
0.5 5.33E-05 3.02E-03 0.9993 0.99946 0.02828117 0.06 381.253021
1 3.47E-04 2.31E-02 0.99546 0.99584 0.062840608 0.14 405.556302
S.F Second half of 2020
0.01 5.54E-05 5.79E-27 0.99918 1 0.004698056 0.01 42.399453
0.05 7.48E-05 7.99E-03 0.99889 0.99834 0.009274511 0.02 42.782471
0.1 4.41E-06 4.99E-04 0.99993 0.99989 0.004198698 0.01 40.406151
0.2 7.96E-08 1.31E-06 1 1 0.000908316 0.00 43.258999
0.3 3.06E-06 2.10E-04 0.99995 0.99996 0.007459987 0.02 44.629417
0.5 1.20E-06 2.70E-05 0.99998 0.99999 0.005058456 0.01 44.124597
1 3.67E-06 6.69E-05 0.99995 0.99999 0.00840624 0.02 37.929936
Number of neurons First half of 2020 and 2021
60 5.61E-03 4.17E-01 0.92382 0.92253 0.401553246 0.89 112.095022
80 9.04E-04 8.00E-02 0.98813 0.98542 0.142837788 0.32 213.496612
90 1.52E-04 1.19E-02 0.99801 0.99784 0.048434869 0.11 244.445826
100 5.90E-07 1.72E-05 0.99999 1 0.001854046 0.00 351.12005
120 1.42E-09 1.51E-27 1 1 1.77323E-14 0.00 380.317205
N.N Second half of 2020
35 5.56E-03 3.68E-01 0.9138 0.9161 0.369411428 0.81 22.544942
45 1.16E-03 2.70E-02 0.98265 0.99424 0.138743242 0.31 32.722913
50 1.60E-04 4.42E-03 0.99763 0.99906 0.03660029 0.08 38.734814
52 2.04E-05 1.16E-03 0.9997 0.99976 0.011648592 0.03 40.911074
53 7.96E-08 1.31E-06 1 1 0.000908316 0.00 43.258999
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Fig. 2  RBF network regression performance for precipitation efficiency: a training and b testing data for the first half of 2020 and 2021; c train-
ing and d testing data for the second half of 2020

Table 5  Optimal values of SVM 
network parameters for two 
data sets

Fitrsvm function parameters First half of 2020 and 2021 Second half of 2020

Optimal values 
(simulation)

Optimal values 
(selected)

Optimal values 
(simulation)

Optimal 
values 
(selected)

Box Constraint 2.2074 30 0.54479 5
Kernel scale NaN NaN NaN NaN
Epsilon 0.00050973 0.0084766 0.00032242 0.00032242
Kernel Function Polynomial Gaussian Polynomial Gaussian
Polynomial Order 3 NaN 3 NaN
Standardize True True True True
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Table 6  Comparison of SVM 
network performance with 
different solvers for two data 
sets

Bold indicates the best performance of the network

Solver Convergence MSE R2 AAD AARD (%) Run time (s)

Training Testing Train-
ing

Testing

First half of 2020 and 2021

ISDA Yes 8.37E-05 5.35E-03 0.99914 0.99933 0.074752488 0.16 6.758433
L1QP Yes 8.37E-05 5.41E-03 0.99914 0.99932 0.074740053 0.16 6.437202
SMO Yes 8.37E-05 5.41E-03 0.99914 0.99932 0.07475961 0.16 3.153944
Solver Convergence Second half of 2020
ISDA Yes 1.20E-07 7.65E-06 1 1 0.002797855 0.01 2.04148
L1QP Yes 1.91E-07 7.34E-06 1 1 0.002806763 0.01 2.508422
SMO Yes 1.93E-07 7.54E-06 1 1 0.002840346 0.01 1.811466

Fig. 3  SVM network regression performance for precipitation efficiency a training and b testing data for the first half of 2020 and 2021, c train-
ing and d testing data for the second half of 2020 with the ISDA solver
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than the SVM network was ignored, and it was selected as 
the optimal network. Finally, this network was used for sen-
sitivity analysis.

Because ANN is a black-box model, it cannot provide 
evidence about what is going on during the process. In most 
circumstances, determining which parameter has the highest 
impact on process performance is required. A well-trained 
network can analyze the relevancy importance or factor (r) 
of each input parameter. As the relevancy factor increases, 
the effect of input parameters increases. The relevance factor 
is calculated from Eq. (15) (Heidari et al. 2016; Mhurchú 
and Foley 2006):

where a and Y  are the input and output parameters, 
respectively.

