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Abstract
In this paper, different nanocomposites based on copper metal particles (Cu) grown on reduced graphene oxide (RGO) were 
synthesized by the cost-effective, one-step, and facile sonochemical approach. The prepared nanocomposites were applied 
as an anticancer agent for breast cancer cell lines (MCF-7). The sonication of graphene oxide (GO) solution in the presence 
of Cu transformed it into RGO. By varying Cu concentration (x) in GO solution, series of RGO/Cux nanocomposites were 
obtained (where x = 15, 30, and 50%). The reduction degree of RGO was dependent on Cu concentration, as revealed by 
XRD and FTIR. Raman spectroscopy revealed the increased defect level of RGO/Cu nanocomposites compared to GO. From 
TGA, the thermal stability of nanocomposites was increased by increasing Cu concentration. The smooth GO sheets were 
restacked upon the incorporation of Cu, as shown by SEM. The size of Cu nanoparticles size was decreased upon sonication, 
as revealed by HRTEM. It found that all prepared RGO/Cu nanocomposites have MCF-7 inhibition, but RGO/Cu30 shows 
the most inhibition. Also, the gene expressions of Cathepsin D, MMP9, and Bcl-2 decreased, and p53 increased by RGO/
Cu30, which induced anti-metastatic activity and apoptosis in MCF-7 cells. RGO/Cu30, we concluded, can be employed as 
an anti-metastatic agent by inhibiting Cathepsin D and MMP9, as well as an anticancer agent by inducing P53 and inhibit-
ing Bcl-2 expression.
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Introduction

Since the discovery of graphene, many researches have 
been done on graphene due to its exclusive properties. The 
excellent chemical and physical properties of graphene and 
graphene-based materials had attracted scientific commu-
nity attention in the applications such as supercapacitors, 
polymer processing, photocatalysis, sensors, heavy metal 
absorbance, and composite materials (Moussa et al. 2011; 
Novoselov et al. 2005; Stankovich et al. 2006; Schedin et al. 
2007; Singh et al. 2011; Goldsmith et al. 2019; Ai et al. 

2019; Strauss et al. 2018; Ahmed et al. 2021; Atta et al. 
2021a).

Also, scientists studied graphene’s biological properties 
and they found that it is a very good material for the pro-
duction of scaffolds (Pinto et al. 2013; Jakus et al. 2015), 
implants (Bitounis et al. 2013), biosensors, tissue engineer-
ing, and drug carrier (Shadjou et al. 2018; Lu 2019; More 
et al. 2019).

Graphene applications also extended to be used as anti-
cancer material depending on its low toxicity, can induce 
apoptosis, local action, and a less ability to move (Zhang 
et al. 2019; Yang et al. 2013). As well as, graphene surface 
properties allow bind several nanomolecules like gold, sil-
ver, copper, and quantum dots, which in turn enhance thera-
peutic and imaging techniques (Rahman et al. 2019).

There are several graphene preparation methods, such 
as epitaxial growth (Sutter 2009), mechanical exfoliation 
(Yi and Shen 2015). Although low quality of produced gra-
phene, the reduction method of GO is the most recognized 
for graphene preparation regarding the cost and large scale 
production (Pei and Cheng, 2012). This method includes 
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graphite oxidation to obtain GO as the first step, and the sec-
ond step is GO reduction. The reduction may be performed 
chemically, thermally, or by irradiation (McAllister et al. 
2007; Zhang et al. 2012; Atta et al. 2021b).

Cancer is the most serious health problem worldwide 
(Huma et al. 2019). It was expected that 20–30 million 
new cancer cases and 13–17 million people would die from 
cancer worldwide by 2030 (Katikireddi and Setty 2013). 
Because of the high death rate associated with cancer and 
the serious chemotherapy and radiotherapy side effects, it is 
of great interest to find novel anticancer agents.

Recently, the researchers were focused on the metals as 
anticancer because they exhibit less toxicity and exhibit 
more tumor antiproliferative activity (Sorenson 1992; Studer 
et al. 2010).

Transition metal complexes have been broadly studied 
for their activity, like nuclease using the metal and dioxygen 
redox properties to yield reactive oxygen species to induce 
DNA cleavage by base modification or direct strand scission 
(Burrows and Muller 1998). Recently, metal nanoparticles 
such as gold, silver, and copper have been tested as antican-
cer agents (Jain et al. 2012; Wei et al. 2015; Jose et al. 2011).

