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Abstract
Interaction dynamics of rigid/deformable particles are included in a wide range of industrial and scientific approaches. The 
description of the binary collision of particles is required to predict the flow of a concentrated emulsion. The present review 
introduces the numerical approaches employed to simulate the interaction of two particles and evaluates the impact of deform-
ability, configuration, and flow type on collision dynamics. Two closely interacting drops/bubbles can collide in in-line and 
side-by-side configurations in Newtonian and non-Newtonian surrounding fluids. Based on the previous investigations, the 
future trends for the binary collision of deformable particles are provided.
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Abbreviations
Ar  Archimedes number
Bo  Bond number
Ca  Capillary number
d  Particle diameter, m
Eo  Eötvös number
g  Gravity acceleration, m/s2

Ga  Galileo number
F  The force due to surface tension, N
Fb  Body force, N
FMP  Added mass force, N
FD  Drag force, N
FB  Buoyancy force, N
FL  Shear-induced lift force, N
K  Solid-fluid viscosity ratio
M  Mobility potential
Mo  Morton number
n  Power-law index
n  Unit vector normal to the drop surface, m
S  Second-order tensor
U  Fluid velocity, m/s
Up  Particle velocity, m/s
x  Position in an Eulerian coordinate, m
X  Position of the front in Lagrangian coordinate, m

Greek letters
��  Two- or three-dimensional delta function
�  Dissipation rate
�  Viscosity ratio
�K  Kolmogorov length scale, m
�  Twice the mean curvature for three-dimensional 

flows
�

′  Consistency index
λ  Elastic relaxation time, s
�1  Relaxation time, s
�2  Retardation time, s
�o  Zero shear rate
�∞  Infinite shear rate
�d  Drop dynamic viscosity, Pa.s
�f   Fluid dynamic viscosity, Pa.s
�d  Drop density, kg/m3

�f   Fluid density, kg/m3

�l  Liquid density, kg/m3

�  Surface tension, N/m
�  Chemical potential
Φ  Volume fraction
Ω  Vorticity tensor
�  Stress tensor, Pa

Introduction

Interaction between particle/droplet/emulsion in fluid flow is 
important in many industrial and scientific fields. Multiphase 
flow presents in nature, including rain droplets, waterfall 
mists, sediment-laden river flows, and buoyant bubbles in 
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stratified cluster atmospheres (Elghobashi 2019; Zhang et al. 
2018) and engineering applications, involving pharmaceuti-
cals, foods, electronics, vitamins, and enzymes (Ding et al. 
2019).

Previous works have demonstrated that solid particles 
have different behavior in fluid flow (Segre and Silberberg 
1961; Starkey 1955). For many years, the dynamic and rhe-
ology of the deformable object were very challenging. Tay-
lor (1932) presented the deformation of a spherical droplet in 
Couette flow and developed an analytical relation to predict-
ing the deformation of droplets and emulsions (Taylor 1934). 
Taylor supposed that deformations are small and inertial 
effects are negligible. Shapira and Haber (1990) improved 
Taylor’s formula. Afterward, analytical studies presented 
many results on deformation (Acrivos and Lo 1978; Bar-
thes-Biesel and Acrivos 1973) and breakup (Acrivos 1983; 
Van Puyvelde et al. 2000) of a drop/bubble in Stokes regime 
(Friedlander 1961), Couette flow (Busuke and Tatsuo 1969; 
Chin and Han 1980), and extensional flow (Youngren and 
Acrivos 1976; Liu et al. 2018a, b, c). Several numerical tech-
niques were used to simulate multiphase flows (Soligo et al. 
2020), such as the phase-field method (Soligo et al. 2019; 
Yue et al. 2006), Lattice Boltzmann method (LBM) (Takada 
et al. 2003; Ioannou et al. 2016), front tracking (Sun et al. 
2019; Bayareh and Mortazavi 2013), etc.

A rigid particle moves toward the center of the channel in 
simple shear flow and rotates with a constant angular veloc-
ity independent of position and initial velocity; however, the 
equilibrium position of a deformable drop depends on its 
density ratio, viscosity ratio, deformability, etc. Two rigid 
particles moving in a shear flow without colliding with each 
other create a repulsive force due to the existence of the 
rotational zone created between the two particles. This force 
is more intense as the two particles get closer to each other. 
The collision of two particles depends on their initial posi-
tion and Reynolds number. As the rigidity is reduced and the 
capillary number decreases, two deformable particles move 
towards the center of the channel and become closer to each 
other than the rigid ones. The collision dynamics of two 
deformable particles depends on the competition between 
the disjoining pressure and the Laplace pressures. When the 
disjoining pressure is comparable to the Laplace pressures, 
the deformable particles will deform.

