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Abstract 
In the present work, we report an environmentally friendly, low cost, rapid, biocompatible, and greener approach for the 
production of silver nanoparticles (AgNPs) via the latex extract of Ficus benghalensis. The latex extract contains bioac-
tive phytochemical constituents that can reduce and stabilize the silver salt in reacting solution. The resulting AgNPs were 
characterized. The surface plasmon resonance (SPR) was measured at wavelength, λmax 410 nm. High resolution transmis-
sion electron microscopy (HR-TEM) and scanning electron microscopy of AgNPs revealed the spherical shape with mean 
particle size was approximately 14 ± 0.69 nm. AgNPs Capped with latex show a strong affinity to the thiol group of biothiols 
(L-cysteine and glutathione). Upon the addition of biothiols, the absorbance of AgNPs decreased with a new SPR peak 
appeared at a higher wavelength, suggesting that the AgNPs were conjugate to biothiols with rapid aggregation. Owing to this 
interaction, a nanodrop spectrophotometer (NDS) was used as an advanced, fast response, and high-efficiency colorimetric 
assay for the selective determination of L-cysteine (Cys) and glutathione (GSH). A good linear relationship was found over 
the range of 0.2–1.0 ppm of biothiols. The obtained detection limits (LOD) were 0.17 and 0.18 ppm for the Cys and GSH, 
respectively. The applicability of the proposed NDS procedure has been validated by determining Cys and GSH in biological 
samples with satisfactory recovery results.
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Introduction

Nowadays, nanoparticle research is being much important 
not only due to the application but also the path of synthe-
sis (Ibrahim 2015). The development of greener produc-
tion of metal nanoparticles is a viable option for chemical 
and physical procedures as it eliminates the use of toxic, 
expensive, and potentially harmful chemicals (Song et al. 
2009). The flavonoids in plant extract not only act as pow-
erful reductant but also provide the natural source pathway 
for the stabilization of nanoparticles (Aromal et al. 2012; 
Patra et al. 2015).

Over the last few decades, silver nanoparticles (AgNPs) 
have gained global consideration owing to their wide-
spread applications. In a few experimental reports, the 
different approaches are documented, for the successful 
production of AgNPs from different plant’s part as a leaf 
(Rout et al. 2012), fruit (Vishwasrao et al. 2019), bark 
(Sathishkumar et al. 2009), and peel of fruit (Kahrilas 
et al. 2014) by the selection of biocompatible capping 
for the stabilization (Potesil al. 2005). Many research-
ers also have shown their interest in the biosynthesis of 
AgNPs from fungus (Verma et al. 2010), vitamins (Nada-
gouda and Varma 2008), and polysaccharides (El-Rafie 
et al. 2013). However, these processes take a longer reac-
tion time (4–24 h), severe extraction processes, operating 
at high temperature, and require culture preparations.

Ficus benghalensis plant is known as the Indian Banyan 
tree (Sharma et al. 2009). The latex extract of F. bengha-
lensis is composed of a variety of alkaloids, flavonoids, 
and Phenolic compounds (Yadav et al. 2011). Hydroxyl 
(–OH) and keto (> C=O) groups in these compounds are 
capable to bind with metals and show high nucleophilic 
character and can donate an electron and reduce metal salt 
to form nanoparticles (De Matos et al. 2011).

L-Cysteine (Cys) and Glutathione (GSH) are low molecu-
lar weight amino acids having –SH moiety (biothiols) found 
in Human plasma and urine (Bahram et al. 2014; Hormozi 
et al. 2012). Cys are usually formed in the liver and involved 
in many physiological processes including protein synthesis 
and metabolism (Li et al. 2014; Ravindran et al. 2012). GSH 
is a strong antioxidant that is wildly present in animal tissues 
and involved in cell growth and division, catabolism, and 
detoxification of drugs (Deng et al. 2011; Huang et al. 2009; 
Li et al. 2017). Abnormal levels of these biothiols caused 
renal diseases, liver damage, hair depigmentation, diabetes, 
HIV disease, and skin lesion (Detsri and Seeharaj 2017; Raj 
et al. 2017; Raoof et al. 2008; Yuan et al. 2013;). Therefore, 
accurate monitoring of Cys and GSH is important to diag-
nose the diseases at an early stage. Due to simplicity and 
high sensitivity, spectrophotometer probes are a powerful 
tool for monitoring trace amounts of analytes in the sample.