The copper (Cu) complex compounds have proved to have 
varied anticancer activity due to the broad-spectrum antican-
cer activities (Santini et al. 2013), the selective membrane 
permeability of cancer cells to copper compounds. Besides, 
copper has longer stability and low cost than gold and silver 
(Metcalfe and Thomas 2003; Laha et al. 2014). The devel-
opment of nanocomposites that combine a carbon-based 
material and metal particles enhances anticancer due to their 
high surface area, the excellent stronger inhibitory effect (Hu 
et al. 2012). Furthermore, copper and its alloys have been 
used for antibacterial purposes practically since their discov-
ery, even before discovered illnesses microbial nature. Cop-
per is an important trace metal for flora and fauna, although 
it is poisonous to some bacteria, unlike lead, which was once 
employed for similar purposes (Dobrovolný et al. 2017).

The nanocomposites synthesis and modification by high-
intensity ultrasound irradiation technique (sonochemical) 
received great attention due to its advantages. It provides 
energy efficiency, homogeneity, ease, low cost, fast reac-
tion kinetics, and low pressure needed for reactions (Hunge 
et al. 2019). The high-energy ultrasound produced by cavita-
tion provides implosive collapsing bubbles in the reaction 
medium resulting in radicals that initiate the reaction (Xu 
et al. 2013).

In the present work, nanocomposites that consist of 
reduced graphene oxide (RGO) incorporated with differ-
ent ratios of Cu were prepared sonochemically as a simple 
and fast method. Herein, Cu metal particles act as a reduc-
ing agent to convert GO into RGO. The effect of different 
loading of Cu particles on structural and thermal properties 
of obtained RGO was studied. The anticancer activity of 

different RGO/Cu for Breast cancer cell lines (MCF-7) was 
tested. Evaluation of the expression of four genes Cathepsin 
D, MMP-9, Bcl-2, and p53 in vitro cell culture exposed to 
the most RGO/Cu complex exhibit inhibition carried out.

Materials and methods

Materials

Graphite (< 50 μm) was procured from Merk, Germany. 
 H2SO4 (98%),  H3PO4 (85%), and Hydrazine hydrate were 
purchased from Sigma-Aldrich, USA.  KMnO4,  H2O2 (35%), 
ethanol (96%), and HCl purchased were from El Nasr Phar-
maceutical chemicals Company, Egypt. Copper was pur-
chased from BDH Chemicals Ltd, England. EAC cell lines 
originally derived from mammary gland tumors and breast 
cancer cell lines (MCF-7) were obtained from the National 
Cancer Institute (NCI), Cairo University. Dulbecco’s modi-
fied eagle medium (DMEM), fetal bovine serum (FBS), 
3-(4, 5-di-methyl-2-thiazolyl)-2, 5-diphenyl-2Htetrazolium 
bromide (MTT), streptomycin, penicillin, and deionized 
water were obtained from Sigma-Aldrich. RNeasy mini kit 
was obtained from Quick-RNA™, Germany. The RNA to-
cDNA™ kit was obtained from Applied Biosystems, USA. 
Taq-Man Fast Advanced Master Mix was obtained from 
Applied Biosystems StepOnePlus™ system.

Synthesis of graphene oxide

Graphene oxide (GO) prepared from commercial graphite 
based on improved Hummer’s method (Marcano et al. 2010). 
Briefly, 1 g of graphite was dissolved in 100 ml solution 
mixture from  H2SO4 +  H3PO4 (3:1) in an ice bath. Then, 
6 g of  KMnO4 were gradually added to the mixture, which 
was kept under continuous stirring for about 24 h. Then, the 
deionized water was added to the mixture. The color of the 
mixture was observed to turn from dark purplish-green to 
dark brown. Then, 30 ml of  H2O2 solution was added to stop 
the oxidation process. The formed graphite oxide solid was 
washed with HCl aqueous solution and then washed with 
deionized water until a pH reaches up to 3.

Synthesis of reduced graphene oxide/copper (RGO/
Cu) nanocomposites

Three samples each 200 mg of GO dissolved in 200 ml 
distilled water and ultrasonicated for about 1 h. The cop-
per metal powder was added to the above mixture with 
concentrations of 15, 30, and 50% compared to GO weight, 
and then, the mixture was ultrasonicated for about 6 h. 
During the sonication process, the brown color of the GO/
Cu solution turned into black color, which confirmed the 
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reduction in GO. The obtained complexes were precipi-
tated and washed with distilled water. The obtained RGO/
Cu samples were designated according to Cu percentage, 
i.e., RGO/Cu15, RGO/Cu30, and RGO/Cu50. A schematic 
representation for RGO/Cu nanocomposites synthesis is 
given in Fig. 1.