Various applications of single-phase/multiphase flow 
laden with rigid/deformable particles have led to publish-
ing many review papers, focusing on the special aspects, 
such as microfluidic production of multiple emulsions 
(Vladisavljević et al. 2017), two-phase flows in macro- and 
micro-devices (Sattari et al. 2020), turbulent flows contain-
ing deformable particles (Elghobashi 2019), two-phase 
bubble columns (Besagni et al. 2018), gas-liquid-liquid 
multiphase flows (Chen et  al. 2019), double emulsions 
prepared by two-step emulsification (Ding et al. 2019), 

deformable drop/bubble interactions (Wang et al. 2015), 
rigid and deformable particles passing through sharp or lin-
early stratification (Magnaudet and Mercier 2020), and their 
hydrodynamic collision in non-Newtonian fluids (Zenit and 
Feng 2018).

The deformation, breakup, and coalescence of deform-
able particles are due to that the fluid circulates in them 
internally, leading to their different behavior (Mathai et al. 
2020). On the other hand, double emulsions show similar 
trajectories and different deformation during their interac-
tion in comparison with the deformable drops with a single 
phase (Liu et al. 2018a, b, c).

In this review paper, the effect of deformability, flow type, 
and configuration of deformable particles on their collision 
mechanism is examined and several papers are described. 
The paper is organized as follows: Sect. 2 introduces non-
dimensional parameters used to describe two-phase flows. 
Governing equations are explained in Sect. 3. In Sect. 4, 
different configurations of interacting drops/bubbles are 
described. Section 5 demonstrates the impact of surrounding 
flow type on collision dynamics and, finally, Sect. 6 provides 
conclusions and future trends.

Dimensionless parameters

Several dimensionless parameters characterize the inter-
action of rigid/deformable particles in Newtonian flu-
ids. Table  1 presents dimensionless numbers and their 
definitions.

Governing equations

Governing equations for Newtonian fluid flow include con-
tinuity and Navier–Stokes equations that are described as 
follows, respectively (Tryggvason et al. 2011):

Based on the properties of fluid flow and particles, gov-
erning equations of ambient fluid can be simplified and cou-
pled with the equations of particles. Based on the deform-
ability, particles are classified into deformable and rigid 
particles. Due to the presence of particles in fluid flow and 
their influences on the hydrodynamics of ambient fluid, the 
particle-laden flows are assumed to be turbulent. Different 
numerical approaches are described for rigid and deform-
able particles.

(1)
��

�t
+ ∇.(�u) = 0

(2)�
(
�u

�t
+ u.∇u

)
= −∇P + Fb + ∇.�
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Rigid particles

Direct Numerical Solution (DNS) of particle-laden turbulent 
flow, when d < 𝜂K , is carried out using the two-fluid (TF) 
scheme or the Eulerian–Lagrangian (EL) one, where 
�K = �3

1∕4
∕� , � = 2�SijSij , and Sij =

(
�ui
�xj

+
�uj

�xi

)
 . The main 

assumption of the EL procedure is based on the point particle 
(Elghobashi 2009). The Eulerian–Lagrangian approach is 
based on solving fluid flow equations in fixed gird in the Eule-
rian approach and solving particle dynamics in the Lagrangian 
approach. If d > 𝜂K , particle is preserved as a solid body 
immersed in the fluid and resolved accurately (Uhlmann 
2008). Hence, the resolved particle (Euler–Lagrange point-
particle) approach can be employed to solve the flow field.

Point particle approach

In the point particle approach, there is a fundamental equation 
that describes the motion of buoyant particles in fluid flow. 
Obtaining a fundamental equation describing the motion of a 
single buoyant particle in the carrier fluid took almost a cen-
tury. The resulting equation, named as Maxey–Riley equation, 
was derived as follows (Maxey and Riley 1983).

where vp =
�d3

p

6
 is particle volume. To derive the 

Maxey–Riley equation, the effect of coupling between 

(3)vp�p
..

�
p
= vp�l

Du

Dt
+ �MP + �B + �L + �D

translation and rotation of particle has been assumed negli-
gible. As shown in Fig. 1, the forces include the one due to 
the added mass �MP = �lvp

DU

Dt
(1 + CM) , drag force 

�D = −CD

𝜋d2
p

8
𝜌l
|||Ẋp − U

|||
(
Ẋp − U

)
 ,  b u oya n c y  fo r c e 

�B = vp
(
�p − �l

)
gêy  and shear-induced l if t  force 

�L = −CL𝜌lvp
(
Ẋp − U

)
× (∇ × U) (Liu et al. 2018a, b, c).

Two‑fluid approach

When d < 𝜂K , TF approach can be employed (Zhou 2009). 
In this method, the equations govern the fluid and the partic-
ulate phases are averaged spatially over 𝜂K ≫ d (Druzhinin 
and Elghobashi 1998). Crowe et al. (1996) pointed out that 
the algorithm can be easily modified for the dispersed phase. 
Besides, the computational time is not as excessive as it may 
be for the trajectory models. Even though the TF model has 
good performance, its performance is strongly dependent on 
the closure models and computational time. By neglecting 
the Basset and lift forces in the Maxey–Riley equation and 
assuming 𝜌l ≫ 𝜌p , governing equations are obtained for the 
particulate phase (Druzhinin and Elghobashi 1998).

