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Abstract
The utilization of challenging solid fuels in the energy industry (especially the ones derived from wastes) has a big priority 
nowadays, as it is a valid option to keep the recent EU directive related to the decrease of landfills. However, there are seri-
ous technical challenges, connecting to the lack of knowledge about the behavior of these fuels in the combustion chamber. 
This paper discusses the specific aspects of developing particle models concerning the combustion of these non-conventional 
fuels. A new modeling approach is presented, using which it is possible to develop an all-round particle model that includes 
every significant influencing process. Moreover, it does not have any restrictions regarding the shape, size and the origin 
of the particle. As an integral component of this model, the distinctive aspects of intrinsic reaction kinetics related to waste 
fuels are presented as well.
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Abbreviations
A	� Preexponential factor, 1∕s
Aη	� Parameter of �m(xapp) , –
c	� Mass ratio, –
cox	� Scaling factor of the oxygen concentration, –
D	� Distribution function, –
E	� Activation energy, J∕mol

Eη	� Parameter of �m(xapp) , –
f(x)	� Reaction function, –
F	� Fitness value, –
kd	� Oxygen diffusion rate constant, 1∕m2∕s

ks	� Surface reaction rate, 1∕m2∕s

km	� Mass related apparent reaction rate constant, 1∕s
kr	� Chemical reaction rate constant, 1∕s
ks	� Surface reaction rate constant, 1∕m2∕s

m	� Mass, kg
m	� Reaction function parameter, –
mη	� Parameter of �m(xapp) , –
n	� Reaction order or number of reaction groups, –

nη	� Parameter of �m(xapp) , –
Nj	� Number of measured points, –
R	� Universal gas coefficient, J∕mol∕K

S	� Particle surface, m2

Sm	� Mass related reaction surface, m2∕kg

Sm0	� Reference mass related reaction surface, m2∕kg

t	� Time, s
T	� Temperature, K
x	� Intrinsic conversion, –
xapp	� Apparent conversion, –
xc	� Calculated conversion, –
xm	� Measured conversion, –
vd	� Diffusive reaction rate, 1∕s
vr	� Chemical reaction rate, 1∕s
ηm(xapp)	� Mass related reaction effectiveness factor, –
σ	� Standard deviation, J∕mol

ϵ	� Parameter of �m(xapp) , –

Introduction

Combustion of municipal solid wastes is a feasible pro-
cess, which follows the most recent EU directive (Circu-
lar Economy Package 2018) that aims to lower the rate 
of landfill drastically. The main benefit of combustion is 
that it reduces the waste’s volume (and the area needed 
for the landfill as well), while energy is produced during 
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the process. However, it is essential to highlight that only 
the non-recyclable components should be utilized in this 
way, as recycling is more reasonable environmentally and 
economically as well.

In most cases, waste combustion is performed in older 
boilers designed for conventional fuels such as coals or 
simple biomasses, commonly co-combusted with those 
(Gómez-Barea and Leckner 2010). This kind of complex 
operation requires careful design choices to prevent any 
possible malfunctions, which are impossible without in-
depth knowledge of the processes present in the combus-
tion chamber. Designing a boiler often includes modeling 
these, which is a computation-heavy task, if every pro-
cess is included. One of the most important aspects is the 
behavior of the particle. A detailed particle combustion 
model is affordable in case of a more straightforward (and 
computationally cheap) 1D boiler model. However, the 
complex 3D CFD models have so many submodels that 
simplifications are required (Niemi and Kallio 2018).

In a particle model, it is an important task to cover 
the combustion reactions, which is usually done based on 
the classical Arrhenius equation. In its original form, it 
assumes an ideal sample and environment, without any 
limiting effect. It is a reasonable assumption in the case of 
thermogravimetric (TG) measurements, but modeling an 
industrial combustion chamber needs a more sophisticated 
approach (Table 1). These expanded models are usually 
referred to as apparent. In contrast, the ones concerning 
only pure reaction kinetics are called intrinsic. Also, the 
latter provides the theoretically highest reaction rate, only 
achievable in TG conditions (Di Blasi 2009; Gómez-Barea 
and Leckner 2010; Khodaei et al. 2015; Jiang et al. 2017). 
The difference between these two approaches generally 
increases with the size of the sample [measured by Liu 
et al. (2016)].