Characterization techniques

The structural analysis of the prepared samples was car-
ried out by X-ray diffractometer (XRD, Shimadzu) using 
CuKα radiation (λ = 1.5405A°) over the scan range 4–80°. 
The generator voltage was 40 kV, and the generator cur-
rent was 30 mA. All measurements were carried out in the 
continuous scan mode; the scan speed was 8°  min−1. The 
chemical structure of samples was investigated using Fou-
rier Transform Infrared Spectroscopy (FT-IR, Shimadzu 
Prestige-21 Spectrophotometer) in the 4000–500  cm−1 
range. A Witec Alpha 300 R confocal Raman spectro-
scope with a Nd:Yag laser excitation source(532 nm) was 
employed to evaluate the structural defects of the samples 
in the range of 1000–2000  cm−1 at room temperature. The 
surface morphology was examined by scanning electron 
microscopy (SEM, Hitachi-4200). The samples were sput-
ter-coated by a thin layer of gold to be ready for scans and 
measurements. The sputtering process occurred at 30 mA 
for 30 s. The thermal analysis of the samples was executed 

Fig. 1  Schematic representation of RGO/Cu nanocomposites synthe-
sis

by a Thermogravimetric analyzer (TGA, Shimadzu -50). 
The heating was executed under a nitrogen atmosphere; 

the heating rate was 10 °C  min−1; the temperature range 
was 25–600 °C. The high-resolution transmission electron 
microscope (HRTEM, jeol-jem2100) was done at an oper-
ating voltage of 200 kV.

Determination of the anticancer activity 
of graphene oxide/copper nanocomposites (RGO/
Cu) in vitro

MTT cytotoxicity assay

Initially, as represented by the procedure in Ref (Frei-
moser et al. 1999). MCF-7 cells (1 ×  105 per well) were 
cultured with different RGO/Cu composite in a ratio of 1:1 
(0–1600 μg/ml) in 5%  CO2 incubator for 24 h. To initiate the 
coloring reaction, the standard MTT solution was diluted to 
a final concentration of 0.5 mg MTT/ml. 300 μl of diluted 
MTT solution was added to each culture in a 5%  CO2 incu-
bator for 4 h. The cells were then pelleted by centrifugation 
at 15.000 rpm for 5 min, and then, the media was removed. 
Then, 500 μl of isopropanol/HCl mixture were added, and 
then, tubes were well-vortexed to dissolve the formazan 
crystals and pelleted by centrifugation at 15.000 rpm for 
5 min.

The supernatants were collected, and the absorbance was 
measured using a spectrophotometer (Helios, UV/Visible, 
UK) at 560 nm. An isopropanol/HCl mixture was used as a 
blank sample and subtracted from all values. The cell viabil-
ity was calculated as follows:

Determination of the anti‑metastatic, 
antiproliferative, and apoptotic activities 
of graphene oxide/copper nanocomposites (RGO/
Cu) in vitro

Quantitative PCR was applied to determine MMP 9, Bcl-2, 
P53, and Cathepsin D, expression. The RNeasy mini kit was 
used for RNA isolation and quantitative RT-PCR. The total 
RNA was insulated from MCF-7 cells rendering to the man-
ufacturer’s instructions. The RNA to-cDNA™ kit was used 
to convert RNA to cDNA. Human MMP9, Cathepsin D, 
Bcl-2, and P53 mRNA were quantified by qRT-PCR (Taq-
Man) with specific primers and Taq-Man Fast Advanced 
Master Mix. All PCR reactions were executed in triplicate 
for each sample. The qRT-PCR data were analyzed by the 
Livak method (ΔΔCt), where GAPDH was used for normali-
zation as an internal control (Livak and Schmittgen 2001).

Viable cell (%) = (sample absorbance − blank absorbance∕control absorbance − blank absorbance) × 100
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Statistical analysis

The statistical analysis of the results was implemented by 
One-Way ANOVA (P < 0.05), Duncan’s multiple ranges, 
and the least significant difference summary (LSD). All data 
analysis was carried out by SPSS software 20.0.

Results and discussion

Structural and thermal properties of RGO/Cu 
nanocomposites

XRD was employed to verify the reduction in GO with Cu 
particles and study the structural changes of GO during the 
reduction process.

Figure 2 shows the XRD pattern of Cu, GO, and different 
RGO/Cu composites. Cu shows the main diffraction peaks 
at ~ 43.38°, 50.50°, and 74.17° attributed to (111), (200), and 
(220) planes, respectively, which are very similar to those 
of the face-centered cubic Cu phase (JCPDS No. 04-0836) 
(Theivasanthi and Alagar 2010). The weak peak at 36.49° 
assigned to the (111) crystal plane due to partially surface 
oxidation of Cu in the air (JCPDS No. 01-077-0199) (Yang 

et al. 2014; Li et al. 2016). GO pattern shows characteristic 
diffraction peaks at 9.6°due to (001) reflection plane of the 
stacked GO sheets.

