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Abstract
Herein, for the first time, the flower-like enzyme–inorganic hybrid nanoflowers were synthesized using a superoxide dismutase 
(SOD) as organic material and selected some metal ions (Cu(II), Co(II), Mn(II) and Zn(II)) as inorganic parts at optimum 
pH value. The synthesis steps of SOD@metalphosphates hybrid nanoflowers were verified by XRD, FT-IR, FESEM, and 
EDX. The synthesized nanoflowers were utilized as a catalyst in the reduction of organic pollutants (2-nitrophenol (2-NP) 
and Rhodamine B (RhB)) with  NaBH4 in aqueous media for catalytic properties and susceptibility. The activities of both the 
substrate and the metal center of the catalyst were determined in the increasing rate order of RhB > 2-NP for substrate and 
SOD@Cu3(PO4)2·3H2O > SOD@Co3(PO4)2·8H2O > SOD@Mn3(PO4)2·7H2O > SOD@Zn3(PO4)2

.4H2O hNfs for catalysts. 
The catalytic data provided herein by using SOD@metalphosphates (SOD@Cu3(PO4)2·3H2O, SOD@Co3(PO4)2·8H2O, 
SOD@Mn3(PO4)2·7H2O and SOD@Zn3(PO4)2·4H2O) nanoflowers suggest that the materials can be effective catalysts for 
the water-based reduction reaction of organic pollutants.
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Introduction

Enzymes are proteins that catalyze reactions at very high 
speeds (Erdem et al. 2015; Arsalan et al. 2020). It is an 
alternative to chemical catalysts with its features such as 
high catalytic efficiency and selectivity, low toxicity and 
water solubility and is widely used in fields such as bio-
chemistry, biomedical, food and chemistry. Enzymes have 
been recognized remarkably as biocatalysts in various indus-
tries due to their green chemistry and substrate specificity. 
However, free (soluble) forms of enzymes have a short life-
time, and therefore soluble enzymes cannot be exploited on 
a large scale, limiting their application in many areas and 
also, the separation of the soluble enzyme from the reac-
tion medium is difficult which makes it impossible to reuse 
(Madhu and Chakraborty 2017; Zhao et al. 2019). To be 
used in practice, it is necessary to increase the efficiency, 
activity, stability, and recovery of enzymes, especially as 
industrial biocatalysts. To increase the use of enzymes as 
industrial biocatalysts, stable preparations of enzymes with 
improved operational stability need to be obtained. Immo-
bilization is one of the important ways enzymes stabilize. 

Many immobilization methods have been described and used 
in the literature to overcome possible problems on stabil-
ity problems of enzymes and to optimize various applica-
tions. There are five different approaches in covalent bind-
ing, cross-linking, adsorption, arrest, and encapsulation in 
enzyme immobilization (Wells and Meyer 2014; Shcharbin 
et al. 2019; Mohamed et al. 2013; Kim et al. 2006). How-
ever, in immobilization studies, except for a few enzymes, 
the activity of the immobilized enzymes increased compared 
to the free enzyme, but their activity decreased (Sassolas 
et al. 2012; Netto et al. 2013; Wei et al. 2008). But, first, 
a new and different immobilized enzyme application with 
increased efficacy was suggested by Zare et al. (Ge et al. 
2012).

Zare et al. reported the formation method of flower-like 
protein–inorganic hybrid nanoflowers using Cu (II) ion as 
inorganic components, they are called as “nanoflowers” in 
the literature, and various proteins and enzymes (lactalbu-
min, laccase, carbonic anhydrase, lipase, and BSA) as an 
organic component. In the past few years, the synthesis of 
enzyme–inorganic hybrid nanostructures has been carried 
out including pancreatin (a mixture of a-amylase, lipase and 
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protease) (Aydemir et al. 2020), lipase(Wu et al. 2014; Lin, 
et al. 2014a, b; Lee et al. 2017; Altinkaynak et al. 2020), 
glucose oxidase (GOD) (Sun et al. 2014), α-amylase(Wang 
et al. 2013), urease (Somturk et al. 2016), trypsin (Lin, et al. 
2014a, b), chymotrypsin (Yin et al. 2015), papain (Liang 
et al. 2015), laccase (Fu et al. 2019), glucoamylase (Nadar 
et al. 2016), NADH oxidase (Patel et al. 2017), Cytochrome 
P450 (He et al. 2017), lactoperoxidase (Altinkaynak et al. 
2016), L-asparaginase (Noma et al. 2020), etc.

In principle, the formation of flower-like enzyme–inor-
ganic hybrid nanostructures takes place in three stages: in 
the first stage, primary metalphosphate crystals are formed 
depending on the type of metal. Through the coordination 
of amino groups in the structure of enzymes with metal 
ions, complexes are formed. In the second stage of growth, 
large aggregates of biomolecules and primary crystals are 
formed, flower-like petals appear. In the last step, anisotropic 
growth causes the formation of a branched flower-like struc-
ture. For this reason, the synthesized structures were named 
“Flower-shaped Hybrid Nanostructures” (Flower-Like 
Hybrid nanostructures).

