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Abstract
The pivotal role of MRP3 protein in acute leukaemia and the efficacy of natural compounds in cancer treatment have neces-
sitated the current study to identify novel MRP3 inhibitors from natural source. The MRP3 protein was modelled and vali-
dated using well-accepted metrics, after which a validated multiple-ligand pharmacophore model (AHHHR_4) was built to 
screen natural compounds (n = 47,964). The combined pharmacophore screening with molecular docking was conducted 
to identify the hits drug-like compounds using ADMET profiling. The electronic behaviour of this set of compounds in gas 
phase was examined using density functional theory. Among the compounds (n = 7) with clean ADMET profile, NPC5486, 
which possessed the highest binding affinity with MRP3, was further subjected to 50 ns molecular dynamics (MD) simulation 
to understand its dynamics of binding. Analysis from the resulting MD simulation trajectories of NPC5486 in complex with 
the model protein alongside that of standard inhibitor (vincristine) showed not only the flexibility and interaction potential 
of the residues of the MRP3 with NPC5486 as indicated by the RMSF but also stability of the complex as indicated by 
the RMSD, RoG and number of hydrogen bonds of the ligand–protein complexes. Cluster analysis of the MD simulation 
trajectory files and dynamics-based MMGBSA computations further revealed that the observed interactions with important 
residues as well as the free energy contribution per residue were preserved in the dynamic environment. Overall, the current 
study has revealed drug-like compounds which can serve as potential inhibitors of MRP3 in the treatment of acute leukaemia.
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Introduction

Acute leukaemia stems from a cascade of mutational 
events (unchecked proliferation and abnormal maturation) 
that occur during the intricate process of haematopoiesis 
leading to decreased production of blood cells (Maynadié 
2015). Over the years several forms of leukaemia have 
been described in humans; however, acute myelogenous 
leukaemia (AML) and acute lymphoblastic leukaemia 
(ALL) have been the most reported cases (Maynadié 
2015). According to the American Cancer Association, 
an estimated 13,800 cases of AML and 6,000 cases of ALL 
were reported in the USA in 2012 (Maynadié 2015). The 
figure was expected to hit a total of 61,090 cases in 2021, 
with an estimated mortality of 23,660 people (Howlader 
et al. 2017). In a bid to combat the current morbidity and 
mortality challenge posed by leukaemia, several studies 
have been carried out to develop a chemotherapeutic regi-
men for the treatment of leukaemia. While this was able to 
achieve major health improvements in the past, there have 
been several instances of treatment failure in childhood 
and adult acute leukaemia due to drug resistance (Van Der 
Kolk et al. 2001).

Drug resistance in acute leukaemia has been linked to 
overexpression of adenosine triphosphate (ATP)-binding 
cassette transporters (Van Der Kolk et al. 2001). ATP 
binding cassette (ABC) proteins consist of families of 
transporters that drive the movement of different chemical 
compounds across the biological membrane using energy 
liberated from ATP hydrolysis (Zhang et al. 2015). Gen-
erally, the ABC transport proteins can translocate many 
substrates, including lipids, ions, nucleotides and drug 
metabolites, across the membrane. Of particular impor-
tance are the subfamily C of the ABC transporters, which 
includes twelve (12) members, many of which have shown 
the capacity to efflux cytostatic drugs. Among the subfam-
ily C of the ABC proteins is another group of transporter 
called multidrug-resistant proteins (MRPs) reported in 
previous studies to mediate multidrug resistance via active 
extrusion of chemotherapeutic substances (Hollenstein 
et al. 2007; Zhang et al. 2015). About seven (7) different 
types of MRPs have been discovered in humans (Borst 
et al. 2000; Scheffer et al. 2002; Zhang et al. 2015).

Among the chemotherapeutic agents used in the treatment 
of AML are daunorubicin, idarubicin, etoposide and mitox-
antrone, which are substrates for MRPs. In spite of Fletcher 
et al. (2016) findings that some MRPs play significant roles in 
tumour cell resistance to anti-cancer agents, only a few stud-
ies have evaluated their prognostic significance in leukaemia. 
These studies have however noted that MRP3 among other 
members of the MRP family is associated with high mortality 
in acute leukaemia. There is also the fact that current studies 

have indicated that MRP3 is the only ABC transporter that 
correlates with poor prognosis of AML and ALL regardless 
of the patient's age (Steinbach and Legrand 2007). In light 
of these studies, MRP3 may be worth studying in order to 
develop drugs aimed at ameliorating acute leukaemia.

Located on chromosome 17q22, the MRP3 gene encodes 
1527 amino acids (Uchiumi et al. 1998). To date, the three-
dimensional structure of MRP3 protein has not been crystal-
lized in spite of its interesting biological features. However, 
gene and protein sequencing studies have provided reasonable 
insights that can assist in elucidating the protein structure. 
MRP1 shows 58% amino acid identity to MRP3; as such, it 
can be used as an ideal template for modelling MRP3 pro-
tein structure. The resulting membrane proteins have differ-
ent glycosylation patterns and are 170 and 190 kDa in size 
(Noroozi-Aghideh et al. 2020). MRP3 is thought to be large 
and contains two large cytoplasmic domains (nucleotide 
binding domains 1 and 2) (Fukushima-Uesaka et al. 2007). 
Based on this structural information, previous studies have 
attempted to develop potential MRP3 inhibitors for the treat-
ment of acute leukaemia. Despite the significant prospects of 
MRP3 inhibitors in cancer therapeutics, there is currently no 
clinically established and approved MRP3 inhibitor. However, 
studies have shown the significant prospects of therapeutic 
agents including benzbromarone, vincristine and MK571 as 
MRP3 inhibitors which may improve cancer cell sensitivity to 
chemotherapeutic drugs (Ali et al. 2017; Gilibili et al. 2017; 
Song et al.2010). Yet, most of these drugs are rather non-spe-
cific and elicit toxic side effects such as peripheral neuropathy, 
hepatotoxicity and renal failure (Akioka et al. 2013; van de 
Velde et al. 2017; Ye et al. 2010). Leveraging on the prem-
ise that natural compounds have shown profound potential in 
modulating the activities of specific ABC transporters, includ-
ing MRP3, in various living tissues (Bobrowska-Hägerstrand 
et al. 2006; De Vocht et al. 2021; Wu et al. 2005), the current 
study attempts to identify potential inhibitors of MRP3 by 
conducting a high-throughput virtual screening of different 
natural compounds libraries.

Apparently, one of the drawbacks to the development of 
MRP3 inhibitors is the lack of sufficient information regarding 
the morphology of the protein structure. As such, in this study, 
homology modelling was performed to model the structure of 
the protein. Using a hybrid of structure-based and ligand-based 
computational screening (Fig. 1), the current study unveils lead-
like compounds with significant prospects as MRP3 inhibitors.

Materials and methods

Software and computational tools

Molecular docking simulation as well as pharmacoph-
ore modelling and validation was performed using the 
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Maestro suite available on Schrodinger software version 
2017. Molecular dynamics simulation and free energy cal-
culations were performed using NAMD software. Homology 
modelling, protein structure validation and pharmacokinetic 
and toxicity properties prediction were achieved using dif-
ferent web servers and discussed in details in subsequent 
subsections.