Up to now, several techniques are available for the detec-
tion of biothiols such as HPLC (Potesil et al. 2005; Rahman 
et al. 2006), electrochemical (Hsiao et al. 2011; Siddiqui 
et al. 2017), chemiluminescence (Yang et al. 2008), voltam-
meter (Vinoth et al. 2017), LC/MS (Guan et al. 2003; Aloth-
man et al. 2013), Fluorescence (Amjadi et al. 2015) methods 
have been developed. Although these techniques showed 
promising results, unfortunately, they have some disadvan-
tages such as longer analysis time, expensive, and tedious 
sample preparations. Therefore, it is needs to develop a low 
cost, rapid response, more precise, and accurate strategies 
for the detection of biothiols.

Nanodrop spectrophotometer (NDS) is a modern and 
relatively new rapid reading technique, which eliminates 
the need for cuvettes; therefore, this instrument employs 
the shorter path length (only 1–2 mm path length) to occur 
in a short time and minimal volume (0.5–1.0 µL) of sample 
required for determination (Desjardins et al. 2009).

Herein, we have explored a natural attempt for the rapid 
production of AgNPs using F. benghalensis latex extract 
as a reducing and protecting agent. The prepared AgNPs 
were confirmed by different characterization tools. We also 
studied and analyzed the interaction between biothiols (Cys 
and GSH) and AgNPs to determining Cys and GSH content 
in biological samples such as human blood and urine via 
novel and advanced NDS measurement. During experimen-
tal work, all optimum conditions were analyzed.

Experimental

Material

Chemicals

Silver Nitrate  (AgNO3, 99.8%) was purchased from Sigma-
Aldrich. Hydrochloric acid (HCl, 38%), sodium hydroxide 
(NaOH, 99.5%), and sodium chloride (NaCl, ≥ 99.5%) were 
obtained from Merck. L-cysteine (Cys, ≥ 99%) and glu-
tathione (GSH, ≥ 99%) and other amino acids were from 
Loba Chemicals, PVT Ltd. (Mumbai, India). All the chemi-
cals are analytical reagent grade. The 10 ppm working stock 
solutions of biothiols were prepared by appropriate dilution.

Instrumentation

Characterizations were performed by Nanodrop (Thermo sci-
entific-1000), full-spectrum (220–750 nm) spectrophotom-
eter, SEM (FEI- Quanta-200 USA) operating at 40 kV, EDX 
(JED-2300) instrument coupled with SEM unit, HR-TEM with 
(JEM-2100F, JEOL Ltd, Tokyo, Japan) operating at 200KeV. 
IR analysis was carried out using the KBr pellets in the range 
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of 4000–400  cm−1 on FTIR (Thermo Nicolet, Avatar 370 
model, Thermo scientific, USA).

Preparation of latex aqueous extract

Crude white milky latex obtained from the stem of F. bengha-
lensis (NIT campus, Raipur, CG, India). Latex from F. bengha-
lensis was collected in the early morning. In a reaction method, 
3.0 ml latex was diluted to 100 ml using double distilled water 
to make it 3% and centrifuged twice at 10,000 rpm for 20 min. 
After centrifugation, latex constituting the aqueous fraction 
was separated from the precipitated rubber. The aqueous frac-
tion was stored at 4 °C for further synthesis of AgNPs.

Synthesis of AgNPs

Separately, 5.0 ml of 3% latex aqueous extract and 10 ml of 
1.0 mM  AgNO3 solution were heated at 60 °C with continu-
ous stirring for 20 min in a water bath. The  AgNO3 solution 
was removed from the heating mantle and kept in an ice bath. 
Then 5.0 ml of latex extract was added drop wise with vig-
orous stirring until brownish-yellow color appeared which 
indicates the synthesis of AgNPs. The prepared AgNPs were 
stored at 4 °C in the refrigerator until further use.

Analytical processes for the determination of Cys 
and GSH

For biothiols detection, take 800 µL of as-prepared AgNPs 
in 1.0 ml sample vial. To this solution, 100 μL of different 
concentrations (0.2–1.0 ppm) of Cys were added; one by 
one in order, and then the solutions were diluted with double 
distilled water to 1000 μL. The same procedure was applied 
for GSH. The pH was adjusted to 5.8 for Cys and 5.0 for 
GSH with 0.1 M of HCl and NaOH. Then the solutions were 
agitated for 5 min by a vortex shaker. Absorption spectra of 
final mixture were recorded using NDS against reagent blank 
at λmax 410 nm.

A similar analytical procedure with slight modification 
was carried out for the determination of biothiols in human 
blood and urine samples, according to the standard addition 
method and detected by nanodrop spectrophotometer. All 
sets of analyses were repeated in triplicate. Biological sam-
ples were collected from the Private Pathology Laboratory, 
Raipur (CG).