Superoxide dismutase (Superoxide Oxidoreductase, 
E.C: 1.15.1.1, SOD) is a metalloenzyme that catalyzes the 
dismutation of superoxide anion radicals into molecular 
oxygen and hydrogen peroxide. This enzyme was detected 
in oxygen-breathing organisms in 1968 and catalyzes the 
conversion of superoxide to hydrogen peroxide and molecu-
lar oxygen. Hydrogen peroxide is then inactivated by the 
enzyme glutathione peroxidase and catalase. It plays an 
important role in controlling superoxide levels in cell divi-
sions (Durak et al. 1996). SOD is found in all cells that 
metabolize oxygen. It is an important defense against oxygen 
toxicity (Weselake et al. 1986). The use of SOD as a catalyst 
and its activity in enzymatic reactions have highlighted its 
use as a ligand in catalyst chemistry. Herein, SOD@metal-
lophosphate structures with both increased surface area and 
ligand effect were tested together with metallophosphate 
structures.

Although the nitro compounds from organic-based paints 
are used in many industrial applications they are known as 
important environmental pollutants, and the degradation of 
these pollutants has recently been preferred. The amino com-
pounds produced as a result of this degradation process are 
the compounds used in the production of qualified chemicals 
(Sargin, Baran, and Arslan 2020; Moradi et al. 2020; Xu et al. 
2020; Denizalti et al. 2020), which are listed as chelating 
agents, fibers/nanofibers, agricultural drugs, cosmetics, poly-
mer fabrication, dye-based materials, pharmaceuticals, etc. 
(Du et al. 2020; Dell'Anna et al. 2014; Das et al. 2019). Also, 
the studies are carried out to obtain the most ideal catalyst and 
catalytic conditions in degradation studies and both easily pro-
ducible and production of high-performance catalysts become 
important. Recent times, the various metals (copper (Dayan, 

Altinkaynak, et al. 2020), cobalt (Sheng et al. 2020), palladium 
(Dayan, et al. 2020a, b, c; Zhang et al. 2020), ruthenium,(Jia, 
Wang, and Zhi 2020; Liew et al. 2017) silver (Bahadorikhalili 
et al. 2020; Ansari et al. 2019), nickel (Advani et al. 2020), 
etc.) as catalysts were tested in the reduction/degradation 
reactions. The performances of different metals in catalytic 
reactions are also quite different from each other and high-
performance works with low-cost metals are also preferred. 
The catalytic studies of organic–inorganic hybrid nanoflow-
ers have attracted attention in recent years (Ahmadpoor et al. 
2021; Dayan, Altinkaynak, et al. 2020; Alhayali et al. 2021) 
and the nanoflowers with the obtained organic molecules from 
plant sources using separation purification processes were fab-
ricated and their catalytic properties were examined (Ahmad-
poor et al. 2021).

Herein, for the first time, the flower-like enzyme–inor-
ganic hybrid nanoflowers were synthesized using a super-
oxide dismutase (SOD) as an organic part and some divalent 
metal ions (Cu(II), Co(II), Mn(II), and Zn(II)) as inorganic 
parts at optimum pH value. The fabricated SOD@metal-
phosphates hybrid nanoflowers as catalysts were used in the 
degradation of organic pollutants (2-nitrophenol and Rhoda-
mine B). It was determined that the difference of the metal 
center directly affects the catalytic activity. It is predicted 
that the catalytic activity may also change with different 
metals. This is expected and compatible with the Irving-
Williams series. Although it is not a surprise, the catalytic 
activities of nanoflowers with different metals are detailed in 
this work and this is among the first in the literature.

Experimental

Materials

Superoxide dismutase, albumin from bovine serum 
(BSA) (lyophilized powder), copper sulfate pen-
tahydrate  (CuSO4·5H2O) and zinc acetate dihydrate 
(Zn(CH3COO)2·2H2O) were purchased from Sigma-Aldrich 
(USA). Salts (NaCl, KCl,  KH2PO4,  Na2HPO4,  CaCl2·2H2O, 
and  MgCl2·6H2O) were also obtained from Sigma-Aldrich 
and utilized for the synthesis of the pH solutions. Cobalt(II) 
sulfate heptahydrate  (CoSO4·6H2O) was obtained from 
across organics and manganese(II) sulfate monohydrate 
 (MnSO4·H2O) was obtained from bioshop. Ultrapure water 
was used to prepare aqueous solutions throughout the work.

Synthesis of SOD@metalphosphates hybrid 
nanoflowers

SOD@metalphosphates hybrid nanoflowers (SOD@metal-
phosphates hNfs) were prepared according to two different 
methods depending on the type of metal ion (Cu(II), Co(II), 
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Mn(II) and Zn(II)) (Gao et al. 2020; Somturk et al. 2016). In 
the first method (for Cu(II) and Mn(II) ions),  CuSO4·5H2O 
and  MnSO4·H2O (120 mM) solutions were prepared using 
purified water. A certain volume of this solution was then 
added to 10 mM PBS (phosphate-buffered saline) solution 
(pH 7.4), including 0.02 mg  mL−1 SOD. The mixture was 
vortexed vigorously for 30 s and incubated without disturb-
ing for 3 days at + 4 °C (Fig. 1 (a)). After incubation period, 
to obtain precipitates, each reaction tube was centrifuged at 
10.000 rpm for 15 min. Finally, the collected SOD@metal-
phosphates hNFs were dried at room temperature.

