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Abstract

There are several existing methods for synthesizing metallic nanoparticles, with the most commonly applied being chemical
reduction methods. Recently, the biogenic synthesis of noble metal nanoparticles has been developed. These methods involve
biological systems such as bacteria, fungus, and plant extracts. Green and biological methods are economical, eco-friendly,
and non-toxic methods of obtaining nanoparticles for possible biomedical applications. Here, we present a short overview
of the biogenic synthesis of platinum nanoparticles using plants, plant extracts, bacteria, fungi, and other substances.
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Introduction

There are multiple methods of obtaining platinum nanoparti-
cles, which can be divided into two strategies: top to bottom
(top-down) and bottom to top (bottom-up) (Habibullah et al.
2021; Loza and Epple 2019). The first consists of structur-
ally decomposing a large metal (that is, the bulk material),
which has some drawbacks, such as the high energy cost
of the equipment, limited control over the size or shape of
adjustments, reduced heterogeneity, and increased material
homogeneity. Examples of this strategy include photolithog-
raphy, electron beam lithography, milling techniques, ano-
dizing, and etching with ions and plasma. These processes
can produce ligand-free nanoparticles (Figure 1).
Although bottom-up is one of the most common tech-
niques for preparing platinum nanoparticles, which con-
sists of self-assembly of the particles using wet chemical
methods, this results in greater reliability in morphology
and size. However, one of the most frequently mentioned
drawbacks is the presence of impurities from the use of toxic
inorganic and organic chemicals that remain in the reaction
mixture. As the production of these colloidal metals requires
chemical reactions, which involve the reduction of a Pt (II)
precursor, such as potassium tetrachloroplatinate (K,PtCl,)
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or platinum (II) bis(acetylacetonate); or a Pt (IV) precur-
sor such as potassium (IV) hexachloroplatinate (K,PtCly)
(other examples: chloroplatinic acid (H2PtCl6), platinum
(IT) chloride (PtClz), tetraammineplatinum(II) nitrate
(Pt(NH3 ) 4 (NO; ) 2), or tetraammineplatinum(II) hydroxide
hydrate (Pt(N H, ) 4(OH), - xH, O, tetraammineplatinum (II)
chloride hydrate (Pt(NH;),Cl, - xH,0), ezc.) (Chen and
Holt-Hindle 2010; Hikosaka et al. 2008; Kankala et al. 2020;
Mironava et al. 2013; Shim et al. 2017; Zheng et al. 2013)
dissolved in appropriate solvents in the presence of reducing
agents (e.g., hydrogen, carbon monoxide, sodium borohy-
dride, ethylene glycol, glycerol, etc.), tensioactive materials
or surfactants (polyvinyl alcohol (Asharani et al. 2010), Brij-
58 (Shim et al. 2017), cetyl trimethyl ammonium bromide
(Lee et al. 2006), sodium dodecyl sulfate (Mohammadi et al.
2013), etc.), ligands (e.g., peptides, proteins, nucleic acids,
small molecules, etc.), or stabilizing/coating polymers (e.g.
polyvinylpyrrolidone (Herricks et al. 2004; Koebel et al.
2008), hyaluronic acid (Zhu et al. 2017), alginic acid, thi-
ols, etc.) that help reduce dispersion and prevent aggregation
and may or may not endanger complex biological systems.
Thus, we must carefully consider the design depending on
the objectives we want to achieve since the biological and
chemical applications are diverse (Fig. 2) (Liu et al. 2014;
Stepanov et al. 2014; Yamada et al. 2015).

Among these strategies, we find a set of methods such
as chemical or electrochemical precipitation, sol-gel, laser-
induced pyrolysis, chemical vapor deposition (CVD), syn-
thesis by plasma, or flame spraying (Habibullah et al. 2021).
These ideas, however, have not remained stagnant; rather,
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Fig. 1. Convergence of top-
down and bottom-up physical
and chemical methods for
nanoparticle formation
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they have formed new links with biological studies with the
aim of obtaining environmentally friendly syntheses since
living beings interact with the environment (Mohanpuria
et al. 2008; Pedone et al. 2017; Siddiqi and Husen 2016).
Modification and optimization have been used to obtain
high-quality products, directing responses through product
safety with the help of bio-assisted synthesis and the use
of green chemistry. The sizes and shapes of the nanopar-
ticles are diverse, since all syntheses use variables such as
pH, temperature, reducing agents (chemical or biological),
and the concentration of the platinum precursor compound,
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making endless products with different characteristics
(Jameel et al. 2020).