Sequence alignment and Homology modelling

The FASTA sequence of multidrug-resistant protein 3 
containing 1527 amino acid residues was retrieved from 
UniProt online database (https:// www. unipr ot. org/) with 
UniProt id: 015,438. The fasta file was used for the model-
ling of 3D structure of MRP3 protein based on sequence 
similarity to known structures using SWISS-MODEL web 
server (https:// swiss model. expasy. org/). The homology 
modelling was performed based on the following step; 
template search, sequence alignment, model building 
and evaluation. Template search for the target sequence 
was carried out with Basic Local Alignment Search Tool 

(BLAST) and hidden Markov models (HMMs): 'HMM-
HMM-based lightning-fast iterative sequence search' 
(HHblits; http:// toolk it. genze ntrum. lmu. de/ hhbli ts/) against 
the updated SWISS-MODEL library (Remmert et al. 2011; 
Studer et al. 2021). The template with the highest sequence 
identity and best coverage was used to model the protein 
structure of the query sequence. Model was built based on 
the alignment between the target and the template using 
ProMod3 (Studer et al. 2021). The coordinates that are 
conserved between the target and template are copied from 
the template to the model. The fragment library was used 
to remodel insertions and deletions. Following this, side 
chains were rebuilt. In the final step, the geometry of the 
model was regularized by using a force field. The global 
and per-residue model quality was assessed using the 
QMEAN scoring function (Benkert et al. 2008). The accu-
racy of the tertiary structure of the generated model was 
estimated using Global Model Quality Estimate (GMQE) 
score (Waterhouse et al. 2018). In addition, torsional angles 
of the amino acid residues contained in the protein were 
assessed using Ramachandran plot.

Fig. 1  Virtual screening 
workflow for identification of 
MRP3 inhibitor from natural 
compounds

https://www.uniprot.org/
https://swissmodel.expasy.org/
http://toolkit.genzentrum.lmu.de/hhblits/
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Structure refinement and Model Validation

The generated protein from PDB was imported into Maes-
tro workspace for structural refinement to remove steric 
clashes and fill in missing side chains and loops. Initially, 
energy minimization was performed with the Prime tool of 
Maestro that uses VSGB solvation model and OPLS3 force 
field. Subsequently, loop refinement was performed on the 
non-template region of the model protein to refine loops 
that fall within the disallowed regions of the Ramachan-
dran plot. Loop refinement was achieved using Prime ultra-
extended sampling option, which performs Ab-initio loop 
modelling with an implicit solvent system. The protein 
built was finally subjected to protein preparation using the 
protein preparation wizard of Maestro as discussed previ-
ously (Olawale et al. 2022). The quality of the modelled 
protein was initially evaluated by ERRAT using the struc-
ture analysis and verification server (SAVES) (https:// saves. 
mbi. ucla. edu/). ERRAT measures the quality of a protein 
by assessing non-bonded atomic interactions. Error values 
are plotted as a function of position and the overall quality 
of the protein is expressed as a percentage, where a higher 
value indicates a higher quality of protein. Further protein 
validation was performed using ProTSAV (http:// www. 
scfbio- iitd. res. in/ softw are/ prote omics/ prots av. jsp) which 
is a meta-server that performs consensus quality assess-
ment using different validation tools including Verify3D, 
MolProbity, Procheck, ProSA, ERRAT, ProQ, dDFire, Nac-
cess and D2N. The overall quality of the modelled is given 
as a ProTSAV score which is a cumulative estimate of the 
individual protein quality score from the different valida-
tion tools. Finally, quantitative analysis of the final model 
was performed using volume, area, dihedral angle reporter 
(VADAR) (http:// vadar. wisha rtlab. com/) and RESPROX 
(Resolution by proxy) (http:// www. respr ox. ca/) score values 
(Berjanskii et al. 2012; Willard et al. 2003).

Creation of ligand library, compound preparation 
and Ligand filtering

An in-house library of natural compounds was created 
by combining compounds retrieved from NPASS natural 
compound database (26,240) (http:// bidd. group/ NPASS/), 
Chinese medicinal compound database (20,712) (http:// 
tcm. cmu. edu. tw/) and South African medicinal compound 
database (1012) (https:// sancdb. rubi. ru. ac. za/). The entire 
structures were imported into the workspace of maestro to 
prepare the ligands for subsequent computational simula-
tions. Creation of in-house database was achieved using the 
generate phase database panel of Maestro in a three step 
process. In the first step, the compounds from the different 
databases were merged and duplicates were skipped by gen-
erating a unique canonical SMILES string for each structure 

and comparing the strings. Since the retrieved compounds 
might not have chirality information, explicit hydrogen 
atoms or be in the appropriate ionization state for physi-
ological conditions, the compounds were prepared to obtain 
structures that are suitable for database searching following 
the procedure described previously (Olawale et al. 2021a). 
Finally, the prepared compounds were subjected to QikProp 
to generate topological descriptors which was consequently 
used to pre-filter the compounds based on the Lipinski rule.

Pharmacophore modelling, Pharmacophore 
validation and Phase screening

Multiple-ligand pharmacophore was generated from a set of 
12 experimentally active inhibitors of MRP3 protein (Köck 
et al. 2014). Pharmacophore modelling was carried out in 
four steps, viz: ligand preparation, creating pharmacophore 
sites from a set of features, finding common pharmacoph-
ore and pharmacophore validation. The 2D structures of the 
compounds were downloaded from PubChem database, and 
the compounds were prepared using LigPrep to generate 3D 
conformers of each structure. In the create sites step, a set 
of chemical structure patterns was used to identify phar-
macophore features in each ligand. The general features 
include hydrogen bond donor (HBD), hydrogen bond accep-
tor (HBA), hydrophobic group (HG), negative charge (N), 
positive charge (P) and aromatic ring (AR). Subsequently, a 
search for common pharmacophores among the set of high-
affinity (active) ligands was performed. The search proceeds 
by enumerating all pharmacophores of a given variant and 
partitioning them into successively smaller high-dimen-
sional boxes according to their intersite distances. Boxes that 
contain pharmacophores from the minimum required num-
ber of ligands are said to survive the partitioning process. 
Each surviving box contains a set of common pharmacoph-
ores, one of which is ultimately singled out as a hypothesis. 
The hypotheses generated were validated using an external 
set of 10 active compounds and 1000 Glide decoy data sets. 
This is essential to evaluate the ability of each hypothesis 
of correctly predicting true positive (actives) and rejecting 
inactive compounds (Glide decoy set) during phase screen-
ing. Different statistical metrics including receiver operating 
characteristics (ROC), area under the accumulation curve 
(AUAC), phase hypo score and robustness initial enhance-
ment values were used to validate the generated pharma-
cophore models. The best model based on the validation 
parameters was used for screening the in-house library of 
natural compounds discussed in previous section. The top 
1,000 compounds with good fitness scores matching that of 
the pharmacophore were subsequently used for molecular 
docking simulation.

https://saves.mbi.ucla.edu/
https://saves.mbi.ucla.edu/
http://www.scfbio-iitd.res.in/software/proteomics/protsav.jsp
http://www.scfbio-iitd.res.in/software/proteomics/protsav.jsp
http://vadar.wishartlab.com/
http://www.resprox.ca/
http://bidd.group/NPASS/
http://tcm.cmu.edu.tw/
http://tcm.cmu.edu.tw/
https://sancdb.rubi.ru.ac.za/
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Drugable site determination and generation 
of receptor grid