Resolved particle approach

The resolved particle approach is the approach with the 
least simplifications. Each particle is treated as a solid body 
immersed in the fluid (Uhlmann 2008). The exact solution 
of governing equations can be obtained by determining the 
force of the fluid acting on the particle and vice versa. In other 
words, the force applied to each point of the particle’s surface 
is calculated. The advantage of this method is its high accuracy 
and low computational costs. This approach is suitable when 
the number of particles per CPU is less than 10. Since parti-
cles and fluid have an impact on each other, their governing 
equations must be coupled. Depending on the volume fraction 

Table 1  Dimensionless parameters that characterize multiphase flows

Dimensionless parameter Formulation

Bulk Reynolds number Reb =
�f UL

�f

Particle Reynolds number Rep =
�f Upd

�f

Archimedes number
Ar =

�f gd
3Δ�

�2

Bond number Bo =
�gd2

�

Eötvös number Eo =
Δ�gd

�

Capillary number Ca =
�f U

�

Morton number
Mo =

�4

f
gΔ�

�2
f
�3

Weber number
We =

�f Ud
2

�

Galileo number
Ga =

�2
f
d3g

�2

f

Ohnesorge number
Oh =

√
We

Re2
p

Deborah number De =
λU

d

Viscosity ratio � = �d∕�f

Density ratio � = �d∕�f

Fig. 1  Schematic of the forces applied on a small buoyant particle ris-
ing past a vortex (Liu et al. 2018a, b, c)
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of particles, Φ , one-way coupling (for Φ < 10−6 ), two-way 
coupling (for 10−6 < Φ < 10−3 ), and four-way coupling (for 
10−3 < Φ < 1 ) are employed. In a one-way coupling approach, 
the impact of fluid on the particles is considered, but the parti-
cles' effect on the fluid and inter-particle effects are negligible. 
In the two-way coupling approach, the carrier fluid and parti-
cles affect each other but inter-particle effects can be ignored. 
In a four-way coupling approach, the carrier fluid and particles 
affect each other. Besides, the particles have an effect on each 
other due to their direct collision or indirect collision due to the 
surrounding fluid that exists between the particles.

Deformable particles

For deformable particles when d > 𝜂K , the interface motion is 
calculated using numerical methods. In the following, popular 
numerical approaches employed by researchers are described.

Phenomenological model

Meanwhile, current supercomputers perform DNS of the tur-
bulent fluid flow only when d ≥ �K . Thus, the deformation 
of the dispersed phase is computed by using the phenomeno-
logical model. The main asset of this model is that it can be 
applied to an arbitrary flow. Hence, it is particularly suitable as 
a model of the deformable particle behavior in complex flows 
(Maffettone and Minale 1998).

In this model, the shape of the deformable particle is 
described using a second-order tensor S, where its evolution 
equation is as follows:

Here, � =
1

2
(∇u − ∇uT ) is vorticity tensor.

Front tracking method

In this method, there is a set of governing equations is utilized 
for the solution area (Unverdi and Tryggvason 1992):

The divergence of the velocity field is zero when both 
immiscible fluids are incompressible:

Equations of state for the density and the viscosity are:

(4)
d�

dt
= �.� + �.�

(5)

��u

�t
+ ∇ �uu = −∇P + ∇ �

(
∇u + ∇uT

)
+ �

∫
�n��(x − X)ds

(6)∇ u = 0

(7)
D�

Dt
= 0,

D�

Dt
= 0

The pressure jumps across the interface, contrasting the 
velocity is taken to be continuous. The normal stresses are 
balanced by surface tension because of the continuity of 
stresses at the fluid boundary. The force due to surface ten-
sion is

In this approach, the interacting interfaces are accounted 
for, but it is expensive, even if only grid points in the vicin-
ity of the interface are considered (Unverdi and Tryggvason 
1992). The method is utilized to describe the motion of 
deformable particles in fluid flow (Bayareh et al. 2013).

The interface-capturing method is also introduced in 
the following. It utilizes continuous functions to estimate 
various phases. This technique can predict the topological 
variations. Since the indicator function of this method is dif-
ferent, four approaches are commonly utilized to capture the 
interface, including the Volume of Fluid (VOF), level-set, 
phase field, and Lattice Boltzmann methods.

VOF method

In the VOF method, the indicator function is selected as the 
volume fraction of the particles (Hirt and Nichols 1981). 
This method involves three major steps: the reconstruction 
of the interface, modeling of the advection, and estimation of 
the interfacial tension (Day et al. 2012). The volume fraction 
function is described using Eq. 6:

The density and viscosity of the two phases are calculated 
using the following equations:

Here, subscripts 1 and 2 represent ambient fluid and drop, 
respectively. The following pattern is utilized in the VOF 
method:

The interfacial tension force is calculated by using the 
continuum surface force (CSF) scheme (Brackbill et al. 
1992). The normal vector and curvature of the interface are 
calculated using the derivatives of the volume fraction func-
tion or models. The VOF method is easy to extend to three-
dimensional problems, has high accuracy, and is simple to 
implement (Cannon et al. 2021).