In RGO/Cu15 pattern, the GO diffraction peak is seen to 
become broader and shifted to 12.2° with d-value = 7.2 Å 
followed by a wide broad peak at 24.2°, indicating a weak 
reduction degree of RGO/Cu15 (Hong et al. 2016). The peak 
observed at 26.6° attributed to the (002) plane of highly 
ordered reduced graphene oxide (Saleem et  al. 2014). 
Also, very small diffraction peaks at 36.4° and 43.4° were 
observed, indicating Cu particles combined with RGO 
(Fakhri et al. 2014). Also, very small peaks at 40.3° and 
42.1° suggest the formation of additional CuO phases dur-
ing reduction consistent with standard card (JCPDS Card 
No. 48–1548) (Zhao et al. 2013). The RGO/Cu30 and the 
RGO/Cu50 patterns show only RGO broad peak at ~ 24.2°, 
which indicates the efficient reduction in GO with rising Cu 
percentage. Furthermore, the Cu and CuO peaks became 
more predominant.

FTIR gives important information about functional 
groups held on different samples and helps verify the GO 
reduction process. FTIR spectra of Cu, GO, and different 
RGO/Cu nanocomposites are shown in Fig. 3. The Cu spec-
trum shows small bands at ~ 3334  cm−1due to O–H vibration 
while bands at 1235–1034  cm−1 due to C-O groups, which 
reveals the oxidation of Cu surface as confirmed previously 
by XRD (Arun et al. 2015; Naikoo et al. 2014). Further-
more, the strong band at 525  cm−1 corresponding to Cu–O 
vibrations reveals an oxidized surface of Cu particles con-
sistent with XRD data (Liu et al. 2013). The FTIR spectra 

Fig. 2  XRD pattern of Cu, GO, and different RGO/Cu nanocompos-
ites

Fig. 3  FTIR Spectra of Cu, GO, and different RGO/Cu nanocompos-
ites
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of GO show abundant oxygen functional groups where a 
strong broad band around 3200  cm−1 owing to O–H stretch-
ing vibrations detected. Also, the stretching vibrations of 
C=O at 1721  cm−1, C–OH at 1391  cm−1, C–O at 1230 and 
1056  cm−1 were observed. The vibrations of unoxidized 
graphitic domains C=C at 1621  cm−1 were detected (Meng 
et al. 2010; Wojtoniszak et al. 2012). Compared to GO, the 
decreased intensity of oxygen functional bands in RGO/
Cu15 confirms the successful reduction in GO by Cu par-
ticles (Choi et al. 2010). As well as, a new band detected 
at 609  cm−1 attributed to Cu–O phase formation consistent 
with other reports (Zhao et al. 2012; Nagajyothi et al. 2017). 
FTIR spectrum of RGO/Cu30 shows further decreasing the 
intensity of C=O at 1713  cm−1 as well as the C=C vibration 
at 1635  cm−1 became more obvious. This suggests a higher 
reduction degree of RGO/GO30 compared to RGO/GO15 
which is consistent with XRD results. Besides, the increas-
ing intensity of C–OH and the Cu–O band observed suggest 
more Cu–O phase formed due to the higher incorporation 
ratio of Cu into GO. The very similar FTIR spectra of RGO/
Cu30 and RGO/Cu50 suggest a convergent reduction degree.

Raman spectroscopy is a well-recognized technique to 
examine the structure of carbon-based materials. Figure 4 
shows the Raman spectrum of GO and RGO/Cu nanocom-
posites. Two characteristic bands were noticed in the GO 
spectrum, the D band at 1335  cm−1 and the G at 1580  cm−1. 
The G band represents the crystalline graphite with  E2g zone 
center mode, whereas the D band designates the broken sym-
metry at edges or defects in the sample (Mohan et al. 2015). 
Also, all RGO/Cu samples have more broadening D and G 
bands indicate their higher disorder (Mohan et al. 2015).

The percentage of D and G bands intensities (ID/IG) 
of the graphitic materials is often used as a meter of their 
degree of structural defects (Tuinstra and Koenig 1970). 
According to Fig. 4, the ID/IG for all RGO/Cu nanocom-
posites is higher than GO, indicating their higher defect level 

and successful reduction, consistent with other reports (Song 
et al. 2013). Also, RGO/Cu30 has the highest value of ID/
IG suggests it has the most abundant and smallest graphitic 
domains compared to other samples (Xu et al. 2015).

