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Abstract
Hypochlorous acid/hypochlorite (HOCl/OCl−) plays a crucial role in immune defense and other biological processes. A 
carbazole fluorescent probe, 9-ethyl-3-((2-(4-nitrophenyl)hydrazineylidene) methyl)-9H-carbazole (CZ-NH), was designed 
and synthesized for the detection of HOCl/OCl−. After  OCl− was added, the fluorescence spectrum showed a strong absorp-
tion peak at 370 nm, and the fluorescence enhancement was nearly 500 times. The probe has strong selectivity for  OCl−, low 
detection limit 2.709 μM, non-toxicity to cells, good permeability and can be used for fluorescence imaging of exogenous 
and endogenous  OCl−, indicating that CZ-NH has potential biological application value. The probe CZ-NH was character-
ized by 1H NMR and 13C NMR. In addition, the recognition mechanism of  OCl− was verified by mass spectrometry and 
density functional theory (DFT).
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Introduction

HOCl/OCl− is one of the most important reactive oxygen 
species (ROS). It is produced by the reaction of chloride 
ions and hydrogen peroxide catalyzed by myeloperoxidase 
(MPO) in living organisms and is involved in many physi-
ological and pathological processes in the body (Harrison 
and Schultz 1976; Kettleet and Winterbourn 1997; Sivar-
aman et al. 2014; Raja et al. 2017; Ponnuvel et al. 2018; 
Perumal et al. 2020; Swamy et al. 2020). The change of 

 * Huiqin Wei 
 1412018003@qq.com

 * Zhiqiang Zhang 
 zzq@fjmu.edu.cn

 * Fang Ke 
 kefang@mail.fjmu.edu.cn

1 Fujian Medical University Union Hospital, Interventional 
Catheter Room, Fuzhou 350001, China

2 School of Pharmacy, Institute of Materia Medica, 
Fujian Provincial Key Laboratory of Natural Medicine 
Pharmacology, Fujian Medical University, Fuzhou 350004, 
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11696-022-02618-x&domain=pdf
http://orcid.org/0000-0002-5970-2512


2318 Chemical Papers (2023) 77:2317–2325

1 3

HOCl concentration is closely related to the functional state 
of cells. At physiological concentrations, HOCl provides a 
guarantee for human body to resist pathogen and bacterial 
invasion through its strong oxidation and bactericidal ability 
(Chen et al. 2011) However, once the concentration of HOCl 
is abnormal, it will directly damage organelles and tissues 
in the body, thus leading to the occurrence of disease. It has 
been reported that the concentration of ROS in cancer cells 
is about 10 times higher than that in normal cells (Wang 
et al. 2021; Antunes and Cadenas 2001; Wang et al. 2022), 
which may help distinguish cancer cells from normal cells. 
Therefore, it is still of great significance to track the real-
time detection of HOCl in the body.

In recent decades, there have been numerous reports on 
the detection of HOCl/OCl−, such as mass spectrometry 
(Peris-Díaz et al. 2021), electroanalysis (Wang et al. 2008), 
and chemiluminescence. In recent decades, there have been 
numerous reports on the detection of HOCl/OCl−, such as 
potentiometric, electroanalytical, and chemiluminescence 
methods. However, due to the high cost and complicated 
operation of these methods, more attention has been paid to 
the effective detection of HOCl by fluorescent probes. The 
HOCl fluorescent probe design strategy is based on the reac-
tion between HOCl and specific functional groups. At pre-
sent, the main types reported are oxidation deoxime mecha-
nism (Nguyena et al. 2018), oxidation of sulfur-containing 
elements (S, Se, Te elements) atom or group mechanism 
(Kenmoku et al. 2007; Koide et al. 2011; Wu et al. 2017; 
Yuan et al. 2015; Xu et al. 2015), oxidation of p-methyl phe-
nol or p-methoxyaniline mechanism (Zhou et al. 2012; Sun 
et al. 2008; Hu et al. 2016, 2014), desulfurization cyclization 
(Hua et al. 2019), oxidation of carbon–carbon double bond 
(Zou et al. 2019; Chen et al. 2010), oxidation of deiminom-
aleonitrile (Zhu et al. 2014; He et al. 2020), etc. (Table 1).