Result and discussion

Absorption studies

Absorption spectra for latex extract and AgNPs are dis-
played in Fig. 1. The reduction of  Ag+ ion to AgNPs may be 

optically approved by color changes of the starting material 
from colorless to brownish-yellow color. The formation of 
AgNPs was examined by NDS with distinct surface plasmon 
resonance (SPR) around 410 nm. The position of absorption 
spectra of AgNPs is strongly dependent upon the particle 
size (Saeb et al. 2014). One single peak absorption spectra 
show the spherical shape of nanoparticles (Bawaskar et al. 
2010). The absorbance of AgNPs was taken again after 24 h. 
No obvious change in absorbance was noticed during stor-
age, indicating that the AgNPs are stable.

FTIR/ functional group studies

The FTIR spectra of the latex extract and latex capped 
AgNPs are given in Fig. 2. The absorption peak of latex 
extract at 3445  cm−1 (may be attributed to O–H stretching of 
phenols, alcohols, and carboxylic acid) shifted toward lower 
wavenumber 3370  cm−1 upon binding with silver, signify to 
the involvement of the reduction process. The peak shifted 
from 2903 to 2850  cm−1 corresponds to the vibration of C–H 
stretching and the peak at 1625  cm−1 shifted to 1590  cm−1 
corresponds to carbonyl stretch vibration in ketones, carbox-
ylic acid, and aldehydes.

The peak at 1411 and 1390  cm−1 may assign to aromatic 
vibration. Other peaks visible in both spectra are 1060, and 
1009  cm−1 indicates the stabilization of AgNPs by flavo-
noids, alkaloids, and Phenolic compounds present in latex 
extract.

SEM /surface morphology—EDX/elemental analysis

SEM was employed to analyse the shape of nanoparticles. 
Figure 3a presents the spherical shape of AgNPs with the 
nanoscale range. EDX analysis gives the elemental composi-
tion at a specific location which involved in the synthesis of 

Fig. 1  Absorption spectra of a Latex extract and b Latex capped 
AgNPs
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nanoparticles (Khan et al. 2016). The EDX spectrum dem-
onstrates the presence of a high percentage value for silver 
at 3 eV, and its amount was founded to be nearly 77.53% as 
shown in the table embedded inside the curve as demon-
strated in Fig. 3b. Other element signals including C and O 
are present possibly due to elements from capping agents 
present on the surface of AgNPs.

HR‑TEM/size analysis

The HR-TEM micrographs provide information about the 
morphology and the average size distribution of nanopar-
ticles. The AgNPs without biothiols were mostly spherical 
in morphology and well dispersed with an average size of 
14 ± 0.69 nm as demonstrated in Fig. 4a. After the addi-
tion of biothiols, it is clearly shown that AgNPs aggregated 
with bigger sizes as shown in Fig. 4b and c. The mean 

size of particles was 24.7 ± 0.64 nm to AgNPs-Cys and 
21.2 ± 0.49 nm to AgNPs-GSH, obtained by histogram as 
indicated in Fig. 4. The results were shown as mean ± stand-
ard error (SE).

To obtain the optimum analytical conditions for the deter-
mination of biothiols affecting variables, including pH of 
the solution, incubation time and ionic strength have been 
evaluated.

Effect of pH

Figure 5a showed the pH effect on the detection of biothiols, 
which can be attributed to the interaction between thiol and 
AgNPs. The experimental results show that the optimum pH 
is 5.0 for GSH, and 5.8 for Cysteine. Therefore, pH 5.8 and 
5.0 were chosen for Cys and GSH, respectively, for further 
studies. The error bar corresponds to the standard deviation 
of three repeated measurements.

Incubation time

Absorption spectra of AgNPs were taken at different time 
intervals (1–8 min) after the addition of biothiols at room 
temperature as given in Fig. 5b. The colorimetric perfor-
mance was accomplished at 5 min, and beyond this, the 
absorbance of AgNPs-thiol conjugates remained constant. 
Based on these results, 5 min was selected as the optimal 
reaction time in our experiments.

Effect of AgNPs concentration

The effect of AgNPs concentration for the determination 
of biothiols was optimized. Figure 5c showed the evolution 
of absorbance upon adding 0.2 ppm of biothiols to differ-
ent volume of AgNPs (200–1000 μL). It was found that the 

Fig. 2  FTIR analysis of a latex extract and b latex capped AgNPs

Fig. 3  a SEM and b EDX images of latex capped AgNPs
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absorbance increased with increasing the concentration 
of Latex capped AgNPs and reached the maximum when 
800μL was used. Therefore, 800 μL was used as the opti-
mized volume.