The SEM images of Cu, GO, and different RGO/Cu nano-
composites are shown in Fig. 5. The Cu particles show an 
irregular shape, while GO shows a smooth structure with 
slightly corrugated sheets. In contrast, RGO/Cu15 showed 
restacked sheets with aggregated and fracture structures 
owing to the self-assembly via Van der Waals’ forces 
through the reduction (Hou et al. 2016). Further restacking 
sheets and aggregation were observed by further increasing 
the copper ratio. This confirms a complete reduction in GO 
by adding 30 and 50% of Cu particles which consistent with 
XRD and FTIR findings (Viswanathan and Shetty 2018).

Figure  6 shows HRTEM images of Cu, GO, and all 
RGO/Cu nanocomposites. Most Cu particles are polyhedral 
with an average size of ~ 107 nm. A few Cu nanorods of 
range ~ 49 nm were also observed. Most Cu particles show 
inhomogeneous contrast regions within one particle, dem-
onstrating their polycrystalline nature (Cheng and Walker 
2010). Also, the HRTEM image shows GO transparent and 
soft sheets with few wrinkles that have been exfoliated into 
several layers, which is consistent with the literature (Hsieh 
et al. 2011). HRTEM images of RGO/Cu nanocomposites 
show crumpled morphology and folded appearance of RGO 
sheets which confirm the reduction process in agreement 
with the literature (Hou et al. 2016). Besides, Cu nanoparti-
cles irregularly decorated RGO sheets with some aggrega-
tion occurred with increasing its concentration. Also, Cu 
particle size decreased greatly upon incorporation with GO 
which demonstrates the effect of sonication on Cu particles 
as reported previously (Pradhan et al. 2016; Lee et al. 2017).

Figure 7 shows the TGA curves of GO and different 
RGO/Cu nanocomposites. The TGA curve of GO shows 
three distinct temperature spans. The first spans from ambi-
ent temperature to ~ 150 °C; the weight loss is due to loosely 
bonded or adsorbed water and gas molecules; the second is 
150–250 °C created by the decay of labile oxygen groups 
(such as carboxylic, anhydride, or lactone groups). The 
third temperature span is 250–600 °C, due to more ther-
mally stable oxygen functionalities (Jeong et al. 2009). TGA 
curves of different RGO/Cu nanocomposites show increased 
thermal stability of GO by the continuous increment of Cu 
ratio, which is indirect proof of the GO successful reduction 
(Ganguly et al. 2011).

Cell inhibition behavior of RGO/Cu nanocomposites 
using MTT

It was displayed due to its intrinsic size- and shape-depend-
ent optical characteristics, unique physicochemical behavior, Fig. 4  Raman Spectra for GO, and different RGO/Cu nanocomposite
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very large surface to volume ratio, and flexible surface fea-
tures, and graphene oxide has been regarded as an intrigu-
ing nanomaterial for cancer treatment (Shanbhag and Prasad 
2016)

A comprehensive investigation was carried out to assess 
the cytotoxicity of RGO/Cux nanocomposites toward 
MCF-7 cells and to determine the likelihood of cell.

Figure 8 shows the results of the cytotoxic effect of 
RGO/Cu15, RGO/Cu30, and RGO/Cu50 against MCF-7 
and the obtained data shown in Table 1. The cell viability 
was observed in MCF-7 cells incubated with different con-
centrations of RGO/Cu nanocomposites using MTT test. 
Viable MCF-7 cells incubated in RPMI complete media 
were considered as a positive control (100% viability). 
The highest inhibitory concentration for RGO/Cu15 is 
1600 µg/ml which displayed 84.2% MCF-7 cells inhibi-
tion after 24 h of incubation, while the lowest inhibitory 
concentration is 25 µg/ml. Also, the highest inhibition 

values of MCF-7 cells treated with 1600 µg/ml from RGO/
Cu30 and RGO/Cu50 are 94.2% and 88.8%, respectively. 
Compared to other complexes, RGO/Cu30 unveiled the 
maximum inhibition at different concentrations (Yuan and 
Gurunathan 2017). The IC50 value shows how much of a 
nanocomposite (RGO/Cux nanocomposites) is required to 
inhibit in vitro cell viability of cancer cell line (MCF-7) 
by 50%, calculated by GraphPad Prism 7 program (Hoe-
telmans 2011). RGO/Cu30 had a more noticeable inhibi-
tory effect on the cell viability than other RGO/Cu nano-
composite with minimum IC50 75.40 µg/ml. The results 
suggested RGO/Cu30 perform further experiments. These 
findings revealed the link between notable cell viability 
loss and reactive oxygen species (ROS), which illustrated 
the substantial malignant cell/tissue damage caused only 
by cell necrosis/apoptosis (Adil et al. 2021).