In recent years, fluorescent probes have been favored by 
chemical biologists due to their excellent characteristics 
such as high sensitivity, good selectivity, short response 
time, low cost, easy operation, and in situ imaging (Zhu 
et al. 2018; Chen et al. 2016; Xu et al. 2016). In addition, 
fluorescent probes can enter a single cell for accurate detec-
tion and can realize the detection of active substances or 
metabolites in organisms, which is of great significance for 
the development of modern biology. It is well known that 
outstanding photostability, biological compaction, solubil-
ity, reliable molar absorption coefficient, and fluorescence 
quantum yield are all requisites in the application of devel-
oped fluorophores (Dwight and Levin 2016). For this reason, 
through the continuous attempts and innovations of many 
researchers, many fluorescent probes have been invented 
based on 2-(2-hydroxyphenyl) benzothiazole (Zhu et al. 
2021a, b), BODIPY (Venkatesan and Wu 2015; Liu et al. 
2016; Liu and Wu 2013), coumarin (Duan et al. 2019), fluo-
rescein (Ren et al. 2022), naphthalimide (Feng et al. 2016), 

naphthalene (Zhang et al. 2020), rhodamine (Xiong et al. 
2016; Mao et al. 2019; Yuichiro et al. 2011), 7-nitrobenz-
2-oxa-1,3-diazole (NBD) (Jiao et al. 2020), etc. Therefore, 
it is urgent to synthesize fluorescent probes with simplicity, 
high sensitivity, good selectivity, low detection limit, and 
good photostability.

In this paper, a small molecule fluorescent probe, 9-ethyl-
3-((2-(4-nitrophenyl) hydrazineylidene)methyl)-9H-carba-
zole (CZ-NH) with high selectivity for HOCl, was designed 
by using carbon–nitrogen double bond as the recognition 
functional group and carbazole with large conjugate sys-
tem as the fluorophore. CZ-NH showed good quantum yield 
(Φ = 0.14). When CZ-NH reacts with HOCl, CZ-CHO with 
strong fluorescence is released, which enhances the fluores-
cence and achieves the purpose of detection.

Experimental

Materials and chemicals

All other chemicals used in this article were obtained from 
commercial suppliers and can be used without further puri-
fication. The water is deionized. Silica gel for column chro-
matography was obtained from 200–300 mesh Sinopharm 
Chemical Reagent Co., LTD.. DMSO-d6 was used as the sol-
vent to record 1H NMR spectrum at 400 MHz and 101 MHz 
(Bruker DPX) at 13C NMR spectrum. Chemical shifts were 
reported in ppm with TMS as internal standard. Mass spec-
tra were determined by high-resolution mass spectrometer. 
Absorption spectra were recorded on a Shimadzu UV-2600 
spectrophotometer, and fluorescence spectra were recorded 
on a Cary Eclipse fluorometer. Cell imaging was recorded 
on a Leica inverted microscope.

Synthesis of compound CZ‑NH

Synthesis of 9-ethyl-9H-carbazole-3-carbaldehyde (CZ-
CHO): The solution of DMF (0.13 mL) and 1,2-dichloroeth-
ane (3 mL) was put into a round-bottom flask at 0 °C,  POCl3 
was slowly dropped into the mixture, and then, N-ethyl car-
bazole dissolved in 1,2-dichloroethane was added to the 
mixture by drop (Scheme 1). The mixture was heated and 
stirred at 90 °C for 12 h, and the reaction solution was slowly 
poured into ice water after the reaction was complete. The 
products were extracted by ethyl acetate, dried and purified 
by column chromatography.1H NMR (400 MHz, DMSO-d6) 
δ 10.06 (s, 1H), 8.74 (d, J = 1.6 Hz, 1H), 8.28 (d, J = 7.8 Hz, 
1H), 7.99 (dd, J = 8.6, 1.6 Hz, 1H), 7.74 (d, J = 8.5 Hz, 1H), 
7.67 (d, J = 8.3 Hz, 1H), 7.53 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 
7.30 (t, J = 7.5 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 1.31 (t, 
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Table 1  Comparisons of this method and other different mechanism for detecting hypochlorous acid/hypochlorite
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J = 7.2 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ 192.31, 
143.50, 140.79, 128.71, 127.20, 127.10, 124.49, 122.82, 
122.77, 121.33, 120.57, 110.31, 110.00, 37.80, 14.15. 