Due to their unique physicochemical properties, e.g.,
catalytic, magnetic, and optical properties, Pt nanoparticles
have potential technological interest (Chen and Holt-Hindle
2010; Elder et al. 2007). The latter are of utmost importance
for biomedical use since, from the catalytic perspective, plat-
inum is inert and does not corrode within the human body,
endowing it with the ability to inhibit cell division in mam-
mals and in some bacteria (Jan et al. 2021; Puja and Kumar
2019). Regarding optical properties, platinum nanoparticles
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are distinguished by the presence of a very distinctive local-
ized surface plasmon resonance in the UV-Vis region, a
characteristic that is not evident in the bulk material. On
the other hand, we find the efficiency of heat generation is
higher than in other nanoparticles (del Valle et al. 2020;
Sadrolhosseini et al. 2019; San et al. 2013). Therefore, Pt
nanoparticles could be an alternative treatment in hyper-
thermia therapy (Fang et al. 2020; Zhao et al. 2019). These
properties have made platinum nanomaterials significant
candidates for biomedical applications in catalysts, sensors,
nanomedicine, anti-inflammatories, enzymes, and pharma-
ceutical immobilization, among others (Madlum et al. 2021;
Naseer et al. 2020). Recently, the effect of Pt nanoparticles
on human cells for cancer therapy was investigated (Almeer
et al. 2018; Gurunathan et al. 2019, 2020; Ismail and Al-
Radadi 2017; Kankala et al. 2020;). The increased number
of biological and biomedical applications has necessitated
the development of new synthesis methods.

Biological synthesis methods

Methods for the green synthesis of nanoparticles are eco-
logical routes that represent an alternative to chemical and
physical methods. These methods eradicate or reduce the
generation of dangerous substances. Various metal nano-
particles have been synthesized using plant phytochemicals
as reducing agents and stabilizers without the use of costly
and toxic chemicals. This green synthesis involves biological
methods using plants, enzymes, biomolecules, agricultural
and industrial waste products, microorganisms, or algae
(Alshatwi et al. 2015; Ojo et al. 2021). Nanobiotechnology
is the application and use of nanotechnology in life sciences,
including in molecular diagnostics, drug discovery, drug
delivery, and the development of nanomedicine (Jain 2005;
Rahman et al. 2019). Green nanobiotechnology should be
defined as synthesizing nanoparticles or nanomaterials using
biological routes with the help of various biotechnological
tools (Patra and Baek 2014).

Biological or bio-assisted synthesis methods are very
diverse as they require biological organisms (unicellular or
multicellular), which act as “bio-laboratories” or “nano-fac-
tories” for producing biogenic nanoparticles (Jan et al. 2021;
Jeyaraj et al. 2019; Pedone et al. 2017; Puja and Kumar
2019). Metallic nanoparticles are synthesized through meta-
bolic pathways or using derivatives (e.g., extracts, wastes,
animal products) of these organisms. Syntheses can occur
intracellularly or extracellularly (Ali et al. 2015; Puja and
Kumar 2019; Sharma et al. 2019). Using these methods,
safer, more ecological, and more environmentally friendly
protocols have been designed. However, these methods also
have disadvantages (Jameel et al. 2020; Narayanan and Sak-
thivel 2010; Sharma et al. 2019). Particular disadvantages

include the fact that this method is not easy to control in
terms of designing the shape, size, crystal growth, and sta-
bility, and the possibility of finding endotoxins when the
reaction has been completed (Jameel et al. 2020). However,
the advantages are that biological organisms can be cul-
tured easily and can manifest high intracellular absorption
of metallic salts, and the fact that it is easier to manage the
biomass and waste that these may generate than the toxic
reagents derived from the chemical pathways described
previously (Fahmy et al. 2020; Naseer et al. 2020; Rai and
Duran 2011).