This ratio provides information about a process that is 
typically obtained through white-box modeling and is use-
ful for optimization and control. In order to maintain high 
requirements in modeling, it is important for the modeler to 
provide a confidence assessment. To do so, it is necessary to 
first conduct an analysis of the level of uncertainty associ-
ated with the outcomes of the model (uncertainty analysis) 
and then determines the relative importance of the various 
inputs in generating that uncertainty. The second of these 
problems is tackled by this technique called sensitivity anal-
ysis (uncertainty analysis is typically a prerequisite), which 
ranks the inputs’ intensities and relevance in determining 
the output’s variability.

Figure 4 demonstrates that the solid content, concen-
tration of  Na2Oc, and concentration of  Al2O3 are all in the 
same range (0.130–0.145). This implies that the influence of 

(15)r =

∑N

i=1
(az,i − az,average)(Yi − Yaverage)

�∑N

i=1
(az,i − az,average)

2 ×
∑N

i=1
(Yi − Yaverage)

2

these parameters on precipitation efficiency is very similar. 
Ambient temperature was predicted to have a greater effect 
on precipitation efficiency than other inputs because of the 
wide range of variation in ambient temperature data avail-
able from industry. As shown in Fig. 4, the relative factor 
of ambient temperature has the highest value (0.18). It fol-
lows that the relative factor is profoundly affected by the 
magnitude of the changes that can be made to a quantity. 
This is also why factors like tank temperature and resi-
dence time have a relatively minimal impact.

Model generalization

After choosing the best network with the optimal number of 
neurons and spread factor, it can be used to predict precipita-
tion efficiency for a variety of inputs within the training data 
domain. In 3D plots, the precipitation efficiency is plotted 
against operating parameters. The generalization perfor-
mances of the RBF network, as shown in Fig. 5, illustrate 
no oscillations, confirming the network’s appropriate predic-
tion capability. Figures 5a–h, represent the effects of various 
input operating parameters on precipitation efficiency.

The data gathered for this research originates from 
Jajarm’s alumina hydroxide precipitation unit and analyzes 
the parameters that influence the efficiency of precipitation-
based production. Production efficiency is directly affected 
by the parameters of temperature, solid content, residence 
time, aluminum oxide concentration, and sodium oxide con-
centration; however, some of these variables have an over-
lapping influence on each other, as is seen in the presented 
results.

According to the 3D plots, the ideal temperature 
range for the precipitation process is between 55 °C and 
65 °C, where the precipitation effectiveness is suitable. 

Fig. 4  Relative factor of operat-
ing parameters on precipita-
tion efficiency. The error bars 
represent the standard deviation 
for 100 runs
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In accordance with Eq.  (16), an increase in tempera-
ture increases the growth rate, and in accordance with 
Eq. (17)), it decreases super-saturation. A temperature 
range has been proposed to improve efficiency based on 
the interaction between these two variables (Ying Zhang 
2009).

where � is the degree of super-saturation, k is the growth 
rate constant, n is the degree of reaction, S is the total sur-
face area of the particles, T  is the temperature ( ◦C ), C is 
the caustic concentration ( gr∕lit ), and Aeq is the equilibrium 
solubility of aluminum ( gr∕lit).

Due to the inclusion of  Al2O3 in the calculation of 
alumina module, � (Eq. (2)), the concentration of  Al2O3 
has a direct effect on precipitation efficiency, as shown 
by the results of the  Al2O3 concentration level. Increas-
ing the amount of  Al2O3 causes � to decrease at the inlet 
and increase at the outlet of the tank (super-saturation to 
increase), which in turn improves precipitation efficiency. 
The direct effect of  Na2Oc on � follows the same pattern as 
the prior experiment (concentration of  Al2O3). When  Na2Oc 
is reduced, � is decreased at the tank’s entrance (super-satu-
ration is raised), and precipitation efficiency improves.

The precipitation process is based on mass transfer from 
the solution phase to the solid phase, and as stated ear-
lier, this process consists of the time-consuming stages of 
nucleation, growth, and agglomeration. It takes between 
4 and 5.5 h, depending on the temperature, the degree of 
super-saturation, and the concentration. The most efficient 
precipitation rates are achieved during this timeframe.