The intrinsic kinetic submodels rely on model-free and 
model-fitting methods; multiple papers collect the com-
monly used ones (Çepelioğullar et al. 2016; Radojevic et al. 
2018). The proper way should be selected based on the pur-
pose of the results, as there are quite strict limits regard-
ing the compatibility of the parameters of different reaction 
models. Because of this, utilizing kinetic data available in 
the literature is not always possible, considering the kinetic 
model used during the initial evaluation is essential (Várh-
egyi et al. 2018).

Several classical models are available concerning the 
effect of the particle size. Field (1969) developed a method 
by measuring a ks surface reaction rate for various coal 
chars, and used a modified Arrhenius equation to describe 
the shrinking of the spherical particle. His results [and the 
supplementary measurements published by Smith (1971)] 
are still widely used for coal chars. The limit of this method 
is the actual surface area S(m(t)) , because formulating its 
change during the conversion is possible only for spheres 
and some other simple shapes.

More complex particle models were developed 
throughout the years; however, most are only capable 
of describing spherical samples and still failing in the 
case of geometrically challenging ones. The most com-
mon classical sphere models are the uniform conversion 
model (UCM) and the shrinking unreacted core model 
(SUPM) (Gómez-Barea and Leckner 2010). The first 
assumes constant diameter, homogenous reaction rate, 
and decreasing density during the conversion, which are 
the conditions of TG measurements. The SUPM, how-
ever, assumes constant density and decreasing diameter, 
and the reactions happen only on the sample surface. 
This approach is close to the conditions in a real boiler 
(Gómez-Barea and Leckner 2010). Modeling coal chars 
that have a porous structure is usually performed using 

Table 1   Controlling conditions during the TG measurements and in the industrial boilers

Environment TG measurement Industrial boiler

Relation of the intrinsic and the 
apparent kinetics

They are identical, if the measuring conditions are 
ideal

The apparent kinetics are much slower because of 
the reasons listed below

Particle size Ground and homogenized Original size and shape
Inner temperature profile Homogenous because of the small size and the low 

heating rate
Heterogenous, because the heat conductivity of the 

particle slows down the heat transfer
Reaction rate in the particle Homogenous, the conversion is the same in the 

whole sample
Changing with the local temperature

Oxygen availability The optimal amount is artificially maintained; avail-
able in the whole sample, because of the small 
particle size

Often sub-optimal amount; available only on the 
surface

Devolatilization controlling process Only the reaction kinetics, the temperature of the 
sample changes almost instantly

The particle heat-up is slow and heterogenous, 
which limits the reaction rate

Char combustion controlling process Only the reaction kinetics, because of the precisely 
maintained atmosphere and the small particle size

The oxygen transfer is much slower then the reac-
tion; the reaction front is narrowed to the particle 
surface
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the random pore model (RPM) method developed by Bha-
tia and Perlmutter (1980). Several research groups have 
used this method successfully (Kreitzberg et al. 2020; 
Bibrzycki et al. 2016; Beckmann et al. 2017).

Several particle models cover the combustion of non-
conventional chars. It is a possible method to rely on 
measuring the change of the particle structure and sur-
face, based on which the Arrhenius equation can be modi-
fied to describe the apparent conversion (Liu et al. 2016). 
It is also a common approach to develop a detailed CFD 
model for the particle (Beckmann et al. 2017; Xue et al. 
2019). The benefit of this method is that it can easily 
include the limiting effects of the environment. However, 
this kind of modeling is very computation heavy, and the 
result is usually too complex to use it as a part of a bigger 
boiler model. It is possible to solve this problem by devel-
oping a simplified submodel, which includes the relevant 
part of the results, but in a less computation-heavy way. 
Niemi and Kallio (2018) presented a method based on 
neural networks, which, after the time-consuming initiali-
zation, results in a very fast algorithm. However, these 
models still consider sphere-like particles or other simple 
geometries, and the devolatilization is also neglected.