Biological synthesis methods are frequently used to
prepare a wide variety of nanoparticles, the most common
among them being Au and Ag (Cardoso-Avila et al. 2021;
Kalimuthu et al. 2020; Tarannum et al. 2019; Tepale et al.
2019; Zamiri et al. 2011). Other metallic and oxide nano-
particles are also reported with these methods, like Pd, Cu,
Fe, CuO, Fe;0,, ZnO TiO,, NiO, CeO,, etc. (Ishak et al.
2019; Marouzi et al. 2021; Singh et al. 2018; Sabouri et al.
2019, 2020a, b).

Here, we briefly review the use of microorganisms such
as bacteria, fungi, and algae and complex systems including
plants, along with products derived from all of these, for the
synthesis of platinum nanoparticles (Fig. 3, Table 1).

Plant-mediated synthesis

These biogenic pathways can be targeted in two ways. The
first is by intracellular synthesis, where metallic nanopar-
ticles can bioaccumulate. The second is extracellular syn-
thesis, where platinum accumulation is mediated by plant
biomass (e.g., agro-industrial waste) so that all the compo-
nents of the plant from the roots, stem, bark, leaves, flow-
ers, fruits, and even peels and bio-derivatives (e.g., extracts,
gums, etc.) obtained from these components are employed.
All parts of the plant have biomolecules to a greater or lesser
extent, for example, proteins, enzymes, flavonoids, polyphe-
nols, cannabinoids, terpenoids, glycosides, sugars, alcohols,
aldehydes, amines, carbonyls, etc., that aid in the reduction
of platinum salts and their stabilization for the formation of
metal nanoparticles. An advantage of this method is that it
eliminates elaborate stages in the maintenance process that
occur in cell cultures. Thus, the use of plants can be suitably
scaled up for large-scale synthesis.

Many living plants have been shown to function as
aids in the formation of nanoparticles by absorbing metal
ions; the first report of this occurrence was in 2002 by
Gardea-Torresdey et al. when it was demonstrated that
gold nanoparticles had formed in the roots and shoots of
alfalfa plants that grew in an environment rich in potas-
sium tetrachloroaurate (KAuCl,), thus intracellularly ini-
tiating the bioreduction of the metal salt to form insoluble
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Fig. 3. Factors that affect

the biosynthesis of platinum
nanoparticles and the organisms
and by-products that are used to
obtain them

compounds (e.g., nanoparticles) (Gardea-Torresdey et al.
2002). It was later shown that alfalfa could also form silver
nanoparticles when exposed to a solid medium rich in sil-
ver salts (Gardea-Torresdey et al. 2002, 2003). Therefore,
Bali et al. (2010) selected two facultative metallophyte
plants (Medicago sativa and Brassica juncea), as it had
previously been shown that both species accumulated pre-
cious metals; thus, the distribution of Pt in vivo in the
different tissues of these organisms was determined for
the first time using proton-induced X-ray emissions. In
both plants, Pt concentration increased by raising aque-
ous substrate concentration, prolonging exposure time, and
lowering pH to 2 and 3 for Medicago sativa and Brassica
Jjuncea, respectively. Pt nanoparticles between 3 and 100
nm with varied morphology were formed due to the action
of local metabolites (Bali et al. 2010). Despite this, infor-
mation on the intracellular biosynthesis of Pt nanoparticles
in living plants is still scant, but it has been possible to
accumulate information about synthesis by using various
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products and by-products of plants, as presented in Table 1
(Naseer et al. 2020).