(16)−
(
1

S

)
∗
(
d�

dt

)
= k�n

(17a)� =
A − Aeq

Aeq

(17b)

Aeq = C ∗ exp
(
6.2106 −

2486.7

T + 273.15
+

1.0875

T + 273.15 × C

)

According to the liquor input to the precipitation tanks 
and the mass transfer of  Al2O3 from the solution phase to 
the solid phase during the precipitation process, the solid 
content in the solution is low, the degree of super-saturation 
of the liquor solution is high, and as a result, precipitation 
efficiency is improved.

The super-saturation rate and precipitation efficiency 
increase as the  Na2Oc concentration rises, and the  Al2O3 
concentration falls at the reactor’s inlet. Similarly, as the 
temperature difference increases, less  Al2O3 remains in the 
liquor solution, leading to faster mass transfer. As a result, 
as tank and ambient temperatures rise, so does precipitation 
efficiency. Mass transfer and precipitation efficiency improve 
with a higher residence time, which gives more opportunity 
to the nucleation, growth, and agglomeration steps. As the 
solid content of the liquor solution decreases, more  Al2O3 
dissolves in the solution and consequently increases its sepa-
ration rate. As a result, lowering the solid content improves 
precipitation efficiency.

Optimization of the precipitation efficiency

Precipitation efficiency must be maximized in the Bayer 
process. These input parameters, however, do not respond 
the same within the operating condition domain, as indi-
cated by 3D plots in Fig. 5. Raising the tank temperature, 
for example, increases the precipitation efficiency, whereas 
increasing the ambient temperature decreases the precipita-
tion efficiency. In the Bayer process, there are two methods 
for determining the optimal operating parameters for precipi-
tation efficiency: (i) minimizing the concentration of  Na2Oc, 
and (ii) limiting the total consumed energy in the reactor.

The optimization technique for the aforementioned pro-
cess in an industrial precipitation reactor is based on mini-
mizing the concentration of  Na2Oc. According to the sen-
sitivity analysis diagram,  Na2Oc has a significant effect on 
precipitation efficiency, and we can control this parameter in 
the Bayer process. The trained network, which was used to 
estimate precipitation efficiency in an industrial reactor, may 
be securely employed to predict the optimal values of input 
parameters in the Bayer process to get the best outcomes. 
When the network’s input is in the range of the minimum to 
maximum operating conditions, we can trust the anticipated 
output data by employing the trained network.

For this purpose, a new data set containing various 
network input parameters was produced as the main and 
available parameters that affect reactor operating condi-
tions (concentration of  Na2Oc, concentration of  Al2O3, 
tank and ambient temperatures, residence time, and solid 
content). All of the data were within the range of the reac-
tor’s actual working conditions. Five of the six parameters 
in the generated data set were held constant, while the 
sixth parameter was adjusted throughout a variety of actual 

Fig. 5  Model generalization of optimal network, effect of a concen-
tration of Al2O3 and Na2Oc; b tank temperature and concentration 
of Al2O3; c residence time and tank temperature; d solid content 
and ambient temperature on precipitation efficiency for the first half 
of 2020 and 2021, while other factor are kept constant at 129.6 gr/
lit Na2OC concentration, 130.10 gr/lit Al2O3 concentration, 57  °C 
tank temperature, 13 °C ambient temperature, 5.50 h residence time 
and 379 gr/lit solid content. effect of e solid content and residence 
time; f ambient and tank temperatures; g concentration of Al2O3 and 
Na2Oc; h tank temperature and concentration of Al2O3 on precipi-
tation efficiency for the second half of 2020, while other factors are 
kept constant at 124 gr/lit Na2OC concentration, 121.4 gr/lit Al2O3 
concentration, 56.3  °C tank temperature, 17.5  °C ambient tempera-
ture, 5.42 h residence time and 321 gr/lit solid content

◂
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operating conditions. This was done for each of the six 
parameters, and a total of 1800 data points were collected. 
The network was then employed to estimate precipitation 
efficiency using this data set as input.

The 1800 data points used in the optimization of pre-
cipitation efficiency are proposed points. These 1800 data 
points fall between the minimum and maximum of indus-
trial data. Since industrial data are reliable, selecting 1800 
points at random for each input is also trustable. Finally, 
it is possible to assert that the 1800 data points between 
the minimum and maximum ranges of reliable industrial 
data were generated at random. In addition, the machine 
learning-based model has made accurate predictions for 
this range of industrial data. Therefore, 1800 data points 
or any number of data points selected from industrial data 
within the interval of minimum and maximum inputs are 
reliable.