Synthesis of CZ-NH (Zhu et al. 2021a, b): Add CZ-
CHO (1 mmol) and p-nitrophenylhydrazine (1.5 mmol) to 
a round-bottomed flask, dissolve with absolute ethanol, and 
heat under reflux at 80 °C for 6 h. After the reaction, the 
excess solvent was removed, and the product was recrystal-
lized from anhydrous ethanol.1H NMR (400 MHz, DMSO-
d6) δ 11.26 (s, 1H), 8.48 (s, 1H), 8.25 (d, J = 5.7 Hz, 2H), 
8.15 (d, J = 9.1 Hz, 2H), 7.93 (d, J = 8.5 Hz, 1H), 7.65 (dd, 
J = 13.7, 8.4 Hz, 2H), 7.49 (t, J = 7.7 Hz, 1H), 7.27–7.16 
(m, 3H), 4.46 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H). 
13C NMR (101 MHz, DMSO-d6) δ 151.34, 143.95, 140.70, 
140.45, 138.24, 126.73, 126.61, 126.20, 124.59, 122.88, 
122.63, 121.12, 120.08, 119.73, 111.47, 110.03, 109.91, 
37.61, 14.24.

Fluorescence experiments

Prepare NaClO stock solutions (1 mM) and other analytes 
in deionized water. Probe 1 (1 mM) stock solution was pre-
pared in DMSO. Various analyte stock solutions and probe 
stock solutions were taken into test tubes, and a mixture of 
DMSO and deionized water (1:1, v/v) containing phosphate-
buffered saline (PBS, 20 mM, pH 7.4) was used. Dilute to 
desired concentration. All measurements were performed 
at room temperature (25 °C). All spectra were acquired in 
quartz cuvettes (200 μL). The excitation wavelength was 
300 nm, and the excitation and emission slit widths were 
both 5 nm.

Cell culture and imaging

The cells were placed in Dulbecco’s modified Eagle’s 
medium (DMEM) supplemented with 10% fetal bovine 
serum (FBS), streptomycin (80 mg/L), and penicillin (80 
units/mL), incubated in a humidified  CO2 incubator (37 °C) 
for 24 h. The cytotoxic effect of CZ-NH on RAW 264.7 
cells was determined by standard methylthiazol tetrazolium 
(MTT) method.

The control group was treated with CZ-NH (10 μM) and 
washed with PBS buffer for three times. The exogenous and 
endogenous NaClO groups were pretreated with NaClO 

(500 μM) or lipopolysaccharide (LPS, 1 mM). The cells 
were incubated with CZ-NH (10 μM) for 30 min and washed 
with PBS for three times. Finally, live cells were imaged 
using a fluorescent inverted microscope.

Results and discussion

The probe mother liquor is composed of DMSO. The flu-
orescence intensity of the probe solution without NaClO 
at 370 nm is very weak, while the fluorescence intensity 
at 370 nm is significantly enhanced after NaClO is added. 
The results show that NaClO can increase the fluorescence 
intensity of the probe, because NaClO can oxidatively 
destroy C=N, while the p-NO2 group is a strong electron-
withdrawing group, which makes C=N more unstable. The 
presence of free CZ-CHO in solution resulted in enhanced 
fluorescence. It indicates that the CZ-NH can detect 
 OCl− sensitively.