The first study to focus on the green chemistry of Pt
nanoparticles was that of Song et al. who discussed the bio-
synthesis of this metal with plant extracts in 2010 (Song
et al. 2010) using an extract from a Diospyros kaki leaf that
functioned as a medium and a reducing agent in the eco-
logical extracellular synthesis of biogenic Pt nanoparticles
in an aqueous solution of K,PtCl, - 6H,0O with a conver-
sion from platinum ions to platinum nanoparticles of over
90% and a concentration of foliar biomass > 10% at 95 °C.
The microscopic studies reported for transmission electron
microscopy (TEM) showed oscillations between 2 and 20
nm, giving a mixture of shapes that included spheres and
disks, whereas the Fourier transformed infrared spectro-
scopic studies revealed the presence of metabolites such as
terpenoids, where the reduction process is not an enzyme-
mediated process because the nanoparticle formation tem-
perature exceeds 95 °C. Therefore, these techniques show
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how the modification of incubation temperature, concentra-
tion of foliar extract, and metallic ions influence the result-
ing nanoparticles’ yield, size, and shape.

Plant extracts from Taraxacum laevigatum, which is a
medicinal plant, had a high content of phenolic biomolecules
that were the principle reducing and stabilizing agents of Pt
nanoparticles (Tahir et al. 2017). The obtained Pt nanopar-
ticles had high antibacterial activity against two bacterial
species, B. subtilis and P. aeruginosa.

A leaf extract from Ocimum sanctum (tulsi) has also been
used as a reducing agent in the synthesis of Pt nanoparticles;
tulsi leaves had abundant tannins, such as gallic acid and
chlorogenic acid, and alkaloids, glycosides, and saponins
(Soundarrajan et al. 2012).

Another plant with abundant phytoconstituents is the
Carica papaya, which contains phenolic compounds,
tocopherol, ascorbic acid, flavonoids, and reducing sugars.
A leaf extract of this plant has been used in the green syn-
thesis of Pt nanoparticles and bimetallic aurium @platinum
nanoparticles. The metabolites in C. papaya leaf extract
played a crucial role in the bioreduction of precursor metals,
especially polyphenolic compounds that were also respon-
sible for stabilizing and capping the nanoparticles (Olajire
and Adesina, 2017). The proposed reaction mechanism is
presented in Fig. 4.

Fig. 4. Proposed mechanism for
the bioreduction of Pt** to Pt
atom by a typical polyphenolic
compound in C. papaya (Olajire
and Adesina 2017. Reproduced
under Creative Commons Attri-
bution CC-BY 4.0)

OH

In addition to the extracts, the powder of dried leaves has
also been used in the synthesis of platinum nanoparticles,
as reported by Sheny et al. (2013). Dried leaf powder of
Anacardium occidentale was used, and the effect of different
amounts of leaf powder (50, 100, 200, 300, and 400 mg) on
the formation of nanoparticles was investigated. The amount
of leaf powder determined the size of the particles; a smaller
amount of powder seems to be adequate for the formation
of small rod-shaped Pt nanoparticles (Sheny et al. 2013).

The variation in pH and temperature also has conse-
quences on the size and shape of the nanoparticles. The
synthesis of Pt nanoparticles using herbal Bidens tripartita
extract has been reported. The reaction was maintained at
90 °C for 8 hours with a pH of 8 to ensure the reduction of
Pt** to Pt°. This pH facilitated the formation of more stable
Pt nanoparticles; the particles showed an irregular rod shape
with a size of 4 nm (Dobrucka, 2016b).

Algae-mediated synthesis of platinum
nanoparticles

The use of algae for the green synthesis of nanoparticles has
the advantages that it is a low-cost raw material, has a large
number of secondary metabolites, and is free of secondary

OH
Pt+
Yo
B
+ H" + PP
O
OH
(o]
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contamination. The green synthesis of platinum nano-
particles has been reported using the brown algae Padina
gymnospora, which is abundant on the coasts of the Ram-
anathapuram district of the state of Tamil Nadu, India (Shiny
et al. 2014). The obtained Pt nanoparticles had a spheri-
cal shape in the size range of 5 to 20 nm. Ramkumar et al.
(2017) also used this alga for the production of platinum
nanoparticles with a truncated octahedral shape and a size
range of 5 to 50 nm.