Precipitation efficiency is defined as the concentration 
of  Na2OC and  Al2O3 in the entered feed, as previously 
stated. This quantity must not exceed a set limit and must 
be adjusted in accordance with the required specification. 
Therefore, based on the available data of the Jajarm Refinery 
Company, the minimum and maximum calculated precipi-
tation efficiency should be 40% and 49%, respectively. The 
best parameters in the Bayer process were explored within 
the data set with the lowest permissible value (40%) of pre-
cipitation efficiency to minimize total production cost. As 
given in Table 7, the process’s optimum conditions were cho-
sen as follows: concentration of  Na2OC = 107.3 g/lit; concen-
tration of  Al2O3 = 128.34 g/lit; tank temperature = 55.93 °C; 
ambient temperature = −1.5 °C; residence time = 5.22 h; 
and solid content = 254.22 g/lit for the first half of 2020 and 
2021; and concentration of  Na2OC = 107.9 g/lit; concentra-
tion of  Al2O3 = 128.81 g/lit; tank temperature = 56.31 °C; 
ambient temperature = −3 °C; residence time = 5.13 h; and 
solid content = 275.43 g/lit for the second half of 2020.

Since the sensitivity analysis demonstrated that the ambi-
ent temperature had a significant impact on the precipita-
tion efficiency, it was considered one of the network inputs, 
despite the fact that the controller had no control over it. Two 
cases with constant ambient temperature are investigated to 
provide a set of best operating conditions for various fixed 
ambient temperature values: 1. the case of the first half of 
2020 and 2021 with the average ambient temperature, 2. the 
case of the second half of 2020 with the average ambient 
temperature. Then, the RBF network is used to determine 
the optimal available values for the remaining parameters 
based on these two cases. Table 8 displays the precipitation 
efficiency under optimum operating conditions and a con-
stant ambient temperature for the first half of 2020 and 2021 
and the second half of 2020.

Conclusion

In this paper, the efficiency of precipitation as a function 
of operating parameters was explored and modeled using 
machine learning algorithms. The model input parameters 
were concentration of  Na2Oc, concentration of  Al2O3, tank 
temperature, ambient temperature, residence time, and 
solid content. The results show that the machine learning 
approaches may be employed safely in the Bayer process for 
modeling precipitation efficiency. The findings of the mode-
ling revealed that the estimated outcomes and industrial data 
for the training and testing data sets are in good agreement. 
The general results of the study are summarized below:

• In order to find an appropriate algorithm and predict the 
precipitation efficiency, the structures of RBF and SVM 
networks were examined.

• Based on the trial-and-error algorithm, the RBF network 
with a spread factor of 0.1 and 0.2 and a number of neu-

Table 7  Precipitation efficiency 
under various operational 
conditions with a precipitation 
efficiency of 40% and the 
minimum  Na2Oc concentration 
(the optimum point shown in 
bold)

Concentra-
tion of Na2Oc 
(gr∕lit)

Concentra-
tion of Al2O3 
(gr∕lit)

Tank Tem-
perature 
( ◦C)

Ambient 
Temperature 
( ◦C)

Residence 
Time ( hr)

Solid 
Content 
(gr∕lit)

Precipitation 
efficiency (%)

First half of the 2020 and 2021
107.3 110.06 51.25 −4.5 4.19 227.21 41.25
107.3 114.61 52.44 −1.5 4.43 254.22 43.75
107.3 119.98 54.03 3.3 4.81 294.35 45.11
107.3 128.34 55.93 −1.5 5.22 254.22 46.99
107.3 135.53 57.83 5 5.49 389.11 48.15
Second half of the 2020
107.9 112.85 51.83 −10.5 4.23 234.03 40.26
107.9 120.06 54.15 −6 4.65 275.43 42.72
107.9 126.61 55.74 −3 5.00 323.92 43.61
107.9 128.81 56.31 −3 5.13 275.43 46.62
107.9 135.43 57.90 0 5.55 385.90 47.20
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rons of 100 and 53 for the first half of 2020 and 2021 
and the second half of 2020, respectively, was chosen as 
the best RBF structure to predict precipitation efficiency 
within the training data domain.

• The average relative error in predicting the precipitation 
efficiency of training points was less than 0.001%.

• ANN’s model generalization within the domain of train-
ing data also exhibits superior prediction ability.

• The evaluated model can be used to determine the opti-
mal operating conditions for the Bayer process based on 
the minimum concentration of  Na2Oc by generating new 
datasets covering a broad range of possible operating 
conditions.

• The comparison findings  (R2, MSE, AAD, AARD, and 
run time) demonstrated the network’s capacity to predict 
precipitation efficiency accurately over a wide range of 
operating parameters.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11696- 022- 02642-x.
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