(8)ΔF = ��n

(9)
�Φ

�t
+ u.∇Φ = 0

(10)�(x, t) = �1Φ + �2(1 − Φ)

(11)�(x, t) = �1Φ + �2(1 − Φ)

(12)

⎧⎪⎨⎪⎩

Φ = 1 the cell is occupied by ambient fluid

0 < Φ < 1 the cell includes the interface

Φ = 0 the cell is occupied by drop
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Level set method

The level set method is also described by using the follow-
ing equation:

In this method, Φ = 0 at the interface. The indicator func-
tion of this method is a smooth function that represents the 
interface in the computational domain and does not have 
any physical meaning (Olsson and Kreiss 2005). Because 
of smoothed changes across the interface, discontinuity 
does not happen. This method needs a significant attempt 
to determine applicable velocities to proceed with the level 
set function, which can break the mass conservation law for 
each phase (Sussman and Fatemi 1999; Balcázar-Arciniega 
et al. 2019).

Phase‑field method

The indicator function of this method is the density function 
of one phase (Santra et al. 2020), leading to the satisfaction 
of the continuity equation. The interface transport equation 
is described in Eq. 8 (Cahn and Hilliard 1958):

This method retains the interface sharpness while the con-
tinuity is maintained [46]. Because of this property and since 
no more attempts are required to reconstruct the interface 
and re-initialize the time step, this method is a favorite for 
simulation of interaction and coalescence between deform-
able particles (Liu et al. 2021).

Lattice Boltzmann method

This technique is in accordance with the discretized fluid 
model of Lattice Gas Automata (LGA) (Liu et al. 2021) 
and basically tracks the evolution of the probability distri-
bution function for particles in a discretized space and time 
domain (Liu et al. 2021). One of the significant parameters 
in the lattice Boltzmann method, such as Shan and Chen 
model (Shan, and Chen 1993) is the discretization of the 
force terms due to the creation of numerical instabilities. 
Some researchers proposed stable models to describe the 
two-phase flows, for instance, Lee and Lin (2005) sug-
gested a stable lattice Boltzmann model for high density 
and viscosity ratios. Discretization errors cause parasitic 
velocities in the vicinity of the interface when external 
forces are not applied. Numerical instability is enhanced by 
intensifying the parasitic velocities and surface tension. To 

(13)
�Φ

�t
+ u.∇Φ = 0

(14)
��

�t
+ u.∇� = ∇.(M∇�)

diminish parasitic velocities, the pressure gradients and the 
term involves surface tension can be modified or the sharp 
interface technique may be utilized (Wagner 2003). Hence, 
the LBM is useful, especially for deformable particles (Tiri-
bocchi et al. 2020). Several commercial software applica-
tions, such as ANSYS FLUENT, COMSOL Multiphysics, 
Floe-3D, STAR-CD, STAR-CCM, etc., can be employed to 
simulate two-phase flow problems.

Figure 2 summarizes various approaches that can be uti-
lized to simulate the motion of rigid and deformable parti-
cles in a fluid flow.

Configuration of deformable particles

The description of particle-laden flows is important for the 
design and operation of industrial applications. The com-
plexity of collision dynamics of particles is a challenge and 
many numerical and experimental investigations have been 
done to describe this phenomenon. Compared to rigid par-
ticles, the internal fluid circulation of deformable particles 
leads to their different behavior. They can be classified into 
double emulsions and bubbles/drops. Double emulsions 
show similar trajectories and different deformation during 
their interaction in comparison with the deformable drops 
with a single phase (Liu et al. 2018a, b, c). Three colliding 
modes were observed for two eccentric double emulsions: 
merging, passing over and reversing (Nguyen and Vu 2020). 
The competition between the drag of the passing-flow region 
and the entrainment from reversing-flow and vortex regions 
in the matrix fluid determines the colliding type.

Hydrodynamic behaviors of double emulsions under 
the influence of an external flow describe the differences 
between their collision and the binary interaction of single-
phase drops. Besides, the impact of the inner-outer radius 
ratio on the colliding dynamics can be realized (Liu et al. 
2018a, b, c). Moreover, simulation of colliding phenomena 
of two single-core compound droplets in simple shear flow 
showed that Reynolds number, the viscosity ratios μ1–3 and 
μ2–3, the interfacial tension ratio σ1 and 2, and the initial dis-
tance between two droplets affect the colliding motion (Vu 
2019) (Fig. 3). Indices 1 and 2 represent the inner droplets 
and index 3 shows the ambient fluid. Rotation and the eccen-
tricity of the double emulsions affect the type of collision 
modes. In simple shear flow, the impact of the location of 
the inner droplet in the outer one is considerable when 0.01 
< Ca < 0.08. For Ca < 0.01 and Ca ≥ 0.16, the location of 
the inner droplet does not affect the interaction dynamics of 
double emulsions (Nguyen and Vu 2020).