The location of binding pocket of a protein is commonly 
identified from the binding site of the cocrystallized ligand. 
However, in the case of modelled proteins which oftentimes 
do not contain modelled co-ligand, an accurate computa-
tional tool is required to determine the likely binding pocket 
of the protein. In this study to determine the possible ligand 
binding site of MRP3, SiteMap tool on Maestro was used. 
SiteMap generates information on the character of binding 
sites using novel search analysis facility in a three-stage pro-
cess. In the first step, a site map calculation was performed 
to determine one or more regions on or near the protein 
surface called sites which may be suitable for ligand bind-
ing. Subsequently, contour maps (site maps) were generated 
producing hydrophobic and hydrophilic maps. The latter is 
divided into donor, acceptor and metal binding regions. 
Finally, depending on the shape and extent of the hydrophilic 
and hydrophobic regions, each site is ranked and assigned 
a site score value which is calculated based on the equation 
below (Halgren 2009):

where n is the number of site points (capped at 100), e is the 
enclosure score, and p is the hydrophilic score, and is capped 
at 1.0 to limit the impact of hydrophilicity in charged and 
highly polar sites.

Druggability score (Dscore) uses the same properties as 
Site score but different coefficients:

For Dscore, the hydrophilic score is not capped. This is 
one of the keys for distinguishing "difficult" and "undrug-
gable” targets from “druggable” ones.

In addition, SiteMap also characterizes the binding site 
in terms of the size of the druggable site, the degree of the 
enclosure by the protein and exposure to solvent, the tight-
ness with which the site points interact with the receptor, the 
hydrophobic and hydrophilic character of the site and the 
balance between them, the degree to which a ligand might 
donate or accept hydrogen bonds. The site with the highest 
Site score and Dscore was used to generate the receptor grid 
files for molecular docking.

Molecular docking simulation

The top fit 1000 compounds from pharmacophore screening 
were subjected to grid-based ligand docking and energet-
ics (Glide) docking to estimate the inhibitory prowess of 
the compound based on receptor binding affinity. Initially, 

(1)Site score = 0.0733 + 0.6688 e − 0.20 p

(2)Dscore = 0.094 + 0.60 e − 0.324 p

Glide standard precision (SP) docking was carried out to 
identify the top binding hit compounds. Using SP docking, 
ligands of unknown quality can be screened in large num-
bers without imposing limitations on the number of inter-
mediate conformations or reducing the quality of torsional 
refinement and sampling required for high-throughput 
virtual screening. The Glide docking process searches the 
active site for possible ligand sites using a series of hier-
archical filters. The top-scoring compounds with docking 
scores exceeding −6.0 kcal/mol from SP docking analysis 
were further screened with extra precision (XP) docking 
as a scoring function. XP employs a more sophisticated 
scoring function that puts a greater emphasis on the com-
plementarity between receptor binding pockets and ligand 
shapes to avoid false positives in standard precision dock-
ing, penalizing ligands that bind poorly to receptors. Glide 
XP provides improved hydrogen bond scoring, detection 
of buried polar groups and detection of pi-cation and pi-pi 
stack interactions.

Prime MMGBSA post‑docking analysis

As a further method of determining the inhibitory potential 
of the hit compounds, the binding free energy of the ligand-
bound protein was measured. In order to calculate binding 
free energy for the ligand–receptor complex, the Prime MM-
GBSA panel of Maestro was utilized (Iwaloye et al. 2020). 
MMGSA quantifies the energy difference between the ligand 
and the protein in the unbound state and in the complex 
state after energy minimization. OPLS3 was selected as the 
force field for the MM-GBA, and VSGB was used as the 
continuum solvent model. All other options were left in the 
default state. The MMGBSA binding free energy was cal-
culated based on the following equations.

Ecomplex,  Eprotein and  Eligand represent the minimized ener-
gies for protein–inhibitor complexes, proteins and inhibitors, 
respectively.

In this case, ∆GSA is the non-polar contribution to the 
solvation energy due to the surface area. Surface energies 
of complexes, proteins and ligands are represented by GSA 
(complex), GSA (protein) and GSA (ligand).

(3)ΔGbind = ΔE + ΔGsolv + ΔGSA

(4)ΔE = Ecomplex − Eprotein − Eligand

(5)
ΔGsolv = ΔGsolv(complex) −ΔGsolv(protein) −ΔGsolv(ligand)

(6)
ΔGSA = ΔGSA (complex) −ΔGSA (protein) −ΔGSA (ligand)
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ADME/Tox Profiling

Following molecular docking analysis, the top hits were sub-
jected to absorption, distribution, metabolism and toxicity 
profiling to ascertain their potential of being developed into 
standard drugs. Pharmacokinetics, drug-likeness and medic-
inal chemistry friendliness of the hit compounds were pre-
dicted using SwissADME (http:// www. swiss adme. ch/ index. 
php) and ADMETlab (https:// admet mesh. scbdd. com/ servi 
ce/ scree ning/ cal) web servers. The hits compounds were also 
subjected to in silico toxicological analysis using ProTox-II 
web server (https:// tox- new. chari te. de/ protox_ II/ index. php? 
site= home). The ProTox-II web server incorporates molecu-
lar similarity, fragment propensity, most frequent features 
and (fragment-based CLUSTER cross-validation) machine 
learning, based on a total of 33 models for the prediction of 
various toxicity endpoints such as acute toxicity, hepato-
toxicity, cytotoxicity, carcinogenicity, mutagenicity, immu-
notoxicity, adverse outcomes pathways and toxicity targets 
(Banerjee et al. 2018).

DFT Calculations

Density functional theory was used to estimate the sta-
bility of the compounds and their tendency to undergo 
reactions required for the inhibition of MRP3 protein. 
By using Becke's three-parameter exchange potential and 
Lee–Yang–Parr correlation (B3LYP) density functional the-
ory approach with 6-31G** as the basis set, the molecular 
orbital structure and atomic energy features of the top hit 
compounds were determined (Becke 1988; Lee et al. 1988). 
The Schrodinger Materials science (version 3.9) software 
that accommodates Jaguar fast engine was used to determine 
the different quantum mechanical parameters of the initially 
optimized compound (Bochevarov et al. 2013). Frontier 
molecular orbital parameters were first determined, which 
included the highest occupied molecular orbital (HOMO), 
lowest unoccupied molecular orbital (LUMO) and bandgap. 
HOMO energy describes the electron-donating capability of 
the compound, while LUMO energy describes the electron-
accepting quality of the compound (Olawale et al. 2021b). 
The space between the HOMO and LUMO orbital is called 
the bandgap, and it is an indication of a compound's ability 
to undergo electronic excitation during a chemical reaction. 
The parameters of global reactivity, such as hardness, elec-
tronegativity, softness, electron affinity, chemical potential, 
electrophilicity and ionization potential, were evaluated.