In the second method (for Co(II) and Zn(II) ions), SOD@
metalphosphates hNfs were synthesized based on a method 
determined by Zhang et al. and making some modifica-
tions (Zhang et al. 2016; Kim et al. 2016). For this pur-
pose, Zn(CH3COO)2·2H2O and Co(NO3)2·6H2O (0.05 g/L) 

solutions were prepared. After that, 16 mg SOD and a cer-
tain volume of metal ion solution were added into 20 mL 
phosphate buffer saline solution (pH 7.4). The mixtures were 
left on the magnetic stirrer for 24 h at room temperature. 
After incubation, they were centrifuged at 10.000 rpm for 
15 min. Finally, the collected SOD@inorganic hybrid nano-
flowers were dried at room temperature (Fig. 1 (b)).

Characterization of SOD@metalphosphates 
hNfs

The surface morphologies of the fabricated SOD@metal-
phosphates hNfs were recorded by using field emission scan-
ning electron microscope (FESEM, Zeiss GeminiSEM 500). 
The elemental weight and atomic percentage analyses of Cu, 

Fig. 1  Representative fabri-
cation scheme of a SOD@
Cu3(PO4)2·3H2O·hNfs and b 
SOD@·Co3(PO4)2·8H2O·hNfs
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Co, Zn, and Mn elements (also other elements such as N, 
P, and O from the organic materials (SOD) and phosphate 
group) in SOD@metalphosphates hNFs were separately 
assigned by the energy-dispersive X-ray (EDX) technique. 
The chemical-crystal structure of SOD@metalphosphates 
hNfs was analyzed by using X-ray diffraction (Malvern 
Panalytical XRD) and Fourier transform infrared spectros-
copy (FT-IR) (PerkinElmer Spectrum 400). Size analysis 
of hybrid nanostructures was determined using the Image 
ProPlas 6.0 program. At the same time, the protein con-
tent of SOD@metalphosphates hNfs was determined using 
Bradford method (Somturk et al. 2016). The encapsulation 
rate was determined for the synthesized SOD@metalphos-
phates hNfs. The encapsulation rates were determined to 
vary between 87 and 95%.

The testing of SOD@metalphosphates hNfs 
as a catalyst

The catalytic activities of SOD@metalphosphates hNfs were 
evaluated in the reduction of 2-nitrophenol (2-NP) and Rho-
damine B (RhB) using  NaBH4 ion as a hydrogen source at 
ambient temperature with an aqueous solution.

In a typical reaction, a 1.0 mg of the SOD@metalphos-
phates hNfs was first prepared and added to the solution of 
nitrophenols or dyes and  NaBH4 (0.03 M, freshly, optimum 
concentration (Dayan, Altinkaynak, et al. 2020; Dayan, 
Kayaci, Dayan, et al. 2020a, b, c; Dayan et al. 2015a, b; 
Dayan et al. 2015a, b) in deionized water (10 mL) at ambi-
ent temperature and stirred in a clean tube. After the desired 
time, the reaction samples of the catalytic mixture as a small 
amount were taken out of the tube and filtered through 
the micro-column with cotton for the measurement of the 
absorbance spectra. The catalytic efficiencies of the SOD@
metalphosphates hNfs catalysts were seen by comparing the 
bands which appeared and disappeared after reduction on the 
UV–Vis spectrum.

Results and discussion

The specific surface morphologies of the fabricated SOD@
metalphosphates hNfs in pH 7.4 at room temperature were 
evaluated by FESEM analysis and the images were con-
firmed to be flower-like (known as nanoflowers). Average 
nanoflower dimensions for the SOD@Cu3(PO4)2·3H2O·hNfs, 
SOD@Co3(PO4)2·8H2O hNfs, SOD@Mn3(PO4)2·7H2O 
hNfs and SOD@Zn3(PO4)2·4H2O hNfs were recorded as ∼ 
7.11 μm, ∼ 8.97 μm, ∼ 10.29 μm, ∼ 2.23 μm, respectively 
(Fig. 2). As seen in Fig. 2, as the metal content changes, 
there are obvious differences in FESEM images. Also, all 
the materials were recorded to be in a sphere type formation 

and FESEM images were reported as a visual counterpart 
of the effect of metal centers on physico-chemical param-
eters. Herein, the metal (II) ions with the phosphate source 
form metallophosphates and a specific crystallization occurs 
during this formation. Especially in the presence of ligand 
(enzyme or organic molecules), these morphologies differ-
entiate further and the materials are known as nanoflowers. 
These morphologies depend on the metal ion and ligand, 
and a coordination bond is formed between metal ions and 
groups such as N, S and O on ligands and increases the sta-
bility of the material.