Stable palladium and platinum nanoparticles were pro-
duced using extracts of the green alga Botryococcus brau-
nii (Arya et al. 2020). The green-synthesized nanoparticles
exhibited antimicrobial activity against Gram-positive and
Gram-negative bacterial strains, antifungal activity against
a fungus, and antioxidant activity.

Synthesis of Pt nanoparticles mediated
by fungi

Among living organisms, fungi are now estimated to account
for approximately 0.8 to 1.5 million species on the planet, of
which 100,000 have been described (Rai et al. 2009; Teder-
soo et al. 2014). We have taken particular advantage of their
secondary metabolites, which are associated with different
structures (e.g., terpenoids, alkaloids, quinones, xanthones,
peptides, steroids, flavonoids, phenols, and phenolic com-
pounds), meaning that interest has turned to considering
them as an alternative method for the production of nano-
particles, on both small and large scales in laboratories and
industries, respectively (Argumedo-Delira et al. 2020; Sriv-
astava 2019). Fungi have the ability to bioaccumulate and
tolerate metals thanks to their large secretions of proteins
and enzymes. Thus, we were able to use them to synthesize
metallic nanoparticles, avoiding agglomerations of parti-
cles by using either extracellular or intracellular processes
(dependent on metabolism) and the fact that these species
require only simple means for supervenience and prolifera-
tion, making subsequent biomass processing easy—which is
of great economic advantage (Argumedo-Delira et al. 2020;
Subashini and Bhuvaneswari 2018).

In 2006, T. Riddin et al. began work on the first proto-
col for obtaining platinum nanoparticles using Fusarium
oxysporum fungi (Riddin et al. 2006). The fungal strain
was evaluated and found to be successful for the inter
and extracellular production of Pt nanoparticles in a size
range of 10-100 nm with varying shapes (circular, trian-
gular, hexagonal, square, and rectangular) according to
TEM studies. The effects of temperature and concentra-
tion of hexachloroplatinic acid (H,PtCl) and pH during
the synthesis of the material were studied. Compared to
intracellular synthesis, extracellular synthesis is more
advantageous due to the simple post-processing techniques

@ Springer

involved. Furthermore, intracellular synthesis requires
advanced instruments to extract nanoparticles from
biomass (Riddin et al. 2006). Syed and Ahmad (2012)
reported the extracellular synthesis of stable Pt nanopar-
ticles using the same microorganism. They showed that
when working at room temperature, morphology remains
spherical and size ranges between 15 and 30 nm, as shown
by TEM analysis. It is therefore apparent that temperature
plays an important role in the shape, as already mentioned
(Syed and Ahmad 2012). Thus, production of nanoparti-
cles depends mostly on the type of fungus involved and
consequently on abiotic factors (temperature, pH, metal
ions, and time) (Jameel et al. 2020).

Castro-Longoria et al. (2012) reported the use of the
Neurospora crassa fungus for the intracellular synthesis of
nanoparticles (4-35 nm) at room temperature. The mate-
rial described formed quasi-spherical and monocrystalline
nanoaggregates with a mean size between 20 and 110 nm.
Similar results were obtained using fungal extracts to pro-
duce Pt nanoaggregates at a range of 17-76 nm, so it can be
used as a reducing and stabilizing agent for the synthesis of
Pt nanoparticles (Castro-Longoria et al. 2012).