Reaction time is an important indicator to measure 
whether a probe can be used for monitoring and analysis, 
so we first studied the specific situation of the reaction 
time between probe and NaClO. As shown in Fig. 1a, after 
NaClO was added to the probe buffer solution, the fluores-
cence intensity of the probe first strengthened with the pro-
longation of time. When the reaction time reached 20 min, 
the fluorescence intensity of the probe tended to be stable. 
The results show that the probe can be used as an effective 
method for rapid detection of NaClO.

The response of probe to NaClO at different pH is an 
important factor to determine whether probe can play an 
effective role. As shown in Fig. 1b, after adding buffer 
solutions of different pH to the mixture of probe and 
NaClO, the fluorescence intensity did not change with the 
change of pH, but tended to a stable state. When pH is 7.4, 
the fluorescence intensity reached the maximum value. It 
shows that the probe is suitable for the detection of NaClO 
in human body.

We also explored the selectivity of the probes for different 
analytes (including  Cu2+,  Ni2+,  Zn2+,  Fe3+,  K+,  Ca2+,  Al3+, 
 Na+, Cys, Hcy, His, Arg, Lys,  NO3

−,  NO2
−,  Br−,  H2PO4

−, 
 CH3COO−, ·OH,  O2·−,  ONOO−,  H2O2, 1O2,  MnO4

−,  ClO2
−, 

 Cr2O7
2−), and the fluorescence intensity was significantly 

enhanced after the addition of NaClO, while the fluores-
cence intensity did not change significantly when oth-
ers were added. As shown in Fig. 2, at the wavelength of 

Scheme 1  Design and synthesis 
of the CZ-NH
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370 nm, the fluorescence intensity generated by the addition 
of NaClO to CZ-NH was significantly enhanced, and the 
fluorescence intensity increased nearly 500-fold. The results 
showed that the selectivity of the probe to NaClO was better 
than that of other components (Table S1).

When the NaClO concentration ranged from 0 to 160 μM, 
the increase in fluorescence intensity showed a good linear 

relationship (Fig. 3b). The detection limit of this method is 
2.709 μM, and it has good sensitivity for NaClO.

It is known that the conversion of p-nitrophenylhydra-
zone to aldehyde can be carried out by an oxidizing agent 
(McMucrry 1968). And hypochlorite has a strong oxidizing 
property, so the addition of  OCl− breaks the C=N in the 
probe structure, the reactive p-nitrophenylhydrazine group is 

Fig. 1  a Effects of time on CZ-NH (10 μM) and its recognition abil-
ity for  OCl− in the aqueous solution of PBS (10 mM); b Effects of pH 
on CZ-NH (10 μM) and its recognition ability for  OCl− in the aque-

ous solution of PBS (10  mM). Excitation wavelength was 300  nm, 
and excitation and emission slit widths were 5 nm. The data represent 
the fluorescence intensities at 370 nm

Fig. 2  a Fluorescence intensity of CZ-NH (10 μM) at 370 nm after 
addition of 10 mM selected ions; b Response values of probe CZ-NH 
and various analytes (1:  Cu2+, 2:  Ni2+, 3:  Zn2+, 4:  Fe3+, 5:  K+, 6: 
 Ca2+, 7:  Al3+, 8:  Na+, 9: Cys, 10: Hcy, 11: His, 12: Arg, 13: Lys, 14: 

 NO3
−, 15:  NO2

−, 16:  Br−, 17:  H2PO4
−, 18:  CH3COO−, 19: ·OH, 20: 

 O2·−, 21: ONOO −, 22:  H2O2, 23: 1O2, 24:  MnO4
−, 25:  ClO2

−, 26: 
 Cr2O7

2−,27: PBS, 28: OCl.−)
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cleaved and the free fluorophore CZ-CHO is released, result-
ing in significant fluorescence changes. To further under-
stand the reaction mechanism between CZ-NH and  OCl−, 
the ESI–MS spectrum of CZ-NH in  CH3OH treated with 
 OCl− is shown in Supporting Information Fig. 3S. There 
is a peak at m/z = 224.09, corresponding to [B +  H]+ (Cal. 
224.10), and m/z = 246.10, corresponding to [B +  Na]+ (Cal. 
246.10). According to previous research results, the mecha-
nism by which CZ-NH might recognize  OCl− is proposed, 
as shown in Scheme 2.