Many papers discuss the devolatilization of solid 
fuels separately from the char combustion. Sunflower 
seed shells were investigated by López et al. (2014) and 
solid recovered fuels (SRF) by Conesa and Rey (2015), 
Çepelioğullar et al. (2016), and Radojevic et al. (2018); 
both will be covered in this paper later. However, these 
studies usually neglect the effect of the particle size and 
shape, which was summarized (but not modeled) by 
Gómez-Barea and Leckner (2010).

It is clear that there is no modeling method available 
in the literature that is solely capable of covering both the 
devolatilization and the char combustion of a nonspheri-
cal particle in a computation-efficient way.

This paper aims to connect the intrinsic (Szűcs et al. 
2020) and apparent (Szűcs and Szentannai 2019) combus-
tion models published by the same authors. The presented 
modeling method is capable of describing the whole 
apparent conversion (devolatilization and char combus-
tion) of any fuel particle, regardless of its shape, size, and 
origin. In this work, the previous results are summarized, 
some important details are refined, and more insight is 
presented about the implementation. The method uses a 
new conversion function to modify the Arrhenius equa-
tion, which can be determined by modeling all aspects of 
the apparent combustion. The complexity of the output 
function can be changed according to how it will be uti-
lized later. As an example, the intrinsic kinetic evaluation 
for an SRF and the whole apparent modeling procedure of 
a sunflower seed shell pellet are presented.

Theoretical

Intrinsic kinetics

The Arrhenius reaction equation is used for the intrinsic 
kinetics model (Eq. 1), which describes the reaction rate as 
the function of the temperature and the conversion (Green 
2008). The pressure can affect the reaction rate as well, but 
it is not that significant in industrial boilers, as those operate 
close to the ambient pressure. Because of this, the pressure 
is beyond the scope of this paper.

Here, x is the conversion, which is the ratio of the actual 
and final reacted mass (Eq. 2).

The combustion of real fuels contains thousands of sub-
reactions, which, in most cases, are impossible to describe, 
so it is common to collect them in reaction groups. These 
groups can be modeled using one Arrhenius equation and 
can be associated with the main fuel components, such as 
cellulose, hemicellulose, and lignin for biomasses, or vari-
ous types of plastics. These reaction equations may be sum-
marized using a ci mass share to describe the complex fuels 
(Eq. 3) (Conesa and Rey 2015).

Choosing the correct reaction function f (x) is an integral 
part of the evaluation. The most common is to consider n-th-
order reactions, but others are available as well (Aboulkas 
and Harfi 2008).

The present authors published an in-depth intrinsic 
kinetic study (Szűcs et al. 2020), in which the validity of four 
different reaction functions to describe the combustion of an 
SRF sample were compared. The least-squares method was 
used to find the kinetics parameters (Várhegyi et al. 2011). 
The reaction model contains three pseudo reaction groups, 
two for the devolatilization of the two main components 
(biomass and plastics) and one for the combustion of the 
remaining char.

The least-squares method uses Eq. (4) to compare Ni 
number of xm(t) measured conversion graphs containing Nj 
points to an xc(t) calculated one, which results in an F fit-
ness value. A genetic algorithm (McCall 2005) generates 
randomized kinetic parameters and calculates F for each of 
them. After numerous iterations, it concludes in the best 
parameters, which produce the smallest F.

(1)
dx

dt
= kr(T)f (x) = Aexp

(

−
E

RT

)

f (x).

(2)x(t) =
m0 − m(t)

m0 − minf

.

(3)
dx

dt
=

n
∑

i=1

ciAiexp

(

−
Ei

RT

)

f
(

xi
)

.
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Table 2 summarizes the four reaction models that were 
used during the evaluation. The most complex is the dis-
tributed activation energy model (DAEM) developed by 
Anthony et al. (1975) and successfully used multiple times 
for complex solid fuels (Várhegyi et al. 2011; Cai et al. 
2013b, 2014; Wu et al. 2014; Zhang et al. 2015; Lin et al. 
2018). It assumes that every reaction groups consist of an 
infinite number of sub-reactions, and their activation ener-
gies have a specific distribution, which is described by a 
D(E) distribution function.