In 2018, Subramaniyan et al. synthesized Pt nanoparticles
using the free cell culture of Penicillium chrysogenum as a
reducer, which was treated in two different environments
(normal gravity and micro-gravity), obtaining spheres with
a diameter of 15 nm and 8.5 nm, respectively, and evaluat-
ing its toxic effect on the mouse myoblast cell line (C2C12).
Results showed that cytotoxicity depends on the concen-
tration of the Pt nanoparticles; a decrease in cell viability
(apoptosis) is caused by surface stress and the release of
ions, which causes an increase in the generation of reac-
tive oxygen species (Subramaniyan et al. 2018). In this way,
in 2019 Gupta and Chundawat analyzed the antimicrobial
potential and antioxidant activity of Pt nanoparticles syn-
thesized from extracts of Fusarium oxysporum, where the
hydrogenase enzyme, which behaves as an electron shut-
tle with excellent redox properties, is already known to be
present. This fungus is thus able to achieve this nanoeffect
on metal ions (Gupta and Chundawat 2019), where they
show good to moderate antibacterial activity against vari-
ous pathogens, affirming that biosynthesized Pt nanoparti-
cles are non-toxic (Nida and Khan 2017; Duran et al. 2005).
Argumedo-Delira et al. (2020) used a set of filamentous
fungi with the aim of evaluating the effect of groups of pre-
cious metals on them. Platinum specifically was shown not
to have secondary effects on their growth, and so Pt nano-
particles can be considered synthetic alternatives for pos-
sible biotechnological or biomedical applications. Notably,
however, many organisms of this type can still be considered
pathogens as they release mycotoxins, phytotoxins, etc., that
can cause side effects in animals and humans (Argumedo-
Delira et al. 2020).
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Bacterium-mediated synthesis

It is well known that many organisms, both unicellular and
multicellular, produce inorganic materials intracellularly or
extracellularly (Bhattacharya and Gupta 2005; Singh and
Singh 2019). Therefore, over the past two decades, research
has focused on bacteria as a potential alternative for nano-
material biosynthesis, employing their natural defense mech-
anisms that have evolved over time under extreme environ-
mental conditions (Riddin et al. 2010; Solak et al. 2017).
These stress conditions have allowed these microorganisms
to develop survival mechanisms to overcome particular
problems, including the toxicity caused by high concentra-
tions of xenobiotic ions or metals (e.g., Au, Ag, Cd, Sn, Hg,
Pb, etc.) by means of an active process (reductase/hydro-
genase enzymes) or a passive process (metallothioneins)
(Bertini et al. 2007). In each of these examples, processes
may be mediated by various types of resistance mechanisms
encoded by plasmids (or transposons) that can be activated
not only in their offspring but also in other bacteria of the
same or different species, triggering the mobilization of
enzymatic pathways in order to initiate detoxification and
maintain survival (Rai and Duran 2011; Rouch et al. 1995).
Consequently, nanotechnology has used these pathways in
order to bioreduce metal ions to form more stable metal par-
ticles (Beveridge et al. 1996; Carpentier et al. 2003; Rouch
et al. 1995; Silver 1996) (Fig. 5).

These mechanisms include efflux systems and alterations
in solubility and toxicity due to changes in the redox state
of metal ions, complexation and chelation reactions, pre-
cipitation of metals either extracellularly or intracellularly
or in the periplasmic space, and the lack of specific sys-
tems for transport of metals (Carpentier et al. 2003; Rai and
Duran 2011). In 2005, Oleg A. Zadvorny and collaborators
(Zadvorny et al. 2005) demonstrated that two phototrophic
purple sulfur bacteria (PSB) (Thiocapsa roseopersicina

Fig. 5. Extracellular and
intracellular bacterial synthesis
of nanoparticles ( adapted from
Bloch et al. 2021)

Protein: scare;\

and Lamprobacter modestohalophilus) can reduce Ni (II),
Pt (IV), and Pd (IT) due to the action of hydrogenase with an
electron donor. These hydrogenases have valuable theoreti-
cal and practical utility as a type of “metal oxidoreductase.”
Thus, by 2006 Maggy F. Lengke et al. (Lengke et al. 2006)
were already offering the first viable alternative method to
standard chemical methods for developing Pt nanoparticles.
In this study, the synthesis of Pt nanoparticles by interacting
platinum (IV) chloride (PtCl4) with a filamentous cyano-
bacterium from the species Plectonema boryanum (UTEX
485 strain) was investigated in order to react and precipitate
these as amorphous spherical nanoparticles (<0.3 um), both
intracellularly and extracellularly. The presence of intracel-
lular platinum suggested that platinum entered the cells as
PtCl, and, according to complementary analyses, the Pt (IV)
complex was reduced to Pt (IT) and then to Pt (0) due to its
interaction with sulfur, phosphorus, and nitrogen, They thus
deduced a staged reaction as shown below (Brayner et al.
2007; Lengke et al. 2006):