 According to Vallabani et al., the cytotoxicity of gra-
phene oxide has also been demonstrated in HBI.F3 human 

Fig. 5  SEM images for Cu (a), 
GO (b), RGO/Cu15 (c), RGO/
Cu30 (d), and RGO/Cu50 (e)



379Chemical Papers (2022) 76:373–384 

1 3

neuronic cells and BEAS-2B human lung cells, with cell 
viability being reduced at doses of 10–100 g/mL. Further-
more, both early and late apoptosis of cells was increased 
(Vallabani et al. 2011).

Adil et al. revealed that in all examined cancer cell 
lines, lung (A549), liver (HepG2), and breast (MCF-7), 
highly reduced graphene oxide (HRG) caused a concen-
tration-dependent decrease in cell viability.

The RGO/Cu30-dependent changes of relative gene 
expression of Cathepsin D, and MMP9 produced by these 
cells as determined by RT-PCR as shown in Table 2. The 
RGO/Cu30 decreased the gene expression of Cathepsin D, 
and MMP9 in MCF-7 cells.

Figure 9 represents the RGO/Cu30-induced apoptosis 
through significant induction of gene expression of P53 
and significantly inhibits anti-apoptotic Bcl-2 gene expres-
sion by 2.41 and − 1.73 as associated with gene expression 
in untreated MCF-7 cells, respectively. It means (RGO/
Cu30 + MCF-7) P53 gene expression = (2.41 fold) MCF-7 
p53 gene expression and (RGO/Cu30 + MCF-7) Bcl-2 gene 
expression = (− 1.73 fold) MCF-7 p53 gene expression. 
Anti-Metastatic activity induces apoptosis against MCF-7 
by trigging reactive oxygen species (ROS). The free radi-
cals were induced by lipid peroxidation, which is the main 
reason for oxidative stress, and antioxidant depletion in 
MCF-7 cells was induced by RGO/Cu30. Cathepsin and 
MMP-9 were significantly inhibited by − 4.1 and − 2.24, 

Fig. 6  HRTEM images of Cu 
(a), GO (b), RGO/Cu15 (c), 
RGO/Cu30 (d), and RGO/Cu50 
(e)

Fig. 7  TGA curves for Cu, GO, and different RGO/Cu nanocompos-
ites
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respectively, compared to gene expression in untreated 
MCF-7 cells. It means (RGO/Cu30 + MCF-7) Cathep-
sin gene expression = (− 4.1fold) MCF-7 Cathepsin gene 
expression and (RGO/Cu30 + MCF-7) MMP-9 gene 

Fig. 8  Cell viability in EAC 
cells incubated with different 
RGO/Cu nanocomposites
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Table 1  Cell viability and 
inhibition in MCF-7 cells 
incubated for 24 h with different 
RGO/Cu nanocomposites by 
MTT (3-(4,5-dimethylthiazol-
2yl)-2,5-diphenyltetrazolium 
bromide) assay

IC50: Half maximal inhibitory concentration.  R2 (R Squared): The value  R2 for the results of nonlinear and 
multiple regression quantifies goodness of the best-fit curve. It compares the fit of your model to the fit of a 
horizontal line through the mean of all Y values

Cell viability (%) Mean ± SD Cell inhibition (%) mean

Concentration (µg/ml) RGO/Cu15 RGO/Cu30 RGO/Cu50 RGO/Cu15 RGO/Cu30 RGO/Cu50

0 100.0 ± 0.4 100.0 ± 0.2 100.0 ± 0.5 0.0 ± 0.4 0.0  ±   0.2 0.0 ± 0.5
25 89.3 ± 1.82 74.7 ± 1.24 72.0 ± 1.55 10.7 ± 1.82 25.3 ± 1.24 28 ± 1.55
50 75.9 ± 1.44 58.9 ± 1.27 68.0 ± 1.14 24.1 ± 1.44 41.1 ± 1.27 32 ± 1.14
100 50.1 ± 1.38 47.0 ± 1.56 49.1 ± 1.67 49.9 ± 1.38 53 ± 1.56 50.9 ± 1.67
200 43.1 ± 1.77 35.5 ± 1.62 43.8 ± 1.48 56.9 ± 1.77 64.5 ± 1.62 56.2 ± 1.48
400 30.8 ± 1.58 21.7 ± 1.43 28.7 ± 1.17 69.2 ± 1.58 78.3 ± 1.43 71.3 ± 1.17
800 23.7 ± 1.45 10.2 ± 1.25 19.2 ± 1.14 76.3 ± 1.45 89.8 ± 1.25 80.8 ± 1.14
1600 15.8 ± 1.62 5.8 ± 1.29 11.2 ± 1.19 84.2 ± 1.62 94.2 ± 1.29 88.8 ± 1.19
IC50 (μg/ml) 84.93 75.40 82.83
R2 0.8437 0.7263 0.7378