A sensitivity analysis was also performed based on the 
work of Cai et al. (2013a) to determine the impact of the 
various kinetic parameters on the fitness values. During the 
analysis, every parameter was lowered and increased by a 
maximum of 50% of the optimized value. The details of the 
implementation can be found in the original work (Szűcs 
et al. 2020).

Apparent kinetics

The apparent kinetic model includes the reaction groups 
determined during the intrinsic evaluation, which have two 
categories with their specific modeling technique. These 
are the decomposition-like devolatilization reactions and 
the char combustion reactions that are handled as surface 
reactions. In this model, they both contain a function of the 
apparent conversion, the mass-related reaction effectiveness 
factor ( �m(xapp) ), which is an expanded version of the meth-
odology developed by Gómez-Barea and Leckner (2010). 
Essentially, this function is a tool to scale up the intrinsic 
kinetics for a big particle. It shows how high the appar-
ent reaction rate is compared to the intrinsic one, which is 
assumed to be the theoretical maximum.

The devolatilization reaction equations (first term on 
the right side of Eq. 9) are similar to Eq. 1, because they 
are independent of the oxygen transport. The purpose of 
�m(xapp) here is to model the effects slowing the release of 

(4)F =
�

i

∑

j

�

xm(t) − xc(t)
�2

Nj

.

the volatiles. For example, before its fragmentation, the solid 
structure of the particle can act as an obstacle.

The char combustion reactions (second term on the right 
side of Eq. 9) are surface reactions, and the availability of 
the oxygen limits their rate. The oxygen concentration is also 
included as a linear scaling factor. The description is analog 
to the parallel resistances, as shows Eq. (10) in a simplified 
form, where ks and kd represent the two competing processes; 
whichever is the slower will control the whole conversion.

To understand �m(xapp) , consider Eq. (11) as the surface-
related reaction equation, which includes two parameters, 
the surface-related reaction rate constant and the changing 
surface of the particle. In the case of nonspherical particles, 
both of those are hard to measure.

To connect ks to the intrinsic kinetics (which are eas-
ier to determine), the surface dependency needs to be 
redeemed. Gómez-Barea and Leckner (2010) presented a 
general method by introducing the Sm(xapp) mass-related 
reaction surface as the function of the apparent conversion 
(Eq. 12). Its purpose is to convert ks to a mass-related, but 
still apparent reaction rate constant km(xapp) . By introduc-
ing the �m(xapp) mass-related reaction effectiveness factor, 
and assuming, that Sm0 is a reference Sm(xapp) related to the 
pure TG measurement conditions, the connection can be 
described without the reaction surface.

This methodology is the key component of Eq. (9), as it 
makes it possible to summarize all of the reaction groups by 

(9)

dxapp(t)
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=

n1
∑
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ci�m
(
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)

kr,i
(

T)f (xi
)
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n2
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cjcox
1
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1
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.

(10)
dx(t)

dt
=
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1

ks(x)
+

1

kd(x)

.

(11)
dm(t)

dt
= −ksS(m(t)).
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(
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)

= ksSm
(
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)

= ksSm0�m
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)
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(
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)

.

Table 2   Reaction equations 
used during the intrinsic kinetic 
evaluation

Reaction model Applied equation

1st order dxc(t)

dt
=
∑

Aiexp
�

Ei

RT

�

(1 − xi)
(5)

n-th order dxc(t)

dt
=
∑

Aiexp
�

−
Ei

RT

�

�

1 − xi

�ni (6)

Expanded n-th order (Várhegyi et al. 1996) dxc(t)

dt
=
∑

Aiexp
�

−
Ei

RT

�

�

xi + z
�mi

�

1 − xi

�ni (7)

Distributed activation energy model (DAEM) 
(Anthony et al. 1975)

dxc(t)
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=
∑

i
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dxi(t,Ei)
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=
∑
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Di(E)dEAiexp

�

−
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�

(1 − xi(t,E))

(8)
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converting them to the same mass-related, but still apparent 
form.