Py(IV)[PtCly )| — Pt (D[Pt (II) — organics| — Pt(0) (1)

where Pt (II) forms a type of organometallic complex,
although this is still not very clear. However, three years
later they proposed, with experimental evidence based on
an uncharacterized consortium of sulfate-reducing bacteria
(SRB), a two-stage enzymatic process for the bioreduction
of Pt (IV) to Pt (0) by means of hydrogenases with interfer-
ence from two electrons (Riddin et al. 2009).

2H e P B EO = 0 eV )
The first “fast” stage from Pt (IV) to Pt (Il) occurred in the
cytoplasm through a hydrogenase redox system, whereas Pt
(IT) begins the second stage in a “slow” way, diffusing into
the periplasm and then reducing to Pt (0) (Govender et al.
20009; Siddiqi and Husen 2016):
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et 25, pt 2, pyo 3)

by one or more oxygen-sensitive periplasmic hydrogenase.
However, this mechanism remains debatable and will be
clarified by greater understanding of the platinum bioreduc-
tion mechanism (Govender et al. 2010).

Furthermore, this finding confirms the studies and
hypotheses proposed in 2007 by two research groups
involving hydrogenase enzymes and reducing bacte-
ria, Shewanella algae and a mixed consortium of SRB,
respectively, where it was demonstrated that the platinum
salts were bioreduced and the metallic Pt deposited in the
periplasm (Konishi et al. 2007; Rashamuse and Whiteley
2007). Additionally, unlike Zadvorny et al. (2005), in the
research of Riddin et al. (2009) Pt (IV) ions were shown
to bioreduce to Pt (0) in the presence or absence of an
exogenous electron donor, while Zadvorny only used an
electron donor (methyl viologen). In 2008, the potential of
the purified enzyme to recover platinum from wastewater
was investigated, demonstrating the industry application
(Rashamuse, et al. 2008). Riddin et al. (2010) show that,
like chemical syntheses, the concentration of platinum
salt and proteins plays an important role in the control
of size and shape, as their previous studies showed that
when using only cells, amorphous deposits of Pt (0) were
obtained, but when the cells are eliminated with varia-
tions of salt and protein extracts, the morphology of the
nanoparticles may vary (Riddin et al. 2009; Brayner et al.
2007).

To date, researchers have relied primarily on known
freshwater bacteria and very little research has focused on
other bacteria. Five years ago, however, Maes et al. (2016)
showed a radical change when using halophilic bacterial
cultures from the Halomonadaceae, Bacillaceae, and Idi-
omarinaceae families, which managed to recover > 98%
of Pt (II) and > 97% of Pt (IV) at pH 2 over a period of
between 3 and 21 hours (453 mg Pf,.oyereq h ™' g~ biomass)
from solutions of K,Pt(I)Cl, and K,PtIV)Cl, at
100 mg L™!. Based on previous studies, we can better
select the microorganisms to be adapted to industrial con-
ditions that we require today, as not all bacteria are able
to reduce platinum (Konishi et al. 2007; Maes et al. 2016;
Yong et al. 2002).

Baskaran et al. proposed a mechanism for the extracel-
lular production of Pt nanoparticles in Streptomyces sp.
The chloride reductase enzyme is involved in the nitrogen
cycle and is responsible for the reduction of chloride to
chlorine. The nicotinamide adenine dinucleotide-depend-
ent chloride reductase enzyme is known to be an important
factor in the biogenic synthesis of nanoparticles. A pos-
sible mechanism is the electron shuttle enzymatic metal
reduction process (Baskaran et al. 2017):

@ Springer

C,,H,;N,0,,P, + K,PtCl, + 290,
— 21CO, 1 +7NO, 1 +2H,PO, + 6HCI @
+2KOH + Pt | +6H,0 + %HZ(T)

Due to their ability to reduce metals, sulfate-reducing bac-
teria are not only used to remove toxic metals but also for
the biogenic synthesis of platinum nanoparticles in which
the Acinetobacter calcoaceticus and Desulfovibrio vulgaris
strains have been used (Gaidhani et al. 2014; Martins et al.
2017).

