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Abstract 
Oxidation of bromothymol blue [BTB] by oxyanion potassium permanganate as a strong oxidizing agent in acid solutions 
using perchloric acid at a constant ionic strength has been obtained keto bromothymol blue [BTB]Keto and studied kinetically 
spectrophotometrically. Different characterization techniques for [BTB] and [BTB]Keto such as Fourier-transform infrared 
spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–Vis), and optical properties have been used. The order about the 
permanganate ion is first, while a fractional first order was released as regards [H+] and [BTB] fractional first order. Depend-
ence on the concentration of hydrogen ions in the concentrations indicates that the oxidation process is acid catalyzed. The 
absence of either transient MnIII and/or MnIV as involving species in the oxidation process was verified by MnII applied to the 
oxidation reaction. Formation of 1:1 intermediate complex formation kinetically was revealed during the rate-determination 
step. In the slowest step, two-electron transfer processes of the inner-sphere form have been proposed. A mechanism of the 
tentative reaction was proposed and explored concerning kinetic parameters. The density functional theory (DFT) by DMol3 
and CASTEP was used for the optimization of dye [BTB] and [BTB]Keto as an isolated molecule. From the UV–Vis spectrum 
of [BTB] and [BTB]Keto, the EOpt

Direct
 values are 2.849 eV and 2.35 eV using Tauc`s equation, respectively, related to direct 

transitions of electrons. Using DMol3 method with DFT simulation, the HOMO and LUMO values for [BTB] and [BTB]Keto 
as isolated molecule are 3.047 eV and 2.869 eV, respectively. The simulated FTIR, molecular electrostatic potential (MEP) 
and optical properties by Gaussian software and CATSTEP are in great agreement with the experimental study.
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Introduction

The textile industry is one of the largest water-consuming 
industries (Rashid et al. 2020). They refuse large amounts 
of wastewater. Such wastewaters contain toxic dyes and pig-
ments that have a negative influence on human health and 
the ecosystem (Khan and Malik 2014). The existence of dyes 
in wastewater creates various hazards for living organisms, 
such as mutagens and carcinogenic problems, and reduces 
photosynthesis; by limiting the penetration of oxygen into 
water (Saini 2017). Multiple methods treat these effluents 
(Gao et al. 2020). However, in the presence of toxic and non-
biodegradable dyes, the biological treatments are ineffective 
and produce high quantities of sludge; the physicochemical 
methods do have a high investment cost (Badeenezhad et al. 
2019). These limitations mean that new efficient processes 
are developed. A photocatalytic solution for wastewater pol-
luted by color bleeding from fabric, rubber, natural and arti-
ficial fabrics. Bromothymol blue (BTB) is a silk dye product 
often used as the pH measure (Li et al. 2018). It is a useful 
probe molecule that is not corrupted by direct oxidation and 
can only be chemically degraded via free-radical pathways.

The strong oxidizing agent (KMnO4) has some advan-
tages over other oxidizing agents: easier to handle, a read-
ily soluble solid and higher performance in water and soil 
treatment as seen with some pollutants (Xu et al. 2005). 
Permanganate ion is an effective oxidant in acid, neutral 
and basic media that is known to be a leading, environmen-
tally friendly, and active oxidant in kinetic research (Liu 
et al. 2019). Oxidation by permanganate ion have a various 
mechanism so, permanganate ion is used as a multi-equiva-
lent oxidant (Hassan 2020). The mechanism of some redox 
reactions was focused on intermediate complexes (Al-Hos-
sainy and Zoromba 2019) production, whereas free-radical 
mechanisms (Tittmann 2009; Mollan and Alayash 2013) 
studied other redox reactions. Methylcellulose kinetics and 
oxidation mechanism (Shaker et al. 2007; Hassan 1993), 
alginates (Khairou and Hassan 2000), pectates (Shaker 
2001), carboxymethyl cellulose (Hassan et al. 2011), kappa-
carrageenan (Zaafarany et al. 2013), and polysaccharides of 
permanganate ion have been recorded elsewhere in alkaline 
media. Again, the oxidation of methylcellulose (Hassan et al. 
2012), pectates (Abdel-Hamid et al. 2003), carboxymethyl 
cellulose (Hassan et al. 2009a), carrageenan’s (Hassan et al. 
2009b), ADA (Hassan and Ibrahim 2019a), poly (ethylene 
glycol) (Hassan et al. 2018a) and chondroitin-4-sulfate (Has-
san et al. 2020a) by permanganate ion in acidic solutions has 
been reported earlier. Pseudo-first-order plots were shown 
to be reversed S-forms in these oxidation reactions and free 
radical interference carried out the oxidation reactions.