Effect of ionic strength

The intensity of AgNPs-biothiol was measured in the pres-
ence of NaCl as demonstrated in Fig. 6a. The addition of 

NaCl does not show any obvious changes in the position of 
absorbance maxima and the shape of the spectra of AgNPs-
biothiol conjugates.

Selectivity studies

Importantly, to highlight the selectivity of the proposed 
method, latex capped AgNPs are independently exposed to 
1.0 ppm other biomolecules in absence of biothiols. This 

Fig. 4  Representative HR-TEM micrographs of a latex capped AgNPs, b AgNPs-Cys, and c AgNPs-GSH, and their corresponding particle size 
distribution histogram derive from HR-TEM micrographs
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investigation revealed that a wide range of other biomol-
ecules did not exhibit significant optical responses due to 
lack of thiol group. But in presence of just 0.2 ppm of Cys 
and GSH, separately, the intensity ratio is higher compari-
son to other amino acids are given in Fig. 6b.

Analytical performance of AgNPs with biothiols

Remarkably, we observed owing to the strong affinity of 
thiol to AgNPs, biothiol will replace the adsorbed capping 
molecules and be easily bind to the surface of AgNPs. The 

Fig. 5  a Effect of pH on interaction of Cys and GSH with AgNPs b Incubation time c Effect of AgNPs concentration under optimized reaction 
condition

Fig. 6  a Effect of NaCl (20–140 ppm) on biothiol-AgNPs conjugates under optimized condition, b The absorbance ratio (Ao/A) of AgNPs mixed 
with Cys, GSH and other amino acids, where Ao and A is absorbance of AgNPs before and after the addition of amino acid, respectively.
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size, shape, composition, and aggregation state of particles 
always result in the change in wavelengths and absorbance 
maxima (Bahram et al. 2014). On the addition of increas-
ing aliquot of biothiol to AgNPs, the SPR peak shifts to 
higher wavelengths and a significant decrease in the absorb-
ance with broadening. Based on such observation, it can be 
concluded that the AgNPs were aggregated, and their size 
gradually increased with increasing concentration of biothi-
ols as given in Figs. 7a and 8a.

To estimate the sensitivity of latex capped AgNPs for 
detection of biothiols, normalized absorbance was monitored 
as a function of biothiols concentration as shown in Fig. 7b 
and 8b. The calibration curve was obtained as a linear graph 
with regression coefficient (R2) 0.9912 and 0.9921 for Cys 
and GSH, respectively. The normalized absorbance was cal-
culated as ΔA/A0 (ΔA = A0–A), where A0 and A were the 
absorbances of AgNPs before and after the addition of bio-
thiols, respectively. The limits of detection (3σ) for Cys and 
GSH were 0.17 ppm and 0.18 ppm, respectively (Christian 
2007). The estimated LOD values for Cys and GSH are more 

significant compared with other reported approaches using 
as given in Table 1.

Application

To assess the applicability of nanodrop spectrophotomet-
ric strategy for real sample analysis, known concentrations 
of Cys and GSH were spiked with biological fluid samples 
(Human blood and urine) by triplicate analysis (n = 3). The 
proposed method was validated with the outcomes of satis-
factory recoveries, 91.33%-98.75% with RSD 0.92–1.13% 
for Cys and 91.65–96.00% with RSD 0.91–1.45% for GSH, 
confirming that our methodology is highly reproducible. The 
results are listed in Tables 2 and 3. The performance of the 
proposed method is also compared with those obtained by 
reference method with regard to t value and F value at 95% 
confidence level (Kalaiyarasan et al. 2019; Liang et al.2002; 
Mohammadi et al. 2017). From the table, we found that the 
calculated t and F value were smaller than its corresponding 

Fig. 7  a Absorption spectra of latex capped AgNPs with different concentrations of Cys (0.2–1.0 ppm) at pH 5.8, b Linear relationship between 
colorimetric response and Cys concentrations (0.2–1.0 ppm)

Fig. 8  a Absorption spectra of AgNPs with different concentrations of GSH (0.2–1.0 ppm) at pH 5.0, b Linear relationship between colorimetric 
response and GSH concentrations (0.2–1.0 ppm)
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tabulated value at the 95% confidence level. The results are 
summarized in Table 4. Point and interval hypothesis test 
was also performed to calculate upper (θU) and lower accept-
ance limit (θL) (Rahman et al. 2016). The true bias based on 
the recovery experiments were measured using the following 
equation.

where X ̅1 and X ̅2 are the average value determined by the 
proposed and reference methods, respectively.  n1 and  n2 are 
number of respective observations of proposed and refer-
ence method, respectively. Sp and t are the pooled stand-
ard deviation and one side t value at 95% confidence level, 
respectively. The values of θU and θL are reported in Table 4. 
The true bias was found to be less then ± 2% is acceptable. 