The elemental composition of the SOD@metalphos-
phates hNfs was analyzed by the energy-dispersive X-ray 
(EDX) technique (Fig. 3). The founded elements are suit-
able to  Cu3(PO4)2·3H2O,  Co3(PO4)2·8H2O,  Zn3(PO4)2·4H2O, 
 Mn3(PO4)2·7H2O nanocrystal structures (Cu, Co, Zn, 
Mn, O, and P) and the superoxide dismutase (SOD) (C 
and N). These EDX peaks were confirmed the formation 
of the SOD@metalphosphates hNfs structures and the 
EDX spectrum demonstrated that the average weight and 
atomic percentages of copper for SOD@Cu3(PO4)2

.3H2O 
hNfs, cobalt for SOD@Co3(PO4)2·8H2O hNfs, zinc for 
SOD@Zn3(PO4)2·4H2O hNfs, manganese for SOD@
Mn3(PO4)2·7H2O hNfs were recorded as 21.7% and 6.7%, 
36.5% and 15.3%, 29.4% and 9.0%, 31.8%, and 14.6%, 
respectively.

Also, the elemental mapping of SOD@metalphosphates 
hNfs was performed (Fig. 4) and it can be considered as 
one of the strongest pieces of evidence for the formation of 
SOD@metalphosphates hNfs. As seen in Fig. 5, the elemen-
tal mapping analyses confirm the Cu, Co, Zn, Mn, N, O, and 
P elements, and the elements are homogeneously distributed 
inside the SOD@metalphosphates hNfs.

The chemical structure and formation of SOD@metal-
phosphates hNfs were investigated using the FT-IR (Per-
kin Elmer Spectrum 400) spectrum. The FT-IR spectrum 
revealed characteristic peaks of SOD@metalphosphates 
hNfs (Fig. 5). The data of spectrums of free SOD and SOD@
metalphosphates hNfs nanoflowers were seen as follows; 
For free SOD, FT-IR (cm−1): 3270 (N–H and O–H stretch-
ing), 3074 (Ar–H, stretching), 2962 (C–H, stretching), 2933 
(C–H, stretching), 2872 (C–H, stretching), 1633, 1515, 1449, 
1392, 1339, 1309, 1286, 1229, 1159, 1101, 1052, 1026, 931, 
821, 736, 695, 665, 642, 623, 604, 575, 543, 525, 488, 470. 
For SOD@Cu3(PO4)2.3H2O hNfs, FT-IR (cm−1): 3303 (N–H 
and O–H stretching), 2979 (Ar–H and C–H stretching), 2900 
(C–H, stretching), 1622, 1541, 1410, 1150, 1041 (P=O), 
986, 956 (P–O), 799, 617 (O=P=O), 591, 556 (O=P=O), 
504, 492, 483, 475, 467. For SOD@·Co3(PO4)2·8H2O hNfs, 
FT-IR (cm−1): 3444 (N–H and O–H stretching), 3191 (Ar–H, 
stretching), 3046 (C–H, stretching), 1646, 1549, 1396, 1339, 
1031 (P=O), 970 (P–O), 937, 832, 694 (O=P=O), 667, 
615, 567, 536 (O=P=O), 504, 496, 491, 473, 466, 456. For 
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SOD@Zn3(PO4)2.4H2O hNfs, FT-IR (cm−1): 3531 (N–H 
and O–H stretching), 3270 (Ar–H, stretching), 3184 (Ar–H, 
stretching), 2964 (C–H, stretching), 2925 (C–H, stretching), 
1645, 1534, 1449, 1402, 1244, 1102, 1065, 1020 (P=O), 
999 (P=O), 931 (P–O), 708, 672, 628 (O=P=O), 595, 585, 
563 (O=P=O), 535, 519, 507, 497, 489, 480, 473, 455. For 
SOD@Mn3(PO4)2.7H2O hNfs, FT-IR (cm−1): 3600–3200 
(N–H and O–H stretching), 3193 (Ar–H, stretching), 2967 
(C–H, stretching), 2921 (C–H, stretching), 1634, 1535, 
1447, 1404, 1318, 1247, 978 (P=O), 948 (P–O), 810, 752, 
689, 666, 542 (O=P=O), 495, 473, 453. The presence of 
metallophosphate structures can be easily detected in hybrid 
nanoflowers with the formation of phosphorus and oxygen 
bonds. The bending vibrations of O=P=O groups in SOD@
metalphosphates hNfs were recorded at ∼ 551  cm−1 and ∼ 
599  cm−1. The P=O and P–O tension bands appeared at 
∼ 1042  cm−1 and ∼ 954  cm−1. The detection of phospho-
rus–oxygen bonds indicates the formation of metallophos-
phates, and the frequency shift in the vibrations of these 
bonds is an indication of the bonding of different metals. It 
is also a critical indicator for the characterization of a newly 
formed bond structure relative to the free SOD. Also, the 
presence of peaks belonging to functional groups originating 

from SOD in hybrid nanomaterial structures is another con-
firmation part of the structure. The vibration bands of typical 
SOD at 1400–1633  cm−1 are bound to the  NH2, C=C and 
C=N groups, and the tensile bands at 2800–3000  cm−1 are 
bound to the –CH2 and –CH3 groups.