Previous studies have neglected to consider the 
effects of KMnO4 as an oxidizing agent on the structure 

characterization, spectroscopic studies, and optical prop-
erties of dye [BTB]. In this work, the decoloration of 
the BTB coloring solutions by KMnO4 was investigated 
kinetically. Effects of pH, reactant concentration and 
decoloration temperature have been studied. The applica-
tion of KMnO4 for the treatment of real textile wastewater 
was also carried out. The present work seems to merit a 
study to shed more light on the mechanistic aspects of 
oxidation and to cover for the lack of information on the 
existence of both the electron transfer and the transition 
states in the rate-determining phase. The results obtained 
will offer important knowledge on the chemistry of BTB 
dye as one of the sulfones phthalein’s in acidic solutions. 
Again, this study will boost the elucidation of an appropri-
ate oxidation reaction process in acidic solutions for these 
alcoholic dyes. Once more, in this work besides the oxida-
tion of BBT we used the unified coverage DMol3 obtained 
from molecular to solid materials is discussed briefly. So, 
molecules in the gas state are pertinent for the properties 
of molecular materials and homogeneous catalysis reac-
tions. In comparison studies between experimental and 
DFT computations, the structural characterization, and 
optical properties of [BTB] and [BTB]Keto were examined 
utilizing characterization techniques comprising Fourier 
transform infrared (FTIR).

Experimental section

Materials

All used products are analytical grade. Water has doubly 
been distilled from alkaline permanganate and degassed 
through the atmospheric pressure bubbling, boiling, and 
cooling (Manhas and Mohammed 2007). Through adding 
the reagent powder to double distilled water step through 
process, [BTB] (Aldrich Chemical Co. Ltd) solutions in 
stock was prepared and the solution rapidly was agitated. 
A KMnO4 stock solution has been prepared and standard-
ized using traditional methods (Bahar et al. 2020). The stock 
solution was then placed in a dark container away from light 
to prevent photoreduction and was spectrophotometrically 
re-standardized before each use. By dissolving the required 
sample amounts in double distilled water, all other reagents 
were prepared. The ionic strength was kept in check by the 
addition of NaClO4 as non-complexing agent (Hassan et al. 
2020b; Tandon et al. 2007). In ± 0.05 °C, the temperature 
was regulated.

Kinetic measurements

The present oxidation reaction for the available spectro-
photometer was relatively quick. All kinetic operations 
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have been made under the scope of pseudo-first-order 
(Hassan and Ibrahim 2019b; Hicks 1976; Hassan et al. 
2018b). The absorption decrease was recorded at 525 nm 
at permanganate ion, with the maximum absorption 
depending on time (where [BTB] > 10 

[

MnO−
4

]0 ). Dur-
ing the reaction process, no overlaps were found with 
other [BTB], MnO−

4
 and substances at this wavelength. As 

Fig. 1a indicates, an isosbestic point is found at a wave-
length of 274 nm. Once, a new strip at a wavelength of 
around 380 nm was used to produce the permanganate ion 
of the same concentration of the mixture being studied 
(Fig. 1b). These observations may indicate the formation 
of some intermediate complexes.

Absorbance–time plots revealed that the initial com-
ponent (~ 5–10%) was too quick for the traditional spec-
trophotometer to be followed. Therefore, the kinetic cal-
culations listed concerned the remaining portion of the 
completion of the reaction (~ 90–95%). In the presence of 
a large quantity [ MnO−

4
 ] above [BTB] in all kinetic meas-

urements pseudo-first-order conditions were used. Sodium 
perchlorate, NaClO4, used as an inert electrolyte to main-
tain ionic strength constant. The absorbance shift measure-
ments on the spectrophotometer Perkin Elmer (Lambada 
750) with a thermostat cell partition using a path length of 
cells of 1 cm in total. The estimation method was the same 
as elsewhere (Manhas and Mohammed 2007). Figure 1a, b 
indicates the spectral variations during the redox reaction.