In this work, Eq. (9) is used to model the apparent conver-
sion of a sunflower seed shell pellet based on our previous 
work (Szűcs and Szentannai 2019). To calculate the apparent 
conversion (left side of Eq. 9), �m(xapp) needs to be deter-
mined. First, an intrinsic reaction model (using the method 
presented in the previous section) was developed, from 
which determining �m(xapp) is possible following the next 
steps, each aimed to derive one of the parameters in Eq. (9):

1.	 An intrinsic kinetics evaluation resulting in kr(T , x).
2.	 Measuring the apparent conversion graph ( xapp(t) ) of 

the fuel sample during macroscopic combustion experi-
ments.

3.	 Developing an appropriate model of the environment of 
the macroscopic measurements, which provides the tem-
perature profile and the oxygen mass transport around 
the sample ( T(t) and kd(x)).

4.	 Finally, only �m(xapp) remains an unknown variable in 
Eq. (9), so it can be determined.

The intrinsic model of the pellet consists of two decom-
position-like reactions ( n1 = 2 ), one for the drying and one 
for the devolatilization, and one surface reaction for the char 
combustion ( n2 = 1 ); more details are in the original work 
(Szűcs and Szentannai 2019).

After performing the previous procedure, by changing 
the environmental properties (step 3 in the previous list), the 
new Eq. (9) can model the sample’s apparent conversion in 
the new combustion environment.

The parameter kd(x) is unique, as usually, the oxygen mass 
transfer does not depend on the conversion, but to add it to 
the chemical reaction rate constant, it is necessary to convert 
them to the same dimension.

To determine the environmental parameters, a CFD 
model was implemented in Comsol 5.3. The model consists 
of two main parts, one for the devolatilization, where the 
primary process is the heat transfer, and one for the char 
combustion focusing on the mass transfer. During setting 
up the model, the whole geometry was cut in half by a sym-
metry plane to reduce the computation cost.

The samples’ devolatilization is assumed to be con-
trolled by the heat-up because of their size, so the heat 
transfer model is essential to determine the apparent 
conversion. The interior of the particles was divided 
into multiple parts (Fig. 1, which differs from the mesh 
of the numerical solution), all of them having their own 
temperature graphs. A transient heat transfer model was 
used, where the initial temperature of the samples was 
20 °C, while the interior of the oven was 850 °C. The 
model includes convection, and the corresponding veloc-
ity field relating to the exiting volatiles was calculated by 

a stationer fluid dynamics model using the k − � turbu-
lence approach. The radiation model used surface radiation 
combined with the discrete ordinates method. The internal 
heat conduction follows the Fourier law. The primary heat 
source is the flame associated with the instant ignition of 
the volatiles. It was modeled as a volume with a constant 
heat flow calculated from the stoichiometry of the fuel.

The char combustion model includes three sub-models. 
A stationary heat transfer model calculates the tempera-
ture field, which consists of no convection, so the primary 
driving process is the temperature difference between the 
interior of the oven and the environment. A fluid dynamics 
model calculates the velocity field, in which the only driv-
ing force was the buoyancy effect; its input is the density 
profile derived from the temperature. The third sub-model 
is the species transport model, which contains diffusion 
and convection (calculated from the previous velocity 
field). Zero oxygen concentration was set as a boundary 
condition on the particles’ surface, which assumes that the 
oxygen availability limits the reaction rate. It results in the 
oxygen flux around the particles from which kd(x) can be 
calculated based on the surface average of the oxygen flux.

Using all this information, �m
(

xapp
)

 can be derived from 
Eq.  (9). The first task is choosing the correct function 
form, which should be as simple as possible, especially 
if computation time is a severe issue. However, in this 
study, the aim was to introduce a general function (Eq. 13), 
which is not the simplest, but it is a good starting point for 
all kinds of solid fuels and can easily be simplified when 
needed. This function resembles the Arrhenius equation, 
which promotes a similar physical meaning as well. Eη can 
be understood as a conversion limit, at which the apparent 
reaction rate starts to increase until it reaches the intrinsic 
reaction rate. Parallel to this, �m(xapp) also increases from 
its initial condition �m(0) (which cannot be 0) to 1. Aη 
represents a scaling parameter, similarly to the preexpo-
nential factor.