The powder X-ray diffraction data of the synthesized 
SOD@metalphosphates hNfs were carried out to deter-
mine the crystal structure of nanomaterials (Fig. 6). The 
XRD peaks were assigned as for SOD@Cu3(PO4)2·3H2O 
hNfs, XRD: 9.10°, 12.96°, 18.79°, 20.87°, 27.38°, 29.48°, 
30.64°, 31.74°, 33.71°, 37.21°, 41.59°, 45.48°, 47.74°, 
53.46°, 56.48°, 61.10°, 63.57°, 66.22°, 68.19°, 71.42°, 
75.26°, 79.06°, 83.95° in Fig. 6(a) compared with JCPDS 
(00 − 022 − 0548), and for SOD@Co3(PO4)2

.8H2O hNfs, 
XRD: 11.29°, 13.34°, 18.38°, 19.66°, 22.05°, 23.26°, 28.02°, 
30.35°, 31.74°, 33.24°, 35.81°, 37.42°, 39.16°, 41.59°, 
43.85°, 45.53°, 47.37°, 51.83°, 55.27°, 58.87°, 61.50°, 
63.15°, 66.22°, 70.69°, 77.62° in Fig. 6(b) compared with 
JCPDS (00 − 041 − 0375) and for SOD@Zn3(PO4)2·4H2O 
hNfs, XRD: 9.68°, 16.83°, 17.54°, 18.35°, 19.45°, 20.21°, 
22.21°, 22.99°, 24.55°, 25.83°, 26.36°, 27.46°, 28.67°, 
31.48°, 33.95°, 34.45°, 35.79°, 37.18°, 38.49°, 39.73°, 
41.20°, 41.99°, 43.12°, 45.47°, 46.92°, 50.07°, 52.99°, 

Fig. 2  SEM images of SOD@metalphosphates hNfs using different metal ions: a Cu(II), b Co(II), c Mn(II) and d Zn(II)
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54.23°, 55.06°, 56.37°, 57.87°, 59.11°, 60.60°, 61.34°, 
66.12°, 69.35°, 71.42°, 75.07°, 77.07°, 82.11° in Fig. 6(c) 
compared with JCPDS (01 − 076 − 0896), and for SOD@
Mn3(PO4)2·7H2O hNfs, XRD: 7.87°, 10.34°, 12.86°, 
17.33°, 22.11°, 23.16°, 26.33°, 28.12°, 29.15°, 30.06°, 
31.45°, 32.19°, 33.03°, 34.37°, 35.19°, 36.02°, 38.05°, 
42.11°, 43.50°, 44.17°, 50.94°, 52.77°, 53.98°, 56.93°, 
60.73°, 65.57°, 69.90° in Fig. 6(d) compared with JCPDS 
(00 − 003 − 0020). All XRD pattern were compared with 
metallophosphate structures and indexed with JCPDS num-
bers, and the difference of each powder pattern was recorded 
with 2-theta degrees. Due to the small amount of SOD used 
in the synthesis conditions, the peaks from SOD could not be 
observed clearly. All these data were recorded in accordance 
with the proposed structure.

Model tests for catalytic properties

The catalytic reduction reaction of the nitrophenols or 
organic dye to related products by various catalysts, which 
are mostly noble metal complexes or material/compos-
ite, is being considered as a green process with different 
reaction conditions. However, the catalysts bearing noble 
metal are expensive and unsustainable. They are also used 
in many technological fields and applications. Moreover, 

scientists are required to introduce new methodologies and 
catalytic systems that are eco-friendly and cost-effective in 
the reduction reaction of organic pollutants to correspond-
ing reduced products. Herein, we purposed or proposed the 
catalytic efficiencies of SOD@metalphosphates hNfs in the 
reduction of 2-nitrophenol (2-NP) and Rhodamine B (RhB) 
with  BH4

− ion as a hydrogen source in the aqueous media 
at ambient temperature. The absorption spectra of catalytic 
reactions were monitored at a regular interval of time after 
the reaction steps (the testing procedure). The sample spec-
tra were recorded from the 0 s to final times in the range of 
300–600 nm for 2-NP and 400–700 nm for RhB.

Firstly, the 2-nitrophenolate (2-NP) reactant 
(5.0 ×  10–4 M) having absorption bands at λmax = 414 nm 
(-NO2 group of 2-NP) as a yellow color of the solution 
relating to the 2-nitrophenolate and the color gradually van-
ished due to the 2-aminophenol product. The final conver-
sions were recorded at 60 s, 180 s, and 300 s and founded 
as 40.4%, 92.4%, 93.5% for SOD@Cu3(PO4)2·3H2O hNfs, 
22.1%, 26.6%, 32.1% SOD@Co3(PO4)2

.8H2O hNfs, 15.1%, 
16.2%, 18.8% for SOD@Zn3(PO4)2

.4H2O hNfs and 15.2%, 
16.3%, 20.1% for SOD@Mn3(PO4)2

.7H2O hNfs, respectively 
(Fig. 7). According to the obtained data, the catalytic activ-
ity order of SOD@metal (II) (Cu(II), Co(II), Zn(II), and 
Mn(II)) nanoflowers is as follows; SOD@Cu3(PO4)2