Polymerization test

Ten percent acrylonitrile (v/v) has been used in the reac-
tion mixture during oxidation; to test the possibility of free 
radical’s formation brown forming after 15 min of warmth 
indicates the oxidation reaction by free-radical interfer-
ence process (Ibrahim et al. 2017; Laidler 1965a; Hassan 
et al. 2013). Again, the same observation occurs when we 
replaced acrylonitrile by mercuric chloride.

Molecular modeling

The structure molecular, spectral simulation and geometry 
optimization for [BTB] and [BTB]Keto as isolated molecular 
have been elucidated in detail by analysis of an Infrared (IR) 
combined with Gaussian 09 W program (Abdel-Aziz et al. 
2020). In IR calculation using the Gaussian 09 W (DFT/
B3LYP), the functional exchange–correlation level demon-
strates the wavenumber and the location of functional groups 
in [BTB] and [BTB]Keto as isolated molecular (Pavitha et al. 
2017; Bourezgui et al. 2020). Finally, the optical characteri-
zation and optical constant have been elucidated in detail 
by analysis of DMOl3 and CATSTEP computations. Using 
Gauss View software, the HOMO and LUMO values have 
been computed in detail by analysis of UV–Vis spectrum 
using DFT/DMOl3 by typical 6–311G set of bases (Srebro 
et al. 2011; Zoromba and Al-Hossainy 2020).

Fig. 1   Spectral dependence of 
the absorption in the oxidation 
of [BTB] by [ MnO

−
4
 ] in aqueous 

HClO4 during the reaction pro-
gression. a [ MnO

−
4
] = 4.0 × 10−4, 

[BTB] = 1.0 × 10−3, 
[HClO4] = 0.5 and 
I = 1.0 mol dm−3 at 20 °C. Scan-
ning time intervals = 1.0 min. 
b [ MnO

−
4
] = 4.0 × 10−4, 

[BTB] = 1 × 10−3, [H+] = 0.5 
and I = 1.0 mol dm−3 (Refer-
ence cell: [ MnO

−
4
] = 4.0×10−4 

mol dm−3 at 20 °C)
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Results

Stoichiometry

The oxidation reaction with varying initial [BTB] and 
[

MnO−
4

]

 concentrations was combined at room temperature 
at [H+] = 0.5 and I = 1.0 mol dm−3. The unreacted perman-
ganate ion is expected to reach a constant value regularly. 
There has been a stoichiometric average of 1.0 mol ([MnO−

4
 ] 

unreacted ∕[BTB]0 ). The corresponding stoichiometric equa-
tion is agreed with

where C27H28Br2O5S and C27H24Br2O5S represent the [BTB] 
and [BTB]Keto, respectively. The [BTB]Keto had been isolated 
by another approach (Hassan et al. 2019).

The product was also recognized by the FTIR spectral 
bands detected at frequency 3448 cm−1 and 3443 cm−1 that 
characterize the two –OH groups in [BTB] and these two 
bands converted to one band at 3443 cm−1 so, this confirms 
the oxidation occurs at one –OH group (Abd-Elmageed et al. 
2020; Xu et al. 2020; Surowka et al. 2020; Al-Hossainy et al. 
2019a). Moreover, band observed at 1720 cm−1 that charac-
terize the carbonyl group of α-ketones; strong band appear at 
2962 cm−1 which characterize CH2 group in case of [BTB] 
but appear weak band at 2962 cm−1 in case of [BTB]Keto 
which characterize –CH group (Zoromba et  al. 2018). 
Enhancing the OH group absorption band at a wavelength 
of 1720 cm−1 in the product’s IR spectra can show oxidation 
of the OH group present in [BTB] dye to its corresponding 
keto-forms as display in Fig. 2a (Rauf et al. 2015).

In the simulated IR spectrum of [BTB] (Fig. 2b), the 
band at 3600 cm−1 bands disappeared in the [BTB]Keto in 
Fig. 2c spectrum. This is attributed to stretching hydroxyl 
group ν(O–H) present in benzene oxidized to ketone group 
and formation [BTB]Keto dye. It is essential to note that the 
experimental curve shows great conformity with Gaussian 
09 W (DFT/B3LYP) simulation (Thabet et al. 2020; Farzaneh 
et al. 2020; Ibrahim et al. 2020; Abbasi and Sardroodi 2016). 
Especially, 3750 cm−1.