The collision of two eccentric drops in the Couette 
flow may follow the drafting-kissing-tumbling (DKT) 
phenomenon (Balcázar- Arciniega et al. 2019) (Fig. 4). In 
the drafting step, the wake formed by the leading droplet 
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quickens the movement of the trailing one until it con-
tacts the leading one. Then, they slide around each other 
during the tumbling step. Finally, they interact with the 
wall due to the bouncing impact. DKT process observed 
for the swarm of drops results in the creation of clusters 
moving in the channel centerline (Bayareh and Mortazavi 
2009; Bayareh and Mortazavi 2011). We, Re, � , � , and size 
of droplets/bubbles determine the binary collision mode 
moving in a horizontal channel (Goodarzi et al. 2018). In a 
head-on collision of two drops in a vertical channel, when 

We and Re increase, the deformation of drops enhances, 
and gap thickness decreases. Higher density ratios result in 
the drops colliding with each other faster. An increment in 
We and Re and a reduction in � result in an enhancement in 
the elongation of drops (Hassanzadeh et al. 2019).

Even though the interaction between two off-center par-
ticles has been considered in previous articles, many inves-
tigators have analyzed two specific types of configuration 
to describe the collision dynamics of particles, including 
in-line and side-by-side arrangements.

Fig. 2  Classification of 
numerical methods based on the 
deformability and size of par-
ticles (Elghobashi 2009; Zhou 
2009; Maffettone and Minale 
1998; Unverdi and Tryggvason 
1992; Hirt and Nichols 1981; 
Olsson and Kreiss 2005; Santra 
et al. 2020; Benzi et al. 1992; 
Khan et al. 2020; Gobert and 
Manhart 2011)

Fig. 3  Three collision modes 
of two single-core compound 
droplets (Vu 2019):  Re12 = 0.5, 
μ13 = μ23 = 1.0, Δxo/R2 = 3.0, 
and Δyo/R2 = 0.6, where Δxo 
and Δyo are center-to-center 
distance of droplets in x- and 
y-direction, respectively, and 
subscripts 3 indicates the ambi-
ent fluid
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In‑line configuration

The significance of vertical ordering (Fig. 5A) is higher 
than the horizontal one since vertical arrangement results 
in the creation of vertical chains in deposition (Joseph 
et al. 1994). Arrangement of particles influences collision 
dynamics. DKT phenomenon occurs in the collision of two 
spheres ascending with in-line ordering in a homogenous 
fluid (Bayareh et al. 2013). Two deformable rising or fall-
ing drops in an in-line configuration may attract each other 
due to viscoelastic normal stresses (Zenit and Feng 2018). 
Two in-line drops moving in a linearly stratified fluid keep 
their arrangement (Dabiri et al. 2015). In the case of rising 
bubbles in an in-line ordering, the trailing one is prone to 
speed up beyond its terminal velocity. The bubbles hit and 
coalesce due to their velocity difference at low Reynolds 
numbers. At higher Reynolds numbers, due to vorticity 
evolution about the trailing bubble, deviation away from 
the in-line configuration occurs (Gumulya et all. 2017). 
Under different confinement ratios, two initially spherical 
in-line buoyant bubbles can coalesce (Gui et al. 2020). The 
co-axial coalescence phenomenon for two in-line bubbles 
at low values of Re involves coalescence with and with-
out a conjunction. In the last one, the thinning velocity of 
the liquid film is decreased with time. In conjunct coales-
cence, the bubbles slide on each other as the liquid viscos-
ity decrease or a surfactant is added (Feng et al. 2016).

Side‑by‑side configuration

Comprehensive experiments were performed by Joseph 
et al. (1994) for two side-by-side particles (Fig. 5B). Two 
deformable rising or falling drops in a side-by-side order, 
attract each other due to the normal stress effect, in a vis-
coelastic fluid (Zenit and Feng 2018). Two nearly spherical 
drops ascending side by side retain their initial arrangement; 
however, the separation distance is reduced after their pre-
liminary hit (Dabiri et al. 2015). Motion and interaction of 
three parallel equal-sized bubbles showed that coalescence 
or repulsion depends on physical parameters [54]. By chang-
ing the radius of the bubble and center-to-center distance 
between two identical air bubbles rising side by side in the 
water, the collision dynamics between the two bubbles is 
changed. Besides, an increment in the size of the bubbles 
leads to a smaller terminal velocity (Meenu Agrawal et al. 
2021). Hydrodynamic collision of side-by-side spheres 
indicted that lift and drag coefficients depend on their sepa-
ration distance. At slippery spheres facing each other, the 
repulsion behavior changes to the coalescence regime by 
increasing the Reynolds number (Dhiman et al. 2021). Com-
pared to a single drop, the sensitivity of a pair of side-by-
side ones to viscosity is smaller. Also, an increase in the 
density ratio leads to a non-monotonic trend in the separa-
tion distance between the drops (Balla et al. 2020).