.3H2O 
h N fs  >  S O D @ C o 3( P O 4) 2

.8 H 2O  h N fs  >  S O D @

Fig. 3  EDX analysis of SOD@metalphosphates hNfs: a SOD@Cu3(PO4)2·3H2O·hNfs, b) SOD@Co3(PO4)2·8H2O hNfs, c) SOD@
Zn3(PO4)2·4H2O·hNfs and d SOD@Mn3(PO4)2·7H2O·hNfs
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Mn3(PO4)2
.7H2O hNfs > SOD@Zn3(PO4)2

.4H2O hNfs. 
Herein, the SOD@Cu(II) hNfs catalyst is 2.5 × superior to 
others (Co(II), Zn(II), and Mn(II) nanoflowers). This study 
is a strong indicator that catalytic activities of nanoflowers, 
which use the same enzyme and solutions, change dramati-
cally with the different metals (Cu(II), Co(II), Zn(II), and 
Mn(II)).

Catalytic tests were also performed for Rhodamine B, 
which is an organic contaminant commonly used to perform 
a similar comparison. The main purpose here is to check if 
there is a change in the most active catalyst sequence when 
different substrates are used. It is also to clarify the effect of 
changes in metal centers of the fabricated nanoflowers. Fig-
ure 8 shows the Rhodamine B (RhB) reduction reaction by 
 BH4

− as hydrogen source while using the SOD@metalphos-
phates hNfs (Cu(II), Co(II), Zn(II), and Mn(II)) as effec-
tive catalysts. The aqueous solution of Rhodamine B (Rh 
B) demonstrated a broad and distinct peak at 550 nm in its 
UV–Vis spectra. All the materials (SOD@metalphosphates 

(Cu(II), Co(II), Zn(II), and Mn(II)) hNfs) catalyzed the Rh 
B reduction process by basic stirring at ambient temperature 
and the 550 nm peak disappearance was considered due to 
the reduction mechanism.

For the reduction process of Rh B, the catalytic con-
versions at 60  s and 900  s were achieved as 45.0%, 
94.3% for SOD@Cu3(PO4)2

.3H2O hNfs, 34.1%, 82.4% 
for SOD@Co3(PO4)2

.8H2O hNfs, 32.1%, 33.2% for 
SOD@Zn3(PO4)2

.4H2O hNfs, 29.6%, 50.1% for SOD@
Mn3(PO4)2

.7H2O hNfs, and 26.4%, 57.9% for SOD-free. 
Likewise, the catalytic efficiencies order of SOD@Metal(II) 
(Cu(II), Co(II), Zn(II), and Mn(II)) materials in the reduction 
of Rh B is as follows; SOD@Cu3(PO4)2

.3H2O hNfs > SOD@
Co3(PO4)2

.8H2O hNfs  > SOD@Mn3(PO4)2
.7H2O 

hNfs > SOD@Zn3(PO4)2
.4H2O hNfs > SOD-free.

Herein, it was noteworthy that both nitrophenol and 
Rhodamine B substrate had the same catalytic sequence. 
This explains that the metal center has a significant effect 
on the catalytic cycle. In our previous studies, we have 

(P)

(Cu) (N)

(O)

(P)

(N)

(O)

(Co)

(P)

(N)

(O)

(Zn)

(P)

(N)

(O)

(Mn)

Fig. 4  Elemental mapping (N, O, P, Cu, Co, Zn, Mn) of SOD@Cu3(PO4)2·3H2O hNfs, SOD@Co3(PO4)2·8H2O hNfs, SOD@Zn3(PO4)2·4H2O 
hNfs, and SOD@Mn3(PO4)2·7H2O·hNfs, respectively



4253Chemical Papers (2022) 76:4245–4260 

1 3

Fig. 5  FT-IR spectra of SOD, 
SOD@Cu3(PO4)2·3H2O hNfs, 
SOD@Co3(PO4)2·8H2O hNfs, 
SOD@Zn3(PO4)2·4H2O hNfs, 
and SOD@Mn3(PO4)2·7H2O 
hNfs
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Fig. 6  X-ray diffraction analysis of a SOD@Cu3(PO4)2·3H2O hNfs b SOD@Co3(PO4)2·8H2O hNfs, c SOD@Zn3(PO4)2·4H2O hNfs and d 
SOD@Mn3(PO4)2·7H2O hNfs
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partially demonstrated an increase in performance due to 
the difference in the metal center (Dayan, Altinkaynak, 
et al. 2020). In this study, we have seen that when we 
compare four different metals, their tendency in the reduc-
tion reaction is the same even if the substrate changes. 
However, different catalytic trends can be observed by 
performing experiments on different substrates. Kinetic 
parameters were calculated to analyze the results in detail 
and compare them with the literature.

To determine the kinetic equation for the reduction of 
organic pollutants, the λmax (nm) values were created due to 
the corresponding equation; ln  (Ct/C0) =  − kt, where t is time 
for the catalytic reaction and, k is the apparent first‐order rate 
constant  (s−1) in Table 1. In the kinetic equation, C0 and Ct 
values were calculated the absorbance values were noted by 
spectrophotometrically at the desired time (t) and k. Also, 
the k' = k/M parameters (M: the amount of the catalyst) were 
calculated for quantitative comparison and the values were 
determined as the ratio of the rate constant k to the weight 
of the catalyst added (Kamal 2019; Liang et al. 2018; Ahsan 
et al. 2019). All the parameters of SOD@metalphosphates 

(Cu(II), Co(II), Zn(II) and Mn(II)) hNfs are compared in 
Table 1.