Influence of reaction rate on [ MnO
−
4

 ] and [BTB]

ln (absorbance) against time, plots showed that the redox 
reaction in MnO−

4
 is first in a sequence, with well straight 

lines for more than two half-lives of end reaction. Not only 
pseudo plotting but also an independently of the oxidation 
rates at different initial permanganate concentrations rang-
ing from 1 × 10−4 to 5 × 10−4 mol dm−3 have confirmed this 
effect. The influence of [BTB] on the oxidation rates has 
been investigated. The values of oxidation rate were found 
to increase with increasing the [BTB]. So, these values at 

(1)
C27H28Br2O5S +MnO−

4
+ 4H+

⇌ C27H24Br2O5S +Mn2+ + 4H2O

[BTB] = (1.0 and 3.0) × 10−3 mol dm−3 were found to be 
(0.58 and 1.47) × 10−3 s−1, respectively. A fractional-first-
order in [BTB] was obtained from the plots of ln kobs and 
ln[BTB] and is confirmed by (ln kobs = n ln [BTB] equa-
tion). Once more, straight lines were achieved by draw-
ings of 1/kobs in the HClO4 positive intercept axis on an 
X-axis against 1/[BTB]. The present redox system shows 
the creation of 1:1 intermediate complex shown by Michae-
lis–Menten kinetics (Fig. 3). The naked eye examination of 
the mixture revealed that the purple color of the perman-
ganate ion in the mixture was modified to the orange color 
which changes rapidly to the rose color as shown in inset 
Fig. 3.

Influence of reaction rate on hydrogen ion 
concentrations

To explain the reaction rate and evaluate the successful reac-
tion mechanism, [H+] controlled the constant ionic strength 
of 1.0 mol dm−3 and the constant concentrations of all other 
reagents. There was a rise in the acid amount to speed up the 
rates of oxidation and then the values of the rate constants at 
[H+] = 0.5 and 1.0 mol dm−3 were found to be 0.58 × 10−3, 
1.51 × 10−3 s−1, respectively. The oxidation reaction is there-
fore catalyzed acidically. Dependence from [H+] was frac-
tional first order ( ln kObs − ln

[

H+
]

 plots).

Influence of reaction rate on ionic strength

The effect of the ionic strength was studied in constant [H+] 
reaction levels with the rise of NaClO4 concentration to 
1.5 mol dm−3. This result was found to fit the extended 
Debye–Huckel equation ( ln kObsvs.

√

I

1+
√

I
plot ) with a positive 

slope as shown in Fig. 4. The dependence of ionic strength 
is as expected in consideration of the charges, despite the 
ionic strength used, far from the Debye–Huckel range (Laid-
ler 1965b). The oxidation reaction between a neutral and 
cation molecule can therefore occur.

Reaction rate impact on salts added

The oxidation rate effect of Mn2+ must be studied as it is one 
of the oxidation materials is indicated that Mn2+ is reduced 
to MnIII and MnIV as a transient species (Radhakrishnamurti 
and Rao 1977; Gunter et al. 2010).

Where reactive oxidizing species are intermediates of 
MnIII and/or MnIV , the addition of MnII will lead in the 
oxidation rate accelerations. While, fluoride ions should 
slow down the reaction if manganese ions are primarily 
the oxidation responsible species, but if permanganate 
ions are the primary oxidizing entities, they should not be 
significantly altered (Knežević et al. 2020). In addition to 
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Fig. 2   a FTIR spectrum experimental of [BTB] and [BTB]Keto. b IR spectrum of [BTB] using DFT simulation. c IR spectrum of [BTB]Keto using 
Gaussian 09 W (DFT/B3LYP) simulation
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the redox reaction, either [ MnII ] or [F−] ions were found 
to have no significant changes in the reaction rates under 
our experimental conditions. This negative outcome can 
be perceived as suggesting the absence of MnIII or MnIV 
formation as transient material intermediates in the oxida-
tion reaction.