Fluid flow types

Shear flow

One of the most widely used fluid flows to analyze two-phase 
flows is shear flow, the flow between two parallel plates or 
two coaxial co- or counter-rotating cylinders (Dhiman et al. 
2021). Soligo et al. (2020) investigated demonstrated that 
the surface tension and surfactant play a main role in the 
droplet deformation, whereas tangential stresses have a 
slight impact. Chen et al. (2015) studied the dynamics of 
double emulsion droplets in Couette flow experimentally and 
numerically. They focused on transient deformation topolo-
gies and demonstrated that the inner droplet  intensifies 

Fig. 4  DKT phenomenon in simple shear flow: Re
b
 = 10, Ca = 0.13, and  � = 1 at different dimensionless times (Bayareh and Mortazavi 2011)

Fig. 5  A In-line and B side-by-side configurations
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the retracting of the outer one and provided a regime dia-
gram for their deformation based on Ca and the ratio of 
inner droplet radius to the outer one. Liu et al. (2018a, b, 
c) simulated hydrodynamic shear-driven binary collision of 
double emulsion droplets. Vu et al. (2019) investigated the 
influences of different factors and numbers of the inner drop-
lets encapsulated in the compound droplet on the deforma-
tion and breakup of the multi-core double emulsions in the 
shear flow. Dynamic behavior of emulsion with multi-core 
morphology in shear flow showed that the emulsion exhibits 
a solid-like behavior under low shear rates. By increasing the 
shear rate, two steady states may occur: (i) inner cores align 
along with the flow, and (ii) some cores gather in the vicinity 
of the outer interface and generate a ring chain and others 
occupy the center of the emulsion (Tiribocchi et al. 2020).

Rheology of a dense suspension of spherical capsules in 
simple shear flow in the Stokes flow regime was described 
by Matsunaga et al. (2015) using a polynomial equation of 
the volume fraction. They revealed that the effect of higher-
order terms is much smaller for capsule suspensions than 
rigid sphere suspensions. It was found that as the volume 
fraction enhances, the capsule deformation is increased. 
Also, Zhu and Gallairs (2017) studied the dynamics of a par-
ticle-encapsulating droplet in shear flow by considering the 
effect of the surface tension between the outer and the inner 
interfaces. For a moderate capillary number, the large inner 
droplet could promote the detachment and the acceleration 
of the pinch-off process is increased with the lateral migra-
tion of the small inner droplet (Shang et al. 2019). The evo-
lution of the size distribution of an emulsion under a simple 
shear flow is important. A broad single-peak distribution of 
drops is observed and the rupture of drops occurs at higher 
shear rates. The evolutions showed global structures such as 
“pearl necklaces” and “bands of particles” (Leiva and Gef-
froy 2018). For an initially ellipsoidal compound capsuled, 
the transition from swinging to tumbling enhances the inner 
capsule size and critical viscosity ratio for the swinging-to-
tumbling transition (Luo and Bai 2016). Effect of surface 
tension coefficient, viscosity ratio, and inertia on lateral 
migration and deformation of a spheroidal deformable drop 
revealed that the Reynolds number increases the slip veloc-
ity; hence, the prolate drops reach faster the equilibrium 
position at low Reynolds numbers (Armandoost et al. 2018).

The spatial cross-correlated diffusion of colloids is 
employed to describe the hydrodynamic interaction between 
two particles in a fluid. Li et al. (2018) examined the effect 
of shear flow on spatial cross-correlated diffusion and 
showed a dependence on pair angles. Dynamics of a rigid 
sphere in inertial shear flow between parallel walls (hori-
zontal and vertical) demonstrated that bifurcation will break 
and a single off-center equilibrium position is achieved at 
various particle Reynolds numbers and sufficiently strong 
gravitational force (Fox et al. 2021). Rosti and Brandt (2018) 

studied suspensions of deformable particles in a shear flow. 
They analyzed the rheology of the suspension by study-
ing the effect of changes in the particle volume fraction Φ , 
Ca , and the solid-fluid viscosity ratio K on viscosity � and 
observed that � is a nonlinear function of these parameters, 
i.e., µ = µ (Φ, Ca, K). Bayareh and Mortazavi (2012) showed 
that the equilibrium position of the lighter drops is higher 
than the heavier ones at each particle Reynolds number.

Poiseuille flow

Poiseuille flow can be described by solid volume fraction, 
Re, and Ca. For a suspension of deformable particles, the 
effect of these parameters on effective viscosity was inves-
tigated (Chiara et al. 2020). At high shear rates, effective 
viscosity is reduced, leading to a shear-thinning action. The 
dependence of viscosity to Re is higher than Ca. Where the 
shear rate is low, deformable particles move towards the 
center of the channel. Also, particles are more sensitive 
to shear rate variations and can recover their shape more 
easily (Chiara et al. 2020). The hydrodynamics of double 
emulsions in a Poiseuille flow revealed that the core affects 
the drop dynamics only at intermediate sizes (Gurumurthy 
and Pushpavanam 2020). For large sizes, the deformation of 
the double emulsions is nearly the same as the simple drop 
(Karp et al. 2021). The equilibrium position of a deformable 
drop, when the drop is slightly buoyant, is between the wall 
and the channel centerline (Bayareh and Mortazavi 2012). A 
large viscosity ratio makes the droplet located in a near-wall 
equilibrium position, and a large capillary number makes the 
droplet migrate to the near-centerline region of the channel 
(Pan et al. 2016). It was known that viscosity has a major 
impact on the droplet migration rate (Das and Chakraborty 
2018).