Molecular dynamics simulation

The complexes of protein with NPC5486 from the docking 
experiment alongside the reference compound were selected 
for Molecular Dynamic (MD) simulation using NAMD 

2.13. The backbone and protein–ligand complexes were 
subjected to a 50-ns full atomistic MD simulation produc-
tion run. The necessary MD simulation files were prepared 
using CHARMM-GUI (Brooks et al. 2009; Jo et al. 2008; 
J. Lee et al. 2016). The salt concentration and temperature 
of the biomolecular systems were set to 0.154 NaCl and 
310 K, respectively, in order to mimic physiological con-
ditions. In preparation for the production run, the system 
was minimized for 10,000 steps using a constant number of 
atoms, constant volume and constant temperature ensemble 
(NVT) utilizing a conjugate gradient algorithm, followed 
by an equilibration in a constant number of atoms, con-
stant pressure and constant temperature ensemble (NPT) 
for 1 ns. The simulation pressure was set to 1.01325 bar 
and controlled by the Nose–Hoover Langevin piston, while 
the temperature was controlled by Langevin dynamics. The 
CHARMM36 force field was used in the dynamic simula-
tions (Huang and MacKerell 2013). Charmm General Force 
Field (CGenFF) was used for the phytocompounds (Yu et al. 
2012). TIP3P water model was used to resemble the added 
water box, with 10 Å padding, for the periodic boundary 
condition to be applied. The simulation box was set to cubic 
with a length of 158 Å for the three protein–compound com-
plex systems, while for the apo protein the size was 156 Å. 
The length of the box was determined automatically using 
a 10 Å as padding from the protein. The numbers of water 
molecules added during the preparation of the systems using 
the CHARMM-GUI web server were 338,676, 351,870 and 
351,825 for the apo protein, protein–vincristine complex and 
protein–NPC5486 complex, respectively. All three systems 
were neutralized using a concentration of 0.154 M of  Na+ 
and  Cl− ions which produced 339  Cl− and 342  Na+ ion for 
the three protein–compound complex systems, while the apo 
protein system contained 329  Cl− and 332  Na+. The com-
putation of the thermodynamic parameters (RMSD, RMSF 
SASA, RoG and number of H-bonds) from the MD simula-
tion trajectories was done using VMD Tk console scripts.

Cluster analysis of MD simulation trajectories

TTClust version 4.7.2 was used to cluster the trajectory auto-
matically according to the elbow method, and a representa-
tive structure for each cluster was produced (Tubiana et al. 
2018). These representative conformations were analysed 
using Protein–Ligand Interaction Profiler (PLIP) for ligands 
(vincristine and NPC5486) atom-amino acid residue interac-
tive analysis (Salentin et al. 2015). The images were created 
using PyMol V2.2.2 (DeLano 2002).

MMGBSA computation

Molecular Mechanics Generalized Born Surface Area 
(MM-GBSA) was used to compute the binding affinity of 

http://www.swissadme.ch/index.php
http://www.swissadme.ch/index.php
https://admetmesh.scbdd.com/service/screening/cal
https://admetmesh.scbdd.com/service/screening/cal
https://tox-new.charite.de/protox_II/index.php?site=home
https://tox-new.charite.de/protox_II/index.php?site=home
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the ligands with the proteins using the MMPBSA.py script 
implemented in Amber tools 17 (Case et al. 2015; Miller 
et al. 2012). All frames (250 frames) were used in the com-
putation with salt concentration set to 0.154 Mol and other 
parameters set as default.

Results and discussion

Homology modelling and validation

Due to the absence of crystallized 3D structure of MRP3 
protein on protein data bank (http: //www. Rcsg.org), homol-
ogy modelling which is a predictive method based on similar 
templates was used to model the structure of the protein. 
Studies have shown that the validity and accuracy of a pre-
dicted model is largely dependent on the level of similar-
ity with the template structures as such an intense template 
search was carried out prior to protein modelling (Dalton 
and Jackson 2007). A total of 17,318 templates were found 
by HHblits, while BLAST search algorithm generated 978 
templates. The wild-type multidrug-resistant protein 1 with 
PDB ID: 6uy0 showed the highest amino acid sequence sim-
ilarity with percentage identity of 57.02% and coverage of 
99%, as such was deemed the best fitted template for model-
ling the 3D structure of MRP3 (Fig. S1 and S2). Ramachan-
dran conformation map was used to evaluate the structural 
rationality of the modelled MRP3 protein which indicated 
that most of the amino acid (94.6%) residues were in the 
favoured region (Fig. 2). As illustrated in Fig. S3b, most of 
the residues have local quality estimate above 0.7 which is 
an indication of good model reliability. The GMQE value 
of 0.60 and QMEAN score of 0.73 further establish that the 
modelled structure is reliable and has a good quality. Thus, 
the three-dimensional structure of the protein constructed by 
homology modelling satisfied quality model reliability and 
realistic requirements (Fig. S3).

While the previous validation steps have indicated rea-
sonable accuracy of the modelling approach, further struc-
tural deformities that may be present in the protein were 
corrected through a series of loop refinement and protein 
minimization steps using Glide. Subsequently, the final 
model developed was validated using different external 
web servers. As shown in Fig. 3a, the optimized protein 
showed an RMSD value of about 2.5 Å. Similarly, a pro-
tein quality score of 89.8% was obtained using ERRAT 
(Fig. 3b). ERRAT works by analysing the statistics of non-
bonded interactions between different atom types, with 
higher scores indicating better quality models (Colovos 
and Yeates 1993). Generally, an ERRAT score exceeding 
50% is considered a bench mark for high-quality model. 
The ERRAT score of 89.9% obtained for the protein sug-
gests that the backbone conformation and non-bonded 

interactions indicate high-quality model (Saxena et al. 
2018). While ERRAT server is arguably one of the best 
protein quality check server, like other protein quality 
predictor, it is not individually comprehensive; hence, a 
protein quality metaserver which combines diverse quality 
assessment programmes (including Verify3D, MolProbity, 
Procheck, ProSA, ERRAT, ProQ, dDFire, Naccess and 
D2N) and outperforms their individual server accuracies 
was used to give a more robust protein quality estimate. 
Interestingly, most of the protein structure checks tools 
gave an RMSD value with the range of 1–3 Å which sug-
gest a good overall quality of the modelled structure.

In addition to the previous qualitative assessments, the 
VADAR statistics for quantitative evaluation of the pre-
dicted model revealed that the model structurally composed 
of alpha-helix (58%), interspersed beta sheets (12%), coil 
(28%) and turn (20%) with extensive H-bonding groups 
(Table 1). The H-bonds distance and energy in the predicted 
secondary structure protein were similar to the expected 
value which further corroborates the good quality of the 
model. Likewise, calculation of the resolution of the protein 
from coordinate data using ResProx showed a resolution of 
1.5 Å (Table 1). Generally, lower-resolution proteins below 
2 Å are highly ordered and it allows individual hydrogen 
atoms to be visualized and heavy atoms (C, O, N) to be 
very accurately mapped; hence, they are a preferred choice 
for molecular docking and dynamics simulation (Berjanskii 
et al. 2012). The validation results therefore indicate that the 

Fig. 2  Ramachandran plot for MRP3 modelled protein. MolProbity 
Score = 1.06, Clash Score = 0.24, Ramachandran Favoured = 94.63%, 
Ramachandran Outliers = 1.44%, Rotamer Outliers = 1.34%, C-Beta 
Deviations = 6, Bad Bonds = 0/10,546, Bad Angles = 67/14,334
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refined structure of the modelled protein is satisfactory and 
reliable for the subsequent computational studies.