Fig. 1   Cells of the samples used to determine the temperature profile 
with a symmetry plane on the left side
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Finding the correct values of the parameters in Eq. (13) 
is possible by the same optimum seeking algorithm used 
in the intrinsic kinetic evaluation. It compares the appar-
ent conversion measured in the oven and the one calculated 
from Eq. (9). The details of the implementation and the final 
parameters are available in the original work of Szűcs and 
Szentannai (2019).

After finishing the calculation, it is possible to validate 
the assumption of zero oxygen boundary condition on the 
particle surface. For this, the reaction rates corresponding 
to the chemical reaction kinetics of the char combustion ( vr ) 
and the oxygen transfer ( vd ) should be compared. Both were 
calculated by assuming the other to be irrelevant (Eqs. 14 
and 15, accordingly).

Experimental

The intrinsic kinetic evaluation of the SRF sample was per-
formed using the results of TG measurements in air atmos-
phere at 5, 10, and 15 °C/min heating rates following the 
guidelines of Várhegyi et al. (2011, 2018). The sample size 
was around 2 mg. The specifics of the TG apparatus are 
described by Bakos et al. (2018). The sample was an SRF 
processed by a Hungarian junkyard (its composition is in 
Table 3), and no other preparation was performed before the 
TG measurements, except grinding and homogenizing. This 
made it possible to maintain the sample’s original state, e.g., 
the components were not separated, so the model covers the 
possible interactions as well. More details about the sample 
and the equipment are available in the work of Szűcs et al. 
(2020).

(13)
d�m(xapp)

dxapp
= Aηe

−
Eη

xapp

(

1 − �m(xapp)
)nη

(

�m(xapp) + �

)mη .

(14)vr =
dxr,char

dt
= �m

(

xapp
)

kr,char(T)f
(

xr,char
)

,

(15)vd =
dxd,char

dt
= kd,char

(

1 − xd,char
)

.

The sunflower seed shell pellets used in the apparent 
kinetic evaluation were 20 ± 5 mm long cylinders with a 
diameter of 6 mm, and their mass was approximately 1 g. 
The sample’s composition is shown in Table 4. Similar to the 
SRF sample, before the TG measurements, the only prepara-
tions were grinding and homogenization. Due to simplifying 
the method, only one heating rate was used (10 °C/min). 
However, it is important to emphasize that in sensitive pro-
jects, it is essential to apply multiple heating rates to get 
accurate kinetic data. The same TG apparatus was used as 
before (Bakos et al. 2018).

The macroscopic combustion experiments were per-
formed in a programmable oven described in more detail 
by Szentannai et al. (2015). In contrast to the TG measure-
ments, the particles used in the macroscopic combustion 
experiments were not ground. Fourteen whole pellets were 
placed on a spoon-like rod and inserted into the preheated 
oven, where their mass change was recorded. More details 
are available elsewhere (Szűcs and Szentannai 2019).

Results

Figure 2 and Table 5 show the best possible fitness values 
achieved during the intrinsic evaluation. The DAEM method 
provided the smallest F , but it is essential to mention that 
it required more time to finish the run (6.5 h vs. 5 min for 
the others on a regular PC). It means that if the reaction 
model is part of a bigger, already computation-heavy model, 
it is more beneficial to use a slightly less precise (and less 
time-consuming) reaction model. The results, including the 
kinetic parameters, can be found in more detail in Szűcs 
et al. (2020).

During the sensitivity analysis, it was found that the acti-
vation energies have the most significant impact on every 
reaction model’s fitness value, followed by the preexponen-
tial factors. The parameters introduced by the more com-
plex models have a less important role, which indicates that 
the increased precision is not connecting to the value of the 
parameters, but rather to the changed model structure itself. 
The detailed results are in the original work (Szűcs et al. 
2020).

Table 3   Proximate and ultimate 
analysis of the SRF sample 
(Szűcs et al. 2020)

Ash mass% 21.7

Volatile mass% 66.9
Char mass% 11.4
S mass% 0.145
C mass% 45.40
H mass% 6.12
N mass% 1.322
O mass% 47.013

Table 4   Proximate analysis of the sunflower seed shell pellets (Szűcs 
and Szentannai 2019)

Ash-free Dry Dry, ash-free
af d daf

Moisture mass% 7 – –
Volatile mass% 73 63.5 68
Char mass% 20 29.9 32
Ash mass% – 6.6 –
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Figure 3 shows the temperature profile of the CFD model 
developed for the devolatilization. It indicates the tempera-
ture difference inside the particle, which is also visible in the 
temperature graphs of the cells (Fig. 4). The slowest heat-up 
(connecting to the interior cells) needed over 30 s, while the 
outer cells reached equilibrium in less than 10 s.