�
2

[

X
2

1
− S

2

P
t
2

tab
∕n

1

]

− 2�X
1
X
2
+
[

X
2

2
+ S

2

P
t
2

tab
∕n

2

]

= 0

It was also confirmed that no significance difference among 
the two methods.

Conclusion

We have developed a novel facile greener approach via the 
latex extract of F. benghalensis as a reducing and stabiliz-
ing agent for the production of AgNPs. The green synthe-
sized latex capped AgNPs exhibit superior selectivity for 
GSH and Cys over the other biomolecules due to special 
interaction with the thiol group. The modern nanodrop 

Table 1  Comparison of the proposed method with previously reported methods for the determination of Cys and GSH

Nanoparticles Method Linear dynamic 
range (ppm)

LOD (ppm) Reference

Cys
Polyvinylpyrrolidone-stablized AgNPs UV–Visible 0.39–0.99 0.34 Bamdad et al. (2016)
Dextran coated AgNPs UV–Visible 12.12–121.16 1.45 Davidović et al. (2017)
Ricinoleic acid coated AgNPs UV–Visible 2.4–12.11 3.02 Viana et al. (2020)
Trisodium citrate capped Gold nanoparticles UV–Visible 0.12–12.11 0.25 Nehzad et al. (2012)
Latex capped AgNPs NDS 0.2–1.0 0.17 Present method
GSH
GO-AgNPs Chemiluminescent 9.22–307 7.68 He et al. (2012)
Rhodamin B-functionalized gold nanoparticles Fluorescence 0.15–307 0.31 Cai et al. (2012)
Trisodium citrate capped Gold nanoparticles UV–Visible 0.6–24.23 0.39 Hormozi-Nehzad et al. (2012)
Latex capped AgNPs NDS 0.2–1.0 0.18 Present method

Table 2  Results of Cys recovery determination in blood and urine

Sample Cys (ppm) 
added

Found value 
(ppm) n = 3

% Recovery RSD ± %

Blood 0.4 0.395 98.75 0.92
0.6 0.579 96.50 1.06

Urine 0.3 0.274 91.33 1.13
0.7 0.646 92.21 0.98

Table 3  Results of GSH recovery determination in blood and urine

Sample GSH (ppm) 
added

Found value 
(ppm) n = 3

% Recovery RSD ± %

Blood 0.4 0.384 96.00 1.45
0.6 0.575 95.83 0.95

Urine 0.3 0.275 91.65 0.91
0.7 0.650 92.85 1.44

Table 4  Point and Interval Hypothesis test; Comparison of the pro-
posed method with reference methods at 95% confidence level

a Average for 3 independent analysis, bTabulated t value 
(ν = 4) = 2.776 and F value (ν1 = 2, ν2 = 2) = 19.00 for Cys (in blood 
and urine) and for GSH (in urine) at 95% confidence level. The 
tabulated t (ν = 9) and F value (ν1 = 7, ν2 = 2) for GSH in blood are 
2.262 and 19.35, respectively. cBias, based on recovery experiments, 
of ± 2% is acceptable

Sample Cys GSH Reference 
method 
(Cys)

Reference 
method 
(GSH)

Blood %  recoverya 98.75 95.83 99.30 96.40
RSD 0.92 0.95 1.02 1.10
t  valueb 1.26 2.12
F  valueb 1.30 1.41
θL 0.978 0.965
θU 1.040 1.070

Urine %  recoverya 91.33 92.85 92.01 93.40
RSD % 1.13 1.44 0.96 1.95
t  valueb 2.25 1.20
F  valueb 1.31 1.92
θL

c 0.972 0.981
θU

c 1.060 1.093
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spectrophotometer is being highly sensitive for the con-
venient analysis of biothiols in biological samples without 
matrix interferences. The ease of use, speed of measurement, 
lesser time analysis, microvolume quantity (0.5–1.0 μL) of 
the sample, and removal of cuvettes make this system suit-
able for accurate detection. Besides, our protocol is very 
simple and presents a good linear detection range at a low 
concentration of biothiols, compared with the previously 
reported method. Furthermore, the analytical performance 
of our proposed method was successfully applied in biologi-
cal samples with good recoveries.
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