Active site prediction and analysis

Sequel to MRP3 protein modelling and validation, the poten-
tial binding site for small molecule inhibitor was predicted 
using site map. Five potential ligand binding sites were iden-
tified in the protein (Fig. S4). In order to accurately deter-
mine the best of the five possible sites which can be used for 
molecular docking, the values obtained from the site score 

and D-score were analysed. It was observed that site 1 on the 
protein with a site score of 1.216 and a D-score of 1.253 had 
the highest propensity for ligand binding. In addition, site 1 
was a preferred active pocket for docking due to the follow-
ing reasons, viz: large sites with high ligand binding sur-
face and higher number of hydrophobic residues which play 
important role in the protein structure and activity. As such, 
site 1 was considered the most pharmacologically relevant 
site on the protein where lead molecules can bind to modu-
late its activity. The site contains amino acid residues that 
include Met584, Pro581, Leu580, Ile577, Lys318, Gln436, 

Fig. 3  MRP3 protein structural 
validation using a PROTSAV 
and b ERRAT plot. Regions of 
the structure that can be rejected 
at the 95% confidence level 
are yellow; regions that can be 
rejected at the 99% level are 
shown in red
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Gln321, Asp322, Ser325, Phe326, Glu1200, Asn328, 
Pro329, Ser360, Gln363, Leu332, Leu1234, Gln1235, 
Phe1238, Leu367, Trp1242, Leu429, Tyr370, Tyr371 and 
Ala440 among others.

Pharmacophore modelling, pharmacophore 
validation and phase screening

Pharmacophore modelling is a ligand-based technique 
explored in this study to identify pharmacophore features 
present in the structures of 12 experimentally determined 
inhibitors of MRP3 protein (Köck et al. 2014) (Fig. S5). 
The compounds were manually selected based on profound 
structural diversity and a relatively moderate to high biologi-
cal activity (Jiang et al. 2016). Ligand-based pharmacophore 

modelling was necessary since the structures of MRP3 are 
yet to be fully crystallized. Hence structure-based approach 
only may result in errors due to the limited knowledge of the 
3-dimensional structure of the protein. The pharmacophore 
model generated was validated using a set of 10 active inhib-
itors and 1000 decoy sets. While it was observed that a good 
number of the pharmacophore were able to correctly predict 
the active compounds, some of them showed low specific-
ity by generating false positive predictions with decoy sets 
(Tables 2 and 3). As a validation metrics, the ROC curve 
was calculated by plotting the true positive rates against the 
false positive rates. From the result, it was observed that 
the model AHHHR_4 with one hydrogen bond acceptor, 
three hydrophobic groups and one aromatic group was the 
best performing model with ROC value of 0.70 and phase 
score of 0.71 (Fig. 4, 5 and Fig. S6). Similarly, the AUAC 
measures the probability that an active compound will be 
ranked ahead of inactive or decoy set. A value exceeding 
0.6 can be interpreted as high probability. The robust initial 
enhancement (RIE) score of 2.09 also confirms the superior 
robustness of the hypothesis.

Once a pharmacophore has been identified, it can be used 
for rational drug design processes such as virtual screening, 
lead optimization and de novo drug design. Based on the 
pharmacophore validation results obtained here, the model 
AHHHR_4 was further employed in identifying potential 
inhibitors of MRP3 from an in-house library of natural com-
pounds. A total of 1,000 hits were identified as drug-like 
compound with fitness score above 1.5 (Table S1). In addi-
tion to the fitness score, several parameters including vector 
score, volume score and align score were also monitored. 
The vector score is a parameter that measures how well the 
vectors for acceptors, donors, hydrophobic groups and aro-
matic rings are aligned in the structures that contribute to the 
hypothesis (Lauria et al. 2010). The volume score measures 

Table 1  VADAR and ResProx results showing the quantitative 
parameters of the modelled protein

* The expected values represent those numbers which would be 
expected for highly refined X-ray and NMR protein structures

Protein structural details

Statistic Observed Expected*

Helix 772 (58%) –
Beta 171 (12%) –
Coil 382 (28%) –
Turn 276 (20%) –
Hydrogen bonds
Mean hydrogen bond distance 2.1 sd = 0.4 2.2 sd = 0.4
Mean hydrogen bond energy  − 2.0 sd = 1.1  − 2.0 sd = 0.8
Residues with hydrogen bonds 1124 (84%) 993(75%)
ResProx Result
Resolution of protein based on 

REPROX values = 1.547 ± 0.0
Good: 0–1.5
Middle: 1.5–2.5
Bad: > 2.5

Table 2  Top ten pharmacophore model and features

* A—acceptor, D—donor, H—hydrophobic, R—aromatic

Hypothesis ID Pharmacoph-
ore features*

Number of 
possible site

Number of 
accepted site

Number of hydro-
gen bond donor

Number of hydro-
gen bond acceptor

Number of 
Hydrophobic 
group

Number of 
aromatic 
rings

AAHHH_1 AHHHA 7 5 – 2 3 –
AAHHR_1 HARHA 7 5 – 2 2 1
AHHHR_4 AHHHR 7 5 – 1 3 1
AHHH_2 HHHA 7 4 – 1 3 –
AHHR_3 RHHA 7 4 – 1 2 1
AAHH_2 AHHA 7 4 – 2 2 –
HHRR_1 AHAH 7 4 – 2 2 –
AAAHH_1 AAHHA 7 5 – 3 2 –
AAHHHR_1 HAARHH 7 6 – 2 3 1
HHHR_1 AHHH 7 4 – 1 3 –
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how much volume of the contributing structures overlaps 
when aligned on the pharmacophore (Lauria et al. 2010). 
Most of the hit compounds showed vector score, volume 

Table 3  Enrichment data for 
the generated pharmacophore 
models

* Receiver operating characteristics (ROC), area under the accumulation curve (AUAC), robust initial 
enrichment (RIE)

Hypothesis ID Phase 
Hypo score

ROC* AUC* Average out-
ranking decoys

Total actives Ranked 
actives

RIE*

AAHHH_1 0.67 0.54 0.54 456.50 10 10 0.92
AAHHR_1 0.65 0.57 0.57 434.20 10 10 0.64
AHHHR_4 0.71 0.70 0.70 301.30 10 10 2.09
AHHH_2 0.70 0.69 0.69 308.10 10 10 1.80
AHHR_3 0.63 0.64 0.65 294.00 10 9 0.44
AAHH_2 0.61 0.24 0.27 510.40 10 5 1.50
HHRR_1 0.55 0.26 0.28 568.50 10 6 0.02
AAAHH_1 0.72 0.20 0.24 500.75 10 4 0.19
AAHHHR_1 0.67 0.16 0.24 465.00 10 3 0.24
HHHR_1 0.68 0.20 0.25 490.50 10 4 0.01

Fig. 4  Pharmacophore mapping of model AHHHR_4. a Pharmaco-
phore features, b pharmacophore model with top fit representative 
ligand

Fig. 5  Pharmacophore validation. a Phase screen plot, b ROC plot



3739Chemical Papers (2022) 76:3729–3757 

1 3

score and align score within acceptable limits. The com-
pounds were then used for the subsequent virtual screening 
analysis.