Synthesis mediated by other
microorganisms or substances

As observed in the previous sections, protocols have been
developed to obtain monodispersed and stable platinum
nanoparticles by bio-synthetic methods, where derivatives
of plants, bacteria, and fungi are the main promoters of
platinum nanoparticle synthesis. However, there are other
methods using biogenic elements.

One of the first reports on the use of elements of this
nature was made by Nadagouda and Varma (2006), who
used one of the most frequent organic cofactors in nature,
vitamin B2, with a density-assisted self-assembly method
in different solvent media. Additionally, obtaining platinum
nanoparticles without the intervention of reducing agents in
the system to transform the precursor of platinum is being
considered—something that many end up happening even
with the use of friendly materials (Cai et al. 2009; Deng et al.
2009). Benaissi et al. (2010) used cotton nanocrystalline cel-
lulose alone to do all the reduction and stabilization work,
thanks to the functional groups at the surface of the biopoly-
mer. It is well known that cellulose (Benaissi et al. 2010),
lignin (Coccia et al. 2012), and hemicelluloses (Lin et al.
2016) are the main constituents of the cell wall in plants,
so wood becomes interesting due to the electron-rich nature
of hydroxyl and ether groups, which can act as high-speed
reducers of metal ions that are suitable for the preparation of
Pt nanoparticles (Lin et al. 2011). However, we can also find
other interesting derivatives such as fulvic acid (Coccia et al.
2012), humic extract, and bacterial cellulose matrixes (Ari-
tonang et al. 2014). Information about biogenic substances is
accumulating slowly, but safe approaches are being worked
on, as these do not require toxic reagents to obtain this mate-
rial, thus preventing the release of toxic substances that may
play an important role in the immune system. This has led
to more complex substances such as sheep's milk, quail egg
yolk, and honey being used in an attempt to maintain mild
conditions (Gholami-Shabani et al. 2016; Nadaroglu et al.
2017; Venu et al. 2011). These are often used as a mix-
ture of simultaneous reducing and stabilizing agents. In this
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sense, the bio-manufacture of these elements is developing
as a modern and appropriate technique for improving the
shape, size, and stability of Pt nanoparticles with the help
of techniques that are apt for clarifying their nanoscopic
levels (Jeyaraj et al. 2019). Because these are new synthetic
strategies, work to establish training mechanisms has been
limited. However, these techniques are particularly useful,
as by using renewable resources of this type one saves on
independent reducing and stabilizing agents. But applica-
tions continue to be focused on catalysis, neglecting the pos-
sible applications related to anticancer, antimicrobial, and
antifungal activity.

Conclusion

All these synthetic strategies reveal an effort to improve the
ecological conditions that surround us by using less toxic
synthesis methods. These constructive syntheses are con-
trolled by the platinum precursor, temperature, and use of
reagents or organisms that will affect the shape and size of
the platinum nanoparticles, playing a decisive role in safety
and in producing successful applications in the biomedical
context. Due to the complexity of the biological environ-
ment, where each organism produces materials that result
in a corresponding reaction, devising a universal strategy
seems unlikely. However, results still show discrepancies.
Thus, platinum nanoparticles are undergoing rigorous nano-
toxicological investigations with the aim of outperforming
their more commonly available analogs (nickel, gold, sil-
ver, iron oxide, gadolinium, and titanium dioxide) and their
predecessors (cisplatin, carboplatin, oxaliplatin, etc.), dem-
onstrating an improved cytotoxic and pharmacokinetic pro-
file (Almarzoug et al. 2020; Gurunathan et al. 2020, 2019;
Kankala et al. 2020; Labrador-Rached et al. 2018; Ma et al.
2019; Shatokhina et al. 2020; Zhang et al. 2018).
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