Stratified flow

A stratified fluid is described as a fluid with density varia-
tions in the vertical direction. Cooray et al. (2017) investi-
gated the dynamics of interacting particles moving through 
sharp interfaces. Dabiri et al. (2015) presented the rising 
motion of drops in a linearly stratified fluid. Bayareh et al. 
(2016) investigated two drops with in-line and side-by-side 
arrangements in a linearly stratified fluid. During the inter-
action of side-by-side drops, they retain in the horizontal 
ordering and after their initial collision, the rate of separa-
tion is decreased. Also, for the in-line configuration, drops 
move in tandem and remain their configuration (Fig. 6). 
Rising dynamics of a deformable drop in a linearly strati-
fied fluid demonstrated the effect of drag coefficient of a 
spherical drop, buoyancy induced vortices, and the result-
ant buoyant jet. Studying the behavior of a circular disk in a 
linearly stratified fluid showed that when a disk reaches its 
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gravitational equilibrium level, there are three regimes for 
the settling dynamics, including broadside-on, edgewise, and 
returning to its broadside orientation (Mercier et al. 2019). 
When a drop is settled in stratified flow, core mechanisms 
enhance the drag (Zhang et al. 2019). The density, viscos-
ity, and surface tension of the two liquids, bubble diameter, 
Weber and Morton numbers are the effective parameters of 
bubble interaction. Changing these parameters and dynamics 
of air bubbles can create three flow regimes, including pen-
etration flow regime, entrainment flow regime, and envelop-
ment flow regime (Farhadi et al. 2021).

Fluid flow driven by an external force

Fluid flow can be driven by magnetic force, electric force, 
electromagnetic force, etc. Some investigators evaluated 

the impact of the electric force on the dynamics of drops. 
The electric field can change the deformation and orienta-
tion of a neutrally buoyant drop (Mandal and Chakraborty 
2017). For example, the deformation of a drop is changed 
due to the combined influence of an applied electric field 
and shear flow (Borthakur et al. 2021). By applying an 
electric field, the orientation angle of a drop may either 
increase or decrease. In the absence of an electric field, 
the orientation angle decreases with the degree of con-
finement (Santra et al. 2019a, b). In a Poiseuille flow, 
applied transverse electric field affects pinch-off dynam-
ics of a double emulsion. The strength of the electric 
field, as well as the electric properties of the fluids, influ-
ences the temporal evolution of drop eccentricity and the 
kinetics of the thinning of the outer one (Santra et al. 
2019a, b).

Fig. 6  Rising motion of two drops in a linearly stratified fluid: A side-by-side configuration and B in-line configuration (Bayareh et al. 2016)
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Extensional flow

The simplest definition of an extensional flow is the defor-
mation that involves stretching along streamlines. The drop 
deforms gradually from prolate spheroid to “peanut” in 
uniaxial extensional flow, or from oblate spheroid to “red-
blood-cell” in biaxial extensional flow (Liu et al. 2018a, b, 
c). Mechanical mechanisms of the directional movement and 
inverse of an eccentric compound droplet in extensional flow 
showed that the directional shift and inverse of the compound 
droplet are due to the interaction of the inner driving force 
(curvature difference) and the outer drags (Wang et al. 2018). 
The oriented shift and inverse of double-emulsion globules 
involving two inner drops with different sizes and locations in 
an extensional flow were evaluated by Xu et al. (2017). They 
demonstrated that asymmetric rheological behavior may occur 
because the asymmetric layout of daughter droplets leads to 
the asymmetric inner flow field and pressure field inside the 
globule. Analysis of the interaction of the inner and outer 
interfaces of a surfactant-covered double emulsion was per-
formed by considering the effect of Péclet number (Pe) and 
Ca. It was shown that the outer drop deformation is enhanced 
and the inner drop deformation is reduced when the surfactant 
is employed (Lee et al. 2020). As Ca and Pe are enhanced, the 
surfactant concentration at the outer interface is intensified and 
the deformation of the inner drop decreases.

Non‑newtonian fluid

Many fluids containing particles are non-Newtonian (Zenit and 
Feng 2018). Exact approximations and semi-empirical mod-
els are employed to model non-Newtonian fluid flows. Here, 
semi-empirical models, including the generalized Newtonian 
ones and the Oldroyd-B model, are described. The generalized 
Newtonian models are the same as the Newtonian ones, how-
ever, the viscosity is estimated as a function of the shear rate, �̇�:

(15)� = −p� + 2𝜇(�̇�)�

Where

Some common statements for the viscosity are as follows:
Power-law non-Newtonian fluids (Waele 1923):

Carreau-Yasuda non-Newtonian fluids (Yasuda and Cohen 
1981):

The Oldroyd-B model is one of the simplest models that 
involves the flow history (Oldroyd 1950) and its form can 
be expressed as

Where p∗ = p + 2
(
1 − �2∕�1

)
�∕�1 , �∗ = ��2∕�1 , and 

G = 2
(
1 − �2∕�1

)
�.