Receptor grid generation, molecular docking 
analysis and interaction patterns

A receptor grid was generated to represent the ligand bind-
ing pocket for molecular docking using Site 1 identified from 
site map (Table 4). Initially, standard precision docking was 
performed on the compound retrieved from pharmacophore 
phase screening. A total of 167 compounds had docking 
score below −6.0 kcal/mol and was used for a more accu-
rate extra precision docking. From XP docking, seven dis-
tinct lead compounds (NPC5486, NPC200761, NPC10754, 
Cyrtophyllone_B, NPC17677, NPC476840 and 33,434) 
were identified all of which had docking scores below 
−7.5 kcal/mol (Table 5). Moreover, the lead compounds 
all had docking scores which was comparable to those of 
experimentally determined MRP3 inhibitor including vin-
cristine, furosemide and indomethacin. The highly sig-
nificant docking scores of the hit compounds suggest their 
potentials in MRP3 inhibitors development. Notably, com-
pound NPC5486 and NPC200761 had the best docking score 
with the same XP docking score value of −8.877 kcal/mol.

Aside from determining the affinity of the lead compound 
for the target protein, molecular docking is also crucial for 
exploring the interactions between critical amino acid resi-
dues of the protein and targeted small molecule inhibitors. 
A good lead compound requires the following for ligand 
bonding: presence of hydrogen bond donors and acceptors 
that can interact with polar amino acids, an hydrophobic 
moiety that spans through the binding site to interact with 
hydrophobic amino acids within the inner pocket of the 
binding site and an aromatic ring that interacts with phe-
nylalanine residues in the binding site (Le et al. 2021). The 
3D binding poses of the top hits and their corresponding 
2D protein ligand interaction schematic diagrams are illus-
trated in Figs. 6, 7, 8, 9, 10 and Fig. S7-10. NPC5486 inter-
acts with amino acid residue Ser325, Tyr371 and Ser1196 
via hydrogen bond linkages. Similar interaction finger-
prints was observed in NPC200761 which formed hydro-
gen bonding with Tyr371 and Ser1196 and pi-pi bonds 
with Arg1245. NPC10754 forms hydrogen bonding inter-
action with Gln587, Asn583, Leu580 and Arg579, while 
Cyrtophyllone_B interacts with amino acid residues Asp322 
and Ser325. The highest number of hydrogen bonding inter-
action was observed in NPC476840 which forms five hydro-
gen bonding network with Ser325, Lys318, Gln326, Ser432 
and Trp1242. Although the exact functions of these amino 
acid residues are yet to be demystified, based on conserved 
evolutionary relationship with multidrug-resistant protein1, 
residues like Trp1242, SER 1196 and ASN 1241 might 

likely function in nucleotide binding. Since ATP is critical 
for the functions of all MRPs, by binding to these residues, 
the activity of MRP3 protein can be inhibited by the identi-
fied lead compounds.    

Equally worth emphasizing is the fact that among the 
standard inhibitor that was screened vincristine showed the 
highest binding affinity by forming a single hydrogen bond-
ing interaction with Gln363. Although this was contrary to 
previous studies which reported interaction with the cyto-
plasmic domain residues such as Ser752, Gly753, Ser779, 
Ala780 and Val 781 using blind docking, the authors noted 
that the standard drug vincristine had the highest docking 
scores within two cytoplasmic domain of the modelled 
MRP3 protein (Noroozi-Aghideh et al. 2020). However, 
since binding site prediction has been reported has a better 
approach to determining binding site of a protein, the inter-
action fingerprints reported in this study may appear to hold 
significant promise.

Binding free energy calculations from rigid docking

In Glide docking, extra precision docking poses were 
obtained to perform MM-GBSA calculation using surface 
area energy, solvation energy and energy of the minimization 
of the protein–ligand complexes. Lyne et al. validated the 
ability of Glide MMGBSA post-docking scoring protocol 
to correctly rank cogeneric inhibitors as such can be used 
as a bench mark suitable for guiding structure-based design 
of inhibitors (Lyne et al. 2006). As illustrated in Table 6, 
Prime MM/GBSA (DGbind) ranged from −57.56 to kcal/
mol (NPC5486) to −41.571 kcal/mol (NPC10754). Interest-
ingly, the compound NPC5486 which had the best docking 
scores also showed the most significant binding free energy 
value. The most remarkable free energy contributions to the 
ligand binding were from van der Waals (∆G vdw), non-
polar solvation energy (∆G Lipo) and Coulombs energy (∆G 
Coulomb). Overall the entire lead compounds showed strong 
binding affinity which suggests outstanding potential to form 
stable interaction with MRP3 protein.

Pharmacokinetics and Toxicological risks 
assessment

ADMET profiling of the lead compounds was conducted in 
order to evaluate the pharmacokinetic and toxicity proper-
ties of the compounds. More than 90% failure rate has been 
reported during the process of drug development largely 
due to toxicity and poor pharmacokinetics which have sig-
nificantly contributed to the cost of drug development. If 
the lead compounds identified in this study would stand 
a chance to be developed as MRP3 inhibitor, then a basic 
understanding of the pharmacokinetics and toxicological 
properties is indispensable. In the current study, following 
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pre-filtering of the compound using Lipinski rule, other 
druglikeness rules including Ghose, Veber, Egan and Mue-
gge were done. Based on the number of hydrogen bond 
donor, hydrogen bond acceptor, molecular weight (MW) 
and octanol/water partition coefficient (Log P) (Fig. S11), 
Lipinski rule predicts the ability of a drug to be orally 
active in humans. From Table 7, it was evident that none of 
the lead compounds showed any Lipinski violations which 
suggest a good oral bioavailability. Veber et al. (2002) 
proposed that rotatable bonds below 10 and TPSA value 
less than 140 can better discriminate compounds that are 
orally active from other large data sets. Ghose rule con-
siders molar refractivity range of 40 and 130, number of 
atoms between 20 and 70, Log P value between -0.4 and 
5.6 and MW range of 160 and 480 have criteria for drug-
likeness (Ghose et al. 1998). Interestingly, none of the 
compounds showed any violations for Veber and Ghose 
rule. Furthermore, the lead compounds did not show more 
than one violation for Egan rule and Muegge rule which 
falls within the acceptable limits for good bioavailability 
of compounds. The Caco-2 permeability scores between 
4.0 and 6.0 imply moderate to high intestinal absorption.

In addition to the good drug-like properties, none of the 
lead compounds showed beyond more than one PAIN and 
BRENK alert which suggest that the results obtained from 
the virtual screening are less likely to be false positives 
that could stem from ligand promiscuity. In addition, due 
to the role of CYPs inhibition in drug–drug interaction 
which has been implicated in adverse drug interactions and 
reactions (Beck et al. 2021), the ability of the lead com-
pounds to inhibit CYP 1A2, 2C9, 2C19, 2D6 and 3A4 was 
predicted. Although most of the lead compound did not 
show tendencies to inhibit CYP 1A2, 2C9, 2C19 and 2D6, 
a higher proportion were predicted as CYP3A4 inhibitor. 
While CYP inhibition might present a challenge, studies 
have shown that by controlling the dosing and performing 

lead optimization the consequent effect of drug–drug inter-
action can be abated.