Considering the kinetic parameters, it is clear that the 
material SOD@Cu3(PO4)2·3H2O hNfs was found as an 
effective catalyst in the reduction of both 2-nitrophenol and 
Rhodamine B substrate. This performance is demonstrated 
by kinetic plots of ln (Ct/C0) vs. reaction time in Fig. 9.

Catalytic efficiency or activity depends both on the 
catalyst and on the substrates, media, reaction condi-
tions (Hatamifard et al. 2016; Zhang et al. 2019; Li et al. 
2020; Mwansa and Page 2020). The system is designed 
according to many parameters such as a surface area for 
materials, difference of functional groups, particle size, 
solubility, stability, surface morphology and redox poten-
tials of metal ions (Goyal et al. 2014; Khodadadi et al. 
2017; Hatamifard et al. 2015; Sajjadi, Nasrollahzadeh, 
and Tahsili 2019; Mateen et al. 2019; Guo et al. 2020; 
Zhu et al. 2020). The nanocomposite/materials contain-
ing metal ions have been recorded many times as effective 
catalysts in the reduction reactions of nitro compounds 
(Liu et al. 2018; Cui et al. 2018; Begum et al. 2016; Huang 
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Fig. 7  Time-dependent UV–vis absorption spectra of the 2-nitrophenol (5.0 ×  10–4 M) reduced by  NaBH4 catalyzed by the SOD@metalphos-
phates hNfs (Cu(II), Co(II), Zn(II), and Mn(II)), respectively
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et al. 2018; Shokouhimehr 2015; Nasrollahzadeh et al. 
2018; Dileepkumar et al. 2020; Attatsi and Nsiah 2020; 
Tijani et al. 2019; Mei et al. 2019; Azadbakht et al. 2020; 
Shao and Sadeghzadeh 2021). Many alternative reaction 

mechanisms for the reduction of nitro compounds have 
also been proposed by scientists (Mahata et al. 2008; El-
Hout et al. 2015; de Loera et al. 2018; Liu et al. 2020).
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Fig. 8  Time-dependent UV–Vis absorption spectra of the Rhodamine B (10 ppm) reduced by  NaBH4 catalyzed by the SOD@metalphosphates 
hNfs (Cu(II), Co(II), Zn(II), and Mn(II)), respectively

Table 1  The catalytic efficiency rate constant of SOD@metalphosphates (Cu(II), Co(II), Zn(II), and Mn(II)) hNfs

a The reaction rate constant. bThe reaction rate constant per total weight of tested catalyst (1 mg). c 60 s, d 180 s, e 300 s, f 900 s

Catalyst Substrate k  (s−1)a k/M  (s−1  g−1)b

SOD@Cu3(PO4)2  3H2O hNfs 2-NP 8.62E-03c 1.43E-02d 9.09E-03e 8.62E +  00c 1.43E +  01d 9.09E +  00e

SOD@Co3(PO4)2  8H2O hNfs 2-NP 4.17E-03c 1.72E-03d 1.29E-03e 4.17E +  00c 1.72E +  00d 1.29E +  00e

SOD@Zn3(PO4)2  4H2O hNfs 2-NP 2.72E-03c 9.83E-04d 6.95E-04e 2.72E +  00c 9.83E-01d 6.95E-01e

SOD@Mn3(PO4)2  7H2O hNfs 2-NP 2.75E-03c 9.87E-04d 7.48E-04e 2.75E +  00c 9.87E-01d 7.48E-01e

SOD@Cu3(PO4)2  3H2O hNfs Rh B 9.97E-03c 3.19E-03f 9.97E +  00c 3.19E +  00f

SOD@Co3(PO4)2  8H2O hNfs Rh B 6.94E-03c 1.93E-03f 6.94E +  00c 1.93E +  00f

SOD@Zn3(PO4)2  4H2O hNfs Rh B 6.44E-03c 4.49E-04f 6.44E +  00c 4.49E-01f

SOD@Mn3(PO4)2  7H2O hNfs Rh B 5.84E-03c 7.72E-04f 5.84E +  00c 7.72E-01f
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The catalytic mechanism for the reduction of organic 
pollutants with  NaBH4 in water has been extensively doc-
umented in earlier reports (Kamal et al. 2017, 2016). For 
these catalytic cycles, it is stated that the substrate (anion or 
cation) and the  BH4

− ions adsorb on the catalytic material 
surface for heterogeneous catalysts. Herein, the metal ions 
(Cu(II), Co(II), Zn(II), and Mn(II)) onto the SOD enzyme 
and phosphate ligand played a catalytic center. The metal 
ions (Cu(II), Co(II), Zn(II), and Mn(II)) simply facilitate 
the electron transfer from the adsorbed  BH4

− ions to the 
corresponding substrate. We observed the effect of differ-
ent metals on catalytic activity and revealed this difference 
with their results. We anticipate that the catalytic activity of 
such nanoflowers can be increased with different modifica-
tions. It is also known that the SOD molecule is reduced 
by  NaBH4 (Viglino et al. 1985). It may also be possible for 
many macromolecules or ligands, such as the SOD. Herein, 
the SOD molecule is isolated as a stable nanomaterial in 
the form of hybrid material before being added to the same 
medium as  NaBH4. At the same time, the concentrations of 
both the SOD molecule and  NaBH4 are low in the catalytic 
system. For this reason, it is thought that it will not affect the 
performance of the catalyst to a large extent.