Table 2  The gene expression of P53, Bcl-2, Cathepsin D, and MMP9 
as ΔCT and fold gene expression in MCF-7 and post 24 h incubation 
with RGO/Cu30

Genes MCF-7 (ΔCT) MCF-7 + RGOCu30 
(ΔCT)

Fold change

P53 2.13 ± 0.11 0.87 ± 0.11 2.41 ± 0.34
Bcl-2  − 0.99 ± 0.14 0.22 ± 0.1  − 1.73 ± 0.35
Cathepsin  − 1.3 ± 0.21 0.71 ± 0.35  − 4.1 ± 0.83
MMP9  − 0.98 ± 0.2 0.18 ± 0.1  − 2.24 ± 0.11

Fig. 9  The effect of RGO/Cu30 composite on gene expression of P53, 
Bcl-2, Cathepsin D, and MMP9 as fold gene expression in MCF-7
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expression = (− 2.24 fold) MCF-7 MMP-9 gene expression 
(Yuan and Gurunathan 2017).

The importance of ROS in cytotoxicity has been doc-
umented in several studies. One of the toxicological pro-
cesses proposed for many graphene-based nanomaterials 
is reactive oxygen species (ROS) (Shaheen et al. 2018). 
Cell-belting down influences, such as apoptosis or necrosis, 
are influenced by ROS growth (Ajdari et al. 2016). Further-
more, ROS focuses on mitochondria, causing cellular death 
by vascular blockage (Wu and Yotnda 2011). The results 
clearly demonstrated that the GO–ZnO nanocomposite has 
a substantial effect on ROS production at various dosages 
(10–100 µg/mL).

These findings indicated that GO-ZnO released ROS 
and inhibited MCF-7 cell growth by promoting oxida-
tive stress, which might be useful for creating effective 
graphene-associated derivatives, especially for biomedical 
applications (Xu et al. 2015).

It was presented that lung (A549), liver (HepG2), and 
breast (MCF-7) were treated with highly reduced graphene 
oxide (HRG), which resulted in a greater ROS concentra-
tion, resulting in cell damage and apoptosis (Adil et al. 
2021).

The ROS was overproduced by the cellular cell inflam-
mation, proliferation, and apoptosis, and further cell death 
has been reported via ROS elevation (Redza-Dutordoir 
and Averill-Bates 2016). This finding suggested that the 
cytotoxic effect exerted by RGO/Cu30 is associated with 
ROS generation. Apoptosis was induced by RGO/Cu30 
in MCF-7 cells by induction of the gene expression of 
P53, and p53, Bax/bcl-2, and caspase pathways (Jabir et al. 
2019). Furthermore, we found pro-apoptotic members of 
the Bcl-2 family, such as Bax induces permeability of the 
outside mitochondrial membrane, which releases soluble 
proteins into the cytosol, where they promote caspase acti-
vation (Kale et al. 2018).

Caspase-3 and caspase-9 in cervical cancer cells were 
activated by RGO lead to apoptosis. Furthermore, the 
cytotoxic effect exerted by RGO/Cu30 is associated with 
decreasing the proliferation in MCF-7 cell line where anti-
apoptotic Bcl-2 family, Bcl-2 gene expression was decreased 
after 24 h incubation with RGO/Cu30 (Jabir et al. 2019). 
Furthermore, Cathepsin D and MMP9 gene expressions 
were decreased by RGO/Cu30 24 h incubation with MCF-7 
cell line.

Ganesan et al. (Ganesan et al. 2020) reported that CuO-
GO nanocomposites medication has improved antitumor 
efficacy via various mechanisms. GO served as a tumor 
inhibitor as well as a vehicle for medication delivery. The 
cytotoxic action of the caspase cascade of apoptosis, DNA 
damage, and mitochondrial dysfunction is mediated by the 

generation of reactive oxygen species (ROS) by CuO-GO 
nanocomposites.

Table 3 represents the negative correlation among p53, 
Bcl-2, Cathepsin D, and MMP-9 by − 0.880, − 0.944, 
and − 0.928, respectively. Furthermore, a positive correlation 
has been reported among Bcl-2, Cathepsin D, and MMP-9 
via 0.935 and 0.896, respectively, as well as between Cath-
epsin and MMP-9 by 0.973.