As shown in Table 8, the lead compounds are less likely 
to be hERG blockers with probability values below 0.1. 
Also, with the exception of NPC17677 which showed 
AMES toxicity probability of 0.508, most of the compounds 
show less low tendencies to pose any mutagenic threats. A 
skin sensitivity probability value below 0.3 in NPC5486, 
NPC10754, NPC476840 and 33,434 signifies less skin irrita-
tion following topical administration. The lead compounds 
were not predicted to induce any major toxicological tar-
gets and pathways. Furthermore, the compounds showed a 
high LD50 value which means a very high concentration 
has to be taken before an oral toxicity can be observed. The 
predicted pharmacokinetic and toxicological studies have 
thus far shown significant drug-likeness potential of the lead 
compounds.

Frontier molecular orbital and analysis of chemical 
reactivity descriptors

Frontier molecular orbital analysis of the fully optimized 
structures was used to analyse the vital chemical properties 
of the lead compounds as given in Table 9. FMO theory 
has shown that the energy level of the HOMO and LUMO 
orbital is a primary factor that significantly impacts the 
biological activities of small drug-like molecules (Hagar 
et al. 2020). The HOMO energy is a measure of the elec-
tron-donating ability of the compound, while the LUMO 
energy quantifies the electron-accepting properties of the 
compounds. NPC5486 showed the most significant HOMO 
energy with values of −0.22919 which aligns with the 
molecular docking result (Fig. 11). The orbital represents 
probability of finding an electron. The red and blue colour 
indicates the positive and negative ( ±) sign of the wave-
function, respectively, and the nodal nature of the orbital. 

Table 5  Molecular docking analysis results for hit compounds from virtual screening

Title GlideSP 
docking 
score

Glide XP 
docking 
score

Key Interacting residues Number of 
hydrogen 
bondsH-Bonds Pi-Pi bonding

NPC5486  − 7.034  − 8.877 SER325, TYR 371, SER 1196 – 3
NPC200761  − 6.98  − 8.877 TYR 371, ASN 1241, SER 1196 ARG 1245 3
NPC10754  − 6.205  − 8.393 GLN 587, ASN 583, LEU 580, ARG 579 – 4
Cyrtophyllone_B  − 7.113  − 8.264 ASP 322, SER 325 – 3
NPC17677  − 6.198  − 7.915 TYR 371, TYR 370, PRO 425 TYR 371 3
NPC476840  − 6.733  − 7.844 SER 325, LYS 318, GLN 326, SER 432, TRP 1242 – 5
33,434  − 7.268  − 7.622 GLN 436, LYS 318, SER 325 – 4
Vincristine-std  − 8.091  − 8.323 GLN 363 – 1
Furosemide-std  − 6.324  − 6.541 SER 325, ASN 328, GLN 363 – 3
Indomethacin-std  − 5.737  − 6.507 TYR 370, PRO 425, TRP 1242, ARG 1245 2



3742 Chemical Papers (2022) 76:3729–3757

1 3

Fig. 6  Two-dimensional protein–ligand interaction of MRP3 and NPC5486
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Fig. 7  Two-dimensional protein–ligand interaction of MRP3 and NPC200761
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HOMO and LUMO cloud were centralized majorly on the 
aromatic rings. The HOMO of the lead compounds and the 
LUMO of adjacent residues of MRP3 could share orbital 
interaction during the ligand binding process. The energy 
difference between the HOMO and LUMO energy assessed 
the chemical reactivity tendencies of the lead compounds. 
Compound NPC17677 was observed as the most chemi-
cally reactive with band gap energy of −0.14554 eV, while 
NPC5486 was predicted as the least chemically reactive 
with band gap of −0.22964 eV.

Based on the mathematical equations, descriptors of chemi-
cal reactivity parameters were computed (Alyar et al. 2019; 
Khalid et al. 2019);

(7)Electron affinity (EA) ≈ − E(LUMO)

(8)Ionization potential (IP) ≈ − E(HOMO)

Fig. 8  Two-dimensional protein–ligand interaction of MRP3 and NPC10754
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Fig. 9  Two-dimensional protein–ligand interaction of MRP3 and Cyrtophyllone_B
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(9)Hardness (η) ≈
(

IP − EA

2

)

(10)Softness (σ) ≈

(

1

2η

)

(11)Electronegativity(�) ≈
(

IP + EA

2

)

(12)Chemical Potential (�) ≈
1

2

(

E
HOMO

+ E
LUMO

)

where the energy of the HOMO and LUMO orbitals is 
depicted as E(HOMO) and E(LUMO).

The electrophilicity index is useful for explaining the 
binding capacity with biomolecules. The higher electrophi-
licity index of studied compounds will have a higher bind-
ing interaction (Parthasarathi et al. 2004). NPC476840 had 
the highest electrophilicity index when compared with other 
lead compounds followed by 33,434. The high electrophi-
licity index of compound 33,434 corroborates the results 
of the binding free energy calculations which demonstrated 

(13)Electrophilicity index (�) ≈ �
2∕2

Fig. 10  Three-dimensional protein–ligand interaction of MRP3 and a NPC5486, b NPC200761, c NPC10754, d Cyrtophyllone_B, e NPC17677, 
f NPC476840, g 33,434 h vincristine -std
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significant affinity and stability of the ligand–MRP3 pro-
tein complex. While the global hardness is a measure of 
charge transfer prohibition, the global softness value char-
acterizes the ability of the compound to accept electrons. 
Generally, soft molecules have a small band gap and are 
more reactive because they mediate electron transfer easily. 
NPC17677 was observed to have the highest global softness 
values. The frontier molecular orbital and chemical reactiv-
ity parameters understudied here could significantly impact 
the degree of binding affinity of these lead compounds to 
different extents.

Molecular dynamics simulation

The stability and structural integrity of the bound systems 
as compared to the unbound proteins were studied through 
the various conformational fluctuations that occurred in 
the MD-simulated environment. The plots were presented 
as a function of time frame (Fig. 12). The RMSD plots 
show the extent of the deviation of each frame from the 
initial structure and hence used to access the protein stabil-
ity of the systems. The protein systems were equilibrated 
at around 30 ns with similar plots of RMSD with aver-
age RMSD values of 5.2, 6.2 and 4.7 Å for the unbound 
protein, vincristine and NPC5486. Vincristine exhibited 
higher fluctuations with higher mean RMSD values than 
the NPC5486 bound and unbound protein. The RMSF 
reveals the flexibility of different regions of the protein. 
There are spikes occurring at the N terminal end of the pro-
teins corresponding to the terminal motions. The average 
RMSF values for the protein systems are 1.9 Å for the apo-
protein and 1.9 and 1.7 Å for the protein complexed with 
vincristine and NPC5486, respectively. Some of the amino 
acid residues in the protein showed significant fluctuations 
(greater than 2 Å). The two regions of the RMSF plots that 

showed the highest fluctuations are the VAL51 –ALA101 
region as well as, TYR651-GLY726. These regions form 
a loops and showed greater interaction potentials with the 
ligands. The RoG measures the compactness of the sys-
tems. A stably folded protein structure presents a steady 
RoG plot. The RoG plot revealed a steady progression of 
the biomolecular systems during the simulation period 
with minimal fluctuations. The mean RoG values calcu-
lated from the plots for the protein systems are 37.9, 38.4 
and 38.2 Å for the apo enzyme, vincristine and NPC5486 
complexed systems, respectively. The SASA plots show 
the degree of solvent accessibility by the surface of the 
proteins. Both RoG and SASA plots indicate the level of 
structural unfolding of proteins with reference to its origi-
nal structure. The SASA plots for the protein system show 
steady progression throughout the simulation period with 
average values of 61,809.43, 64,911.86 and 65,256.44 Å2 
for the unbound enzyme, vincristine and NPC5486, respec-
tively. The average number of hydrogen bonds for the 
unbound protein system, vincristine and NPC5486 is 330.2, 
328.0 and 324.0, respectively. Overall, the thermodynamic 
parameters revealed that the stability of the complexes is 
indicated by the RMSD, RoG and H-bond plots as well as 
flexibility as shown by the RMSF plot.