Discussion

Although there has been substantial research on the kinet-
ics of oxidation by permanganate ion of organic, inorganic 
substrates and alcoholic macromolecules in acidic solu-
tions as multi-equivalent oxidants, several unanswered 

Fig. 3   Chart 1/kobs against 1/
[BTB] in perchlorate solu-
tions to oxidize [BTB] 
through permanganate 
ion. [MnO4

−] = 4.0 × 10−4, 
[H+] = 0.5 and I = 1.0 mol dm−3 
at 35 °C. Inset figure, Naked 
eye examination for color shift 
a: BTB in 0.5 M HClO4; b: 
MnO4

− in 0.5 M HClO4; c: 
during progression, d: after 
reaction of the of completion
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Fig. 4   The relationship between 
t  
√

I∕
�

1 +
√

I

�

 versus ln k
Obs

 of 
[BTB] by [MnO4

−] in HClO4 
solutions. [MnO4

−] = 4.0 × 10−4, 
[BTB] = 1.0 × 10−3, 
[H+] = 0.5 mol dm−3 at 35 °C
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questions concerning the mechanisms of oxidation in 
terms of electron transfer and the intermediate states in 
the rate-determining processes have been recorded (Was-
serman et al. 2016). Therefore, there may be a problem 
of fundamental importance, whether the transition, in a 
series or the simultaneous two-electron transitions, of 
electrons, takes place through a sequential one-electron 
transfer procedure: MnVII to MnVI to MnV in a sequence 
or MnVII to MnV to MnIII in a single step.

Therefore, it is important to know whether the pathways 
for the process of electron transfer outer-sphere or inner-
sphere type. The complexity of the reactions concerning the 
formation of unstable intermediates by the transfer of man-
ganese ions from heptavalent to divalent in acidic solutions 
will cause these difficulties. Consequently, this oxidant has 
proposed different reaction pathways for the oxidation of 
various substrates. Many redox reactions tend to take place 
by free-radical (Zhou 2020) or free-radical interventions 
through creating ion-pairs, and inner-sphere nature inter-
mediate complexes (Glebov et al. 2011). Absent free-radical 
intervention certain reactions of oxidation were carried out 
via outer-sphere mechanisms (Matyjaszewski 1998).

Considering the above discrepancies between the kinetic 
outcome and those for other polysaccharides oxidized by this 
oxidant, all reactants with a more aggressive permanganic 
acid (HMnO4) and alkoxinium ion (BTBH+) are protonated 
in the most possible reaction pathway that may be proposed 
to oxidize BTB by permanganate ion [H+], [substrate], and 
ionic strength depending on the reaction specimen indicate 
that the most suitable reaction mechanism for oxidation trig-
gered by both [BTB] and MnO4

−.

The [BTBH]+ a substrate, with proton release before the 
speed determinant stage, was followed by an HMnO4 attack 
at the centre of a 1:1 intermediate complex (C1).

Instead, in a rate-determining stage, the slow decomposi-
tion of the formed intermediate complex to give radical (C1.) 
substrate and reduced (Red) shape (as MnIII/MnIV) of the 
permanganate ion, throughout the slow stage first oxidation 
products as follows.

Under pseudo first-order conditions used, the change of the 
rate constants with changing the [H+] and [BTB] and rear-
rangement, the following relationship is obtained,

where k
n
 is the second-order rate constant, k` = kK1K2K3 

and k�� = kK2K3 , respectively. In compliance with Eq. (6) 
[BTB]∕kObs versus [H+]−1 has given good straight lines with 
a positive intercept on [BTB]/kobs axes, as shown in Fig. 5; 
the values of the apparent rate constants k′, k″ and the pro-
tonation constant K1 can be determined on their slopes and 

(2)BTB + H+
K1

⇌ BTBH+

(3)MnO−
4
+ H+

K2

⇌ HMnO4

(4)HMnO4 + BTBH+
K3

⇌ C1 + H+.

(5)C1 ⟶ kC.
1
+ Red.

(6)
[BTB]

kobs

=
1

k
n

=

(

[H+]−1

k�
+

1

k��

)

Fig. 5   Plots of [BTB]/kobs vs 1/
[H+] in the oxidation of bro-
mothymol blue by permanga-
nate ion in aqueous perchlorate 
solutions. [MnO4

−] = 4.0 × 10−4, 
[BTB] = 1.0 × 10−3, 
I = 1.0 mol dm−3 at various 
temperatures
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intercepts. These values were determined to utilize the least 
square method and found at 20, 30, 40 and 50 °C, respec-
tively, to be 0.91, 0.79, 0.57 and 0.55. It was observed that, 
the measured values of the protonation constants ( K1 ) are in 
strong agreement.