Literature reviews designate that the rheological charac-
teristics of the continuous phase have a strong impact on the 
rigid/deformable particle behavior (Moosaie et al. 2015). 
The drop deformation in the Newtonian fluid is less than that 
in non-Newtonian ones. D’Avino and Maffettone (2015) pre-
sented a review of solid particles depositing in viscoelastic 
liquids. They investigated the dynamics of non-Brownian 
particles in viscoelastic fluid. The motion of a Taylor drop in 
a non-Newtonian fluid was examined by Usefi and Bayareh 
(2020). They studied the effect of Eö and Fr on the behav-
ior of a Taylor drop. Increasing the power-law index due 
to increasing Froude number leads to an increment in the 
thickness of the thin layer of the fluid about the drop. Also, 
inelasticity affects the migration of a drop and the interac-
tion of two drops. In Couette flow, inelasticity results in drop 
deformation and a reduction in the migration rate of drops. 
For an inelastic system, in comparison with the Newtonian 
one, the time of the collision process is shorter (Masiri et al. 

(16)�̇� =
√
2� ∶ �

(17)𝜇(�̇�) = 𝜅��̇�n−1

(18)𝜇(�̇�) = 𝜇∞ +
(
𝜇o − 𝜇∞

)[
1 + (𝜆�̇�)a

] n−1

a

(19)� = −p∗� + 2�∗
� +

G

�1
�

Fig. 7  Coalescence of two bubbles rising in an in-line configuration in shear-thinning non-Newtonian fluid (Sun et al. 2017)
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2019). At high inelasticity, two Newtonian drops in an elas-
tic simple shear flow exhibit reversible cross-flow migration. 
Based on the dynamics of bubble rise in Bingham fluids, the 
bubble achieves a constant rise velocity in weak yield stress. 
By enhancing yield stress, the bubble rise is unsteady and 
the aspect ratio oscillates above a value that exceeds unity 
(Tripathi et al. 2015a, b). The rising motion of bubbles with 
an equilateral triangle arrangement in shear-thinning fluids 
showed that bubbles' size, their formation frequency, their 
preliminary distance, and liquid property affect the colli-
sion mechanism. The decrease in initial bubble distance and 
the increase in bubble diameter lead to the decrease in drag 
coefficient [24]. A study on a rising air bubble in a shear-
thinning non-Newtonian fluid demonstrated that Galileo and 
Eo affect the dynamics of the bubble. At Ga = 30 and Eo 
= 1, the deformation and vortex shedding during the wob-
bling (zigzagging/spiraling) motion was observed, and at Eo 
=25, the bubble experiences peripheral break-up. Bubble 
behavior was identified in five different regions [112]. The 
dynamic of the bubble was investigated in these five regions 
(Sharaf et al. 2017). Liu et al. (2015) presented the effects 
of bubble size, rheological properties of shear-thinning 
fluids, and orifice structure arrangements on dynamics of 
interaction, coalescence, and the breakup of multiple bub-
bles. Deformation dynamics of a moving double emulsion 
inside a micro-capillary tube showed that the location of 
inner and outer drops is enhanced linearly in a Newtonian 
fluid, whereas this is nonlinear for a non-Newtonian one 
(Sattari et al. 2021). Investigation of in-line coalescence 
height of bubbles in shear-thinning non-Newtonian fluid at 
lower Reynolds number showed that when the nozzle diam-
eter and gas flow rate increase, minimum in-line coalescence 
height is reduced (Fig. 7) (Sun et al. 2017). In non-spherical 
particle-laden flow, the rheology of a dilute suspension of 
Brownian thin disk-like demonstrated that thinner disks cre-
ate higher stresses than thicker disks, and shear viscosity of 
the suspension is more important than its extensional viscos-
ity (Moosaie et al. 2017).

Concluding remarks and future trends

The current paper provides a review of the binary collision 
of deformable particles. Numerical approaches to simulate 
the motion of two interacting particles are presented and the 
impact of deformability and initial configuration of deform-
able particles as well as flow type on collision dynamics 
is examined. It is concluded that dimensional parameters, 
including Ca, Eo, Re, Mo, β, and η, and configuration and 
type of surrounding medium determine the behavior of inter-
acting drops/bubbles. Table 2 provides the details of some 
investigations performed on binary collision of deformable 
particles.Ta
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Despite a huge number of researches carried out on mul-
tiphase flow laden with deformable particles, numerous gaps 
and challenges still exist. For example, due to the complexity 
and large-scale computation of numerical methods, the inter-
action between double emulsions has not been considered 
in sharp and linearly stratified fluids. Besides, there is no 
experimental investigation to describe the collision dynam-
ics of two compound drops in non-Newtonian and stratified 
fluids. Most numerical simulations have been performed for 
a small range of dimensionless parameters, such as Ca or Re. 
Characteristic diagrams can be provided in the future for a 
wider range of non-dimensional parameters and different 
surrounding mediums.
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