For catalytic efficiency of the synthesized SOD@
Cu3(PO4)2·3H2O hNfs hybrid materials, a reusability (recy-
cling) study for 2-nitrophenol (2-NP) at 300 s were per-
formed as 5 × in the optimized (same) reaction conditions 
(In each reaction, the catalysts were centrifuged and washed 
with deionized water (3 × 2 ml).) (% Conversion =  ([A0–At]/
A0) × 100, A0 is the absorbance at time (t = 0) (Fig. 10). 
The recycles (I–V) were recorded as 93.5%, 85.1%, 74.5%, 
69.7%, 61.7% (the performance loss was achieved in the 
last 2 cycles). With respect to the reusability study, the 
conversions were found to be good-moderate results and 
if developed, it may be suitable for economic purposes as 
well. The FT-IR spectrum after the recycling work of SOD@
Cu3(PO4)2·3H2O hNfs hybrid materials are given in Figure 
S1. The metallophosphate structures are generally known 
to be insoluble in aqueous media. Some differences in these 
solubility levels may also occur due to the ligand effect. 

However, it was recorded that the catalyst showed moderate 
performance and stability in aqueous media.

In our previous studies, it was determined that the nano-
flowers used for this purpose retained their chemical struc-
tures despite losing their morphological structures (Alhayali 
et al. 2021; Dayan, Altinkaynak, et al. 2020). Likewise, it 
was noted that the chemical structure of the hybrid material 
was preserved here as well.

The use of hybrid nanoflowers with  NaBH4 in reduction 
reactions was carried out for the first time by our research 
group (Dayan, Altinkaynak, et al. 2020) and, the catalytic 
substrates such as 2-nitroaniline, 4-nitroaniline, nitroben-
zene were used in our studies (Dayan, Altinkaynak, et al. 
2020; Alhayali et al. 2021). In this work, both 2-nitrophe-
nol as another nitroarene group, and Rhodamine B as an 
organic pollutant, were tested in the degradation reactions. 
We developed and diversified our catalyst design with the 
experience we gained from our previous work. We have 
already seen that the metal center actively plays a role in 
catalytic activity.

Similarly, herein, it was noted that Cu, Co, Zn, and Mn 
metal ions had different catalytic activities. It was also found 
that the SOD enzyme, as an organic group, had an activity 
alone. When the data in here were evaluated, both a decrease 
in reaction times and a significant increase in conversion 

Fig. 9  Time-dependent kinetic 
plots of ln  (Ct/C0) for the deg-
radation of 2-nitrophenol a and 
Rhodamine B b with SOD@
Cu3(PO4)2·3H2O hNfs material
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percentage were noted in terms of catalytic performance. 
Compared to Catalase/Fe3O4@Cu2+ hNFs at pH 7.4, TPP@
CuhNfs, and TPP@CohNfs catalysts that we have produced 
previously, the performance of our most active catalyst 
(SOD@Cu3(PO4)2.3H2O hNfs) in this work is a quite good 
catalyst (Table 2). Thus, the production of a higher per-
formance catalyst has been made possible compared to its 
counterparts in the literature.

 Conclusion

To summarize, we have fabricated an eco-friendly approach 
to forming the phenomena named organic–inorganic hybrid 
nanoflower from superoxide dismutase (SOD), phosphate-
buffered saline (PBS), Cu(II), Co(II), Zn(II), and Mn(II) 
salts as starting materials. The characterization analyses 
of the fabricated SOD@metalphosphates (Cu(II), Co(II), 
Zn(II), and Mn(II)) hNfs were performed by FESEM, EDX, 
XRD, FT-IR methods and the results confirm that the SOD 
macromolecule assembled on the Metal(II) hNfs. Also, we 
tested all the fabricated SOD@ SOD@metalphosphates 
(Cu(II), Co(II), Zn(II), and Mn(II)) hNfs as a catalyst in the 
one-pot reduction reaction of 2-nitrophenol and Rhodamine 
B in the water at ambient temperature. Herein, the catalytic 
efficiency of the SOD@metalphosphates (Cu(II), Co(II), 
Zn(II), and Mn(II)) hNfs has been recorded to be regarding 
the metal ion center types of the fabricated nanoflowers. 
The catalytic activity ranking for both substrates was found 
as SOD@Cu3(PO4)2·3H2O hNfs > SOD@Co3(PO4)2·8H2O 
h N fs  >  S O D @ M n 3( P O 4) 2· 7 H 2O  h N fs  >  S O D @

Zn3(PO4)2·4H2O hNfs. The facile and ecological approach 
to fabricating nanoflowers demonstrates that these materials 
can have high catalytic activity in short-time and water at 
ambient temperature.
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