The negative entropies of activation (∆S≠) values in 
Table 1 show the density of the intermediates rather than 
the reactants. Again, the values of positive for ΔG≠ indi-
cated that the intermediate complexes produced were non-
spontaneity as suggested by the proposed mechanism. As 
shown by the ionic strength dependency of the rate constant, 
the strong reaction propensity between the neutral molecule 
and the positive ion will support the low energy activation 
value of E≠ (Table 1) observed in this step. It implies that 
the reactants need little energy to interact and create the 
intermediate states of the complexes developed.

However, the entropy of activation has been previously 
reported (Hassan 1992, 2011) as being more negative for 
inner reactions, with reactions with negative values of the 
∆S≠ being conducted through an inner-sphere of one- and 
two-electron transfer mechanism. Considering the values 
found for the entropy of activities (Table 1), it is better to use 
permanganate ion to oxidize BTB by means of two-electron 
shifts within the sphere rather than by the outside-sphere 
method. It should be remembered in this context that the 
mechanism of outer-sphere two-electron transition does not 
seem to be experimentally confirmed.

The disturbance of the alteration in spectra (Fig. 1) can 
suggest that the original quick portion of the reaction to oxi-
dation is not the true phase of electron transfer. Therefore, 
the quick development of an intermediate between the reac-
tants can be due to the first strong portion of the oxidation. 
Once again, several trials were conducted to detect the for-
mation of intermediate hypomanganate (V) as transient spe-
cies. Unfortunately, all attempts were unsuccessful. Under 
our experimental conditions of lower concentrations of reac-
tants or the rapid reaction between the formulated Mn(V) 
and Cr, this failure may be due to the lower absorptivity of 
formed Mn(V). Equation 5 defining the final products for 
oxidation. In view of the above-mentioned kinetic definitions 
and study results, as outlined in Scheme 1, a tentative reac-
tion process can be proposed for oxidation of bromothymol 
blue by acidic permanganate.

Energy gap

From Fig.  1, Spectral changes of wavelength 
200 nm < λ < 900 nm in the oxidation of [BTB] by perman-
ganate ion in aqueous HClO4 during the reaction progression 
to obtained [BTB]Keto. The optical transitions occur by direct 
transitions in semiconductor materials (Cong et al. 2020). 
At incident photons energy (hυ), the (�h�)m = B

(

h� − Eg

)

 
the equation may be used to obtain optical band gap 

(

E
Opt
g

)

 
and transition bandgap ( Etrans

g
) values according to Tauc’s 

Table 1   The constant of protonation (K1) and the values of the apparent rate constants (k` and k”) in the oxidation of [BTB] by 
[

MnO
−
4

]

 in aque-
ous HClO4 solutions

Errors of experimental ± 4%, a: The constant of second-order rate at [H+] = 0.5 mol dm−3

Constants Parameter

ΔH≠ kJ mol−1 ΔS≠ J mol−1 K−1 ΔG≠ 293 kJ mol−1 Ea
≠ kJ mol−1

k′ 43.66 − 391.09 114.63 50.36
k″ 18.14 − 305.96 89.66 26.96
akn` 21.35 − 181.25 53.13 23.95

ΔH° kJ mol−1 ΔS°293 J mol−1 K−1 ΔG°293 kJ mol−1

K1 − 12.49 − 0.0433 + 0.219

Scheme 1   Mechanism of oxida-
tion of bromothymol blue by 
permanganate ion in aqueous 
perchlorate solutions
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equation from the optical transition spectrum, where m = 2 
for direct transitions allowed spectrum, respectively. They 
allow direct transitions of [BTB] and [BTB]Keto are shown 
in Fig. 6. Extrapolating the right part of the plot (αhν)2 to 
the energy axis at α = 0 in addition to (hν) obtains the optical 
gap values. Figure 6 displays the (αhν)2 × 1012 (eVm−1)2 
versus hν (eV) (Al-Hossainy et al. 2017; Rammah et al. 
2019). The meaning 

(

E
Opt
g

)

 is described as the lower part of 
the energy, or a pair of bound electron–hole generators 
assigned to Frankel’s exciton. The meaning 

(

E
Opt
g

)

 applies 
to the disparity between LUMO and HOMO in the energy 
value (Awad et al. 2004).