Figure 5 shows the oxygen concentration calculated by 
the species transport model. The convective term mainly 

determines the overall profile of the oxygen distribution. 
However, the direct oxygen transport to the particles is 
covered by diffusion. It means that these processes are 
equally important; it is not recommended to neglect either 
of them in a proper model.

After combining all of the results, the graph in Fig. 6 
was found to be the optimal �m(xapp) , which provides a 
close resemblance to the measured conversion (Fig. 7). 
The value of �m(xapp) changes from the initial condition to 
1 between the conversion values 0.6 and 0.85. The initial 
low function value means that before this transition, the 
apparent reaction rate is much slower than the intrinsic 
kinetics. This changes at the end of the devolatilization, 
from where the reaction rate increases up to the intrinsic 
one. However, it does not translate to rapid char combus-
tion, as the oxygen availability limits it. The narrow transi-
tion region suggests that one significant structural change 

1st order nth order expanded nth order DAEM
1.8
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2

2.1

2.2

2.3
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Fig. 2   The best fitness values ( F ) of the different reaction models (Szűcs et al. 2020)

Table 5   The smallest fitness values achieved by the reaction models

Reaction model F

1st order 2.51 × 10−4

n-th order 2.31 × 10−4

Expanded n-th order (Várhegyi et al. 1996) 2.28 × 10−4

Distributed activation energy model (DAEM) (Anthony 
et al. 1975)

2.07 × 10−4

Fig. 3   The temperature profile 
(K) of the devolatilization (early 
stage, 10 s after starting the 
measurement)
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(e.g., the collapse of the pores) happens, which makes the 
limiting effect of the particle’s shape and size irrelevant.

Finally, plotting vr and vd reveals the relation between 
the controlling effect of the reaction kinetics and the 
oxygen availability for the char combustion (Fig. 8). The 

diffusion reaction rate is significantly lower than the 
chemical one, and the difference is a magnitude of 107 , 
which means the reaction consumes every available oxy-
gen on the surface. It proves that it was correct to assume 
zero boundary condition in the char combustion model.

Fig. 4   Temperature profile of 
the different particle cells
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Fig. 5   Oxygen flux magnitude 
( mol∕m2∕s ) in the oven and 
the directions of the convective 
(blue arrows) and the diffusive 
(red arrows) terms

Fig. 6   Plot of the developed �m(xapp) (Szűcs and Szentannai 2019)

Fig. 7   The calculated (dashed red) and the measured apparent (con-
tinuous blue) conversions (Szűcs and Szentannai 2019)
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Conclusion

In this paper, a modeling procedure was introduced, which 
can describe the effect limiting the reaction rate originated 
from the continuously changing shape of big, nonspherical 
fuel particles. The method has two parts, the first is the 
determination of the intrinsic kinetics, and the second is 
to bridge it to the apparent kinetics of the real macroscopic 
particles.

The intrinsic kinetics have a significant role in the 
model, so a detailed evaluation process based on the least-
squares method was presented to show the unique aspects 
related to waste-derived fuels. The most complex DAEM 
reaction model provides the most precise result; how-
ever, its computation demand can make it a less favorable 
choice.

The connection between the intrinsic and the apparent 
kinetics was developed as the mass-related reaction effec-
tiveness factor �m(xapp) , which represents a certain reaction 
depth, in which the reaction occurs. It also means the ratio 
of the actual reaction rate and the theoretical maximum 
associated with the conditions of a TG measurement. The 
applied method requires determining all parameters of a 
reaction equation expanded with the limiting processes 
present in a regular combustion chamber. For this, mac-
roscopic combustion measurements and two CFD models 
were used. An Arrhenius-like differential equation is a 
proper initial form for �m(xapp) , albeit it needs simplifying 
if used as a part of a computation-heavy model.
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