To further verify the proposed inter-probe mecha-
nism, density functional theory (DFT) calculations were 
performed. Figure 4 lists the highest and lowest occu-
pied molecular orbitals (HOMOs) for CZ-NH and CZ-
CHO. The HOMO of CZ-CHO is mainly distributed on 

CZ-CHO, and the LUMO is all over the molecule. The 
large HOMO–LUMO gap (2.75 and 4.07 eV for CZ-NH 
and CZ-CHO HOMO–LUMO gaps, respectively) shows 
high stability of CZ-CHO upon addition of  OCl− convert-
ing CZ-NH to CZ-CHO. The results verify the reaction 
mechanism, and CZ-NH is highly selective and sensitive 
to  OCl−, which can enhance the fluorescence.

MTT assay was used to evaluate the cytotoxicity of 
RAW 264.7 cells. The results showed that the cell viabil-
ity was more than 90% when the probe concentration was 
below 20.0 μM (Supporting Information Fig. 1S), indicat-
ing that CZ-NH had low cytotoxicity. Cells were pretreated 
with NaClO and LPS for 30 min at 37 °C and then incu-
bated with CZ-NH (10 μM) for another 30 min at 37 °C. A 
strong blue fluorescence signal appeared in the cytoplasm 

Fig. 3  a Fluorescence responses of CZ-NH (10  μM) to differ-
ent concentrations of  OCl− in DMSO-PBS buffer (10  mM, pH 7.4) 
(V/V = 1:1); b The linear relationship between the fluorescence inten-

sity and the concentration of NaClO. Excitation wavelength was 
300 nm, and excitation and emission slit widths were 5 nm. The data 
represent the fluorescence intensities at 370 nm

Scheme 2  Proposed response 
mechanism of CZ-NH to  OCl−
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of the cells (Fig. 5), and the fluorescence of NaClO experi-
mental group was significantly stronger than that of LPS 
experimental group. When treated with CZ-NH only for 
30 min at 37 °C, there was almost no fluorescence signal 
in the cells (Fig. 5f). These results indicate that CZ-NH 
can detect NaClO in living cells.

Conclusions

We have successfully designed a novel carbazolyl fluores-
cent probe, CZ-NH, which can selectively react with NaClO. 
The addition of  OCl− broke the C=N in the probe struc-
ture, and the nitro group was a strong electron-withdrawing 
group, which accelerated the C=N cleavage and released 
the free fluorophore CZ-CHO, thus producing significant 
fluorescence changes and realizing its fluorescence detec-
tion. The addition of  OCl− increased the fluorescence inten-
sity nearly 500 times, low detection limit 2.709 μM, and 
the probe CZ-NH had low toxicity, good biocompatibility, 
and could penetrate the cell membrane for intracellular 
imaging. The good permeability and staining ability further 
demonstrated the feasibility of CZ-NH to accurately monitor 
NaClO in biological systems.

Fig. 4  Structure optimization diagram of probe CZ-NH and adding 
 OCl−

Fig. 5  Fluorescence imaging of RAW 264.7 cells. The first column 
shows cells treated with CZ-NH (10 μM) (a bright field; d blue chan-
nel); The second column shows cells treated with NaClO (500 μM) 

and CZ-NH (10 μM) (b bright field; e blue channel). The third col-
umn shows cells treated with LPS (LPS, 1 mM) and CZ-NH (10 μM) 
(c bright field; f blue channel). Scale bar: 10 μm
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tary material available at https:// doi. org/ 10. 1007/ s11696- 022- 02618-x.
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