The RGO suppressed MCF-7 cell growth, resulting in pro-
grammed cell death, via activating the mitochondrial-medi-
ated signaling system, which included the NF-kB signaling 
pathway, suppression of NF-κB translocation, mitochondrial 
membrane potential (MMP), induction reactive oxygen species 
(ROS) production, and down-regulate bcl-2 and up-regulate 
Bax gene expressions (Alsaedi et al. 2019).

According to Ahamed et al. (Ahamed et al. 2021), the anti-
cancer activity of  SnO2-ZnO/RGO nanocomposites was sub-
stantially greater than that of  SnO2-ZnO NPs and ZnO NPs in 
MCF-7 cancer cells. Through activation of the caspase-3 gene 
and reduction in mitochondrial membrane potential MMP-
9, the  SnO2-ZnO/RGO NCs caused an apoptotic response. 
 SnO2-ZnO/RGO NCs destroy cancer cells via an oxidative 
stress route, according to a mechanistic analysis (Ahamed et al. 
2021).

Cathepsin D and MMP9 in breast cancer were involved 
in cell metastasis and invasion via hydrolysis of collagens, 
fibronectin, and proteoglycans by their lysosomal aspartic 
protease activity (Oskarsson 2013). Cathepsin D and MMP9 
increase the cell growth and tumorigenesis of MCF-7 both 
in vitro and in vivo. The tumor metastasis was induced in 
ER-negative breast cancer cells by inhibiting c-Myb by col-
lagenase activity of Cathepsin D and MMP9 (Knopfová et al. 
2012).

Cathepsin D and MMP9 in breast cancer cells were reduced 
by RGO/Cu30. In MCF7 cells, MMP9 has upregulated (Fujita 
et al. 2018) and collagen IV. Growth factors released and extra-
cellular matrix degradation was enhanced by Cathepsin D via 
its proteolytic activity to facilitate tumor invasion (Tabish et al. 
2019).

Tanveer et al. revealed that GO adsorb these pro-tumo-
rigenic enzymes (Cathepsin D and Cathepsin L) as part of 
tailored anti-metastatic therapy. CathD/L was adsorbed onto 

Table 3  The correlation (r) between the gene fold expression of P53, 
Bcl-2, Cathepsin, and MMP9 in MCF-7 P < 0.01

* Correlation is significant at 0.01

Fold change P53 Bcl-2 Cathepsin

Bcl-2  − 0.880*
Cathepsin  − 0.944* 0.935*
MMP9  − 0.928* 0.896* 0.973*
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the surface of GO via its cationic and hydrophilic residues, 
according to the results of CathD/L binding to GO.

Conclusion

Different series of RGO/Cu nanocomposites (RGO/Cu15, 
RGO/Cu30, and RGO/Cu50) were successfully synthesized 
sonochemically. The XRD shows that GO was partially 
reduced in RGO/Cu15 while increasing the reduction degree 
observed as the Cu ratio increased in nanocomposites. Also, 
FTIR confirms the successful reduction in GO by Cu particles 
and the formation of new CuO phases. From Raman spec-
troscopy, the higher ID/IG of RGO/Cu nanocomposites than 
GO designates their higher defect level and effective reduc-
tion. The RGO/Cu30 nanocomposite had the highest value of 
ID/IG, which recommends its greatest and smallest graphitic 
domains. The SEM images showed restacked and agglomer-
ated morphology of GO sheets upon the addition of Cu par-
ticles which confirms the effective reduction by Cu particles. 
HRTEM images showed that Cu nanoparticles irregularly 
decorated RGO sheets with some aggregation occurred with 
increasing its concentration. The thermal stability of GO was 
increased with the increment of Cu content on RGO/Cu nano-
composites. The cell viability was observed in MCF-7 cells 
incubated with different concentrations of RGO/Cu nanocom-
posites using MTT test. A greater inhibitory concentration 
value for RGO/Cu15 at 1600 µg/ml exhibited 84.2% after 24 h 
of incubation. In contrast, the inhibitory value was 94.2 and 
88.8 for RGO/Cu30 and RGO/Cu50, respectively. So, RGO/
Cu30 is selected for further work. Generally, the present study 
provides proof of RGO/Cu30 to apply cytotoxic anticancer 
and anti-metastatic activities. Cathepsin D and MMP9 gene 
expressions were inhibited by RGO/Cu30 lead to the inhibi-
tion of MCF-7 breast cancer metastasis. The apoptotic and 
antiproliferative activities of RGO/Cu30 are associated with 
increased P53 and decreased Bcl-2 gene expressions.
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