Clustering analysis of molecular dynamics 
simulation trajectories of the protein complexes

In order to gain more insight into the interactions of the 
ligands with the protein in a more dynamic environment, 
the MD trajectory files were clustered according to their 
structure and conformational pattern. From these clusters, 
representative structures were selected for further analysis. 
Table 10 shows representative clusters generated, while 

Table 6  MMGBSA post-docking analysis calculation from Glide docking

Title MMGBSA dG 
Bind

MMGBSA dG 
Bind Coulomb

MMGBSA 
dG Bind 
Covalent

MMGBSA 
dG Bind 
H-bond

MMGBSA 
dG Bind 
Lipo

MMGBSA 
dG Bind 
Packing

MMGBSA 
dG Bind Solv 
GB

MMGBSA 
dG Bind 
vdW

NPC5486  − 57.56  − 22.356 3.057  − 2.697  − 19.289  − 1.635 25.246  − 39.886
NPC200761  − 47.339  − 22.666 5.528  − 3.147  − 13.629  − 3.41 23.132  − 33.147
NPC10754  − 41.571  − 23.66 8.636  − 2.489  − 14.73  − 3.297 40.979  − 47.01
Cyrtophyllone_B  − 45.601  − 13.501 0.52  − 1.476  − 19.611  − 0.521 18.322  − 29.334
NPC17677  − 45.072  − 22.437 4.934  − 1.865  − 19.292  − 1.405 26.727  − 31.733
NPC476840  − 48.922  − 34.91 7.666  − 3.069  − 16.599  − 1.565 34.073  − 34.518
33,434  − 53.295  − 31.16 5.098  − 2.644  − 15.206  − 1.736 25.82  − 33.468
Vincristine-std  − 34.68  − 11.765 23.22  − 1.665  − 30.128  − 4.582 33.368  − 43.129
Furosemide-std  − 52.567  − 27.804 2.304  − 2.394  − 11.726  − 1.615 20.487  − 31.82
Indomethacin-std  − 42.645  − 3.196 3.298  − 1.17  − 17.708  − 4.418 15.438  − 34.89
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Fig. 13 shows the representative structures of the first clus-
ter and the last cluster from the MD simulation trajecto-
ries. The table and figure further show that the interactions 
with important catalytic residues were preserved during the 
course of the dynamic simulations.

Binding free energy from molecular dynamics 
simulation

Dynamic simulation-based calculations that integrate 
molecular mechanics with implicit solvation models, such 
as Molecular Mechanics-Generalized Born Surface Area 
(MM-GBSA), give substantially accurate estimates of free 
energies of binding of ligands to proteins. In these calcu-
lations, the binding free energy (ΔGbind) measures the 
affinity of a ligand to its target protein. The free energy 
difference between the ligand-bound state (complex) and 
the corresponding unbound states of proteins and ligands 
is also employed in the calculations (Table 11 and Fig. 14). 
The result from the MMGBSA calculation further cor-
roborated the docking studies.

Conclusion

In the current study, new sets of inhibitors for MRP3 
enzyme were identified from natural compounds libraries 
using ligand-based drug design approach (pharmacophore 
modelling and density functional theory calculations) and 
structure-based approaches (homology modelling, molecu-
lar docking, MD simulations and MM-GBSA free energy 
calculations). Summarily, homology model of MRP3 pro-
tein was constructed using bovine MRP1 protein as tem-
plate. Using a set of experimentally derived MRP3 inhibi-
tors, ligand-based pharmacophore model was generated and 
used for virtual screening of natural compound libraries. A 
series of molecular docking steps (standard precision and 
extra precision docking) retrieved seven potential inhibitors 
of MRP3 which showed good reactivity parameters follow-
ing density functional theory analysis. Molecular dynamic 
simulation of the best binding compound in complex with 
the protein model was run alongside that of the reference 
compounds. Analysis from the resulting trajectories as com-
puted from the thermodynamic parameters plots showed not 
only the increased flexibility and higher interaction poten-
tial of the residues of the receptor towards the NPC5486 as 
indicated by the RMSF but also the higher stability as indi-
cated by the RMSD, RoG and H-bond of the ligand–pro-
tein complexes. The cluster analysis of the trajectories 
further revealed that the observed interactions with impor-
tant residues were preserved in the dynamic environment; 
these observations were further verified from MMGBSA Ta
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Fig. 11  HOMO and LUMO 
orbital structure of a NPC5486, 
b NPC200761, c NPC10754, d 
Cyrtophyllone_B, e NPC17677, 
f NPC476840, g 33,434
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computations, which show the free energy of binding of the 
ligands to the protein as well as the free energy contribu-
tion per residue. Thus, the study has revealed possible drug 

candidates and therapeutic approaches which could help 
in the development of MRP3 inhibitors in the treatment of 
acute leukaemia.

Fig. 12  Molecular dynam-
ics analysis results a RMSD, 
b RMSF, c RoG, d SASA, e 
number of hydrogen bonds
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Fig. 12  (continued)

Table 10  Cluster analysis of vincristine and NPC5486 from molecular dynamics simulation

Salt bridges Hydrogen bonds Hydrophobic interactions

Cluster 
Number

Number Amino Acids in receptor Number 
of Bonds

Amino Acids in receptor Number of 
interactions

Amino Acids in receptor

Vincristine c1 1 ARG1044 3 LYS117 D121 ASP121 9 GLU120 LEU228 LEU238 
ALA239 LEU379 
LEU379 LEU379 
PRO380 TYR1041

c2 1 ARG1044 1 SER124 3 GLU120 LEU228 ALA239
c3 0 None 2 SER124 ASP382 4 PHE125 LEU228 PRO380

NPC5486 c1 5 GLU120 ASP127 ASP127 
GLU162 GLU162

3 GLU162 LEU228 LEU379 9 GLU120 LEU228 LEU238 
ALA239 LEU379 
LEU379 LEU379 
PRO380 TYR1041

c2 5 ASP127 ASP127 GLU162 
GLU162 TYR170

4 LEU166 TYR169 LEU228 
TYR376

3 GLU120 LEU228 ALA239

c3 2 TYR170 GLU235 5 PRO128 LEU166 TYR169 
TYR376 LEU1033

4 PHE125 LEU228 PRO380
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Fig. 13  Interaction view of a vincristine and b NPC5486 with the amino acid residue of representative structure of (i) cluster one, (ii) cluster 
two, (iii) cluster three gotten from the cluster analysis of the 50 ns MDs trajectory of the complexes
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