Application of Tauc’s equation, the results clearly display 
that the values of the optical energy bandgap 

(

E
Opt
g

)

 direct 
transition decreases from 2.849 eV for [BTB] to 2.35 eV for 
[BTB]Keto. The various between the 

(

E
Opt
g

)

 of [BTB] to 
[BTB]Keto thin film is 0.499 eV. This indicates that [BTB]Keto 
(result from oxidation process) integrates the energy levels 
into the bandgap, which reduces the energy gap value. In 
DFTs simulation section by utilizing DMol3, the 

(

E
Opt
g

)

 val-
ues for [BTB] and [BTB]Keto are 3.047 eV and 2.869 eV, 
respectively (Nayeri et al. 2014; Al-Hossainy et al. 2019b). 
It can also be noted that the HOMO and LUMO simulation 
is shown in inset Fig. 6 indicates the average similarity of 
the energy gap values calculated by Tauc’s equation with a 
small difference in values.

Molecular electrostatic potential (MEP) 
and potential (P)

[BTB] and [BTB]Keto chemical and physical comparisons 
were tested using the electron density and the electrostatic 
potential. For the [BTB] and [BTB]Keto, the electron density 
is often discussed as the essential factor in determining the 
ground state of a significant number of electron systems. 
Based on the constant electron density, the MEP defines 
electrostatic potential. A 3D diagram reveals the active 
position of the MEP in Fig. 7a, c respectively for [BTB] 
and [BTB]Keto. The color blue is the appropriate zone for 
nuclear attacks, whereas the appropriate zone for electro-
philic attacks is a color red. In the isolated molecule and 
crystal models the range molecular electrostatic potential of 
[BTB] and [BTB]Keto is − 5.929 × 10−2 ≥ [MEP] ≥ 5.929 × 1
0−2, and in the order of increase is − 6.838 ≥ [MEP] ≥ 6.838 
in volume, respectively: red < brown < blue (Cruz et  al. 
2019; Kumar et al. 1996). The largest attraction is the blue 
color, while the red color one seems to have a strong repu-
diation. The MEP graph indicates (Abdel-Aziz et al. 2018) 
that electron-negative nitrogen atoms represent negative 
potential regions and that positive potential is present in the 
hydrogen atoms (Al-Hossainy et al. 2019c). The potential 
possible diagrams (Fig. 7b, d), the potential growth of [BTB] 
is shown to be lower than that of [BTB]Keto. This shows the 
electron transfer probabilities (Hassan et al. 2009c; Li et al. 
2020; Al-Hossainy et al. 2019d) in [BTB]Keto are increased.

Fig. 6   Experimental plot of 
(αhν)2 versus photon energy 
(hν) for [BTB] and [BTB]Keto. 
Inset this figure HOMO and 
LUMO for the [BTB] and 
[BTB]Keto using DFT/CASTEP 
program
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Conclusions

The significant structural characteristics, optical disper-
sion and dielectric properties of [BTB] and [BTB]Keto 
are determined using FTIR technique and compared with 
DFT calculations. The simulated FTIR (Gaussian DFT) of 
[BTB] and [BTB]Keto in isolated and gas state are in great 
agreement for the same compounds obtained from experi-
mental analyses. The kinetics and oxidation processes of 
BTB in acid perchlorate solutions with a constant ionic 
strength of 1.0 mol dm−3 as sulfonphthaleine dyes by 
permanganate ion oxidizer have been analyzed spectro-
photometrically. The experimental results of the pseudo-
first-order plots revealed that oxidation displays a single 
pathway reaction; MnO−

4
 first-order, [BTB] fractional-first 

order and hydrogen ion concentration fractional-first order. 
Dependence on acidity in reaction levels suggested acid-
catalyzed reaction. The addition of MnII to the reaction 

mixtures confirmed the absence of either MnIII and/
or MnIV transient species as involvement species in the 
oxidation phase. Formation of 1:1 intermediate complex 
prior to the rate-determining step was revealed, kineti-
cally. A tentative method of the reaction was introduced 
and discussed with respect to the kinetic observations and 
measured kinetic parameters. The EOpt

g  values achieved 
from Tauc’s equation are 2.849 eV and 2.35 eV for [BTB] 
and [BTB]Keto respectively. While the EOpt

g  computed by 
DFT (DMol3) are 3.047 eV and 2.869 eV for [BTB] and 
[BTB]Keto as—isolated and gas state, respectively. There 
is a good agreement between EOpt

g  values determined by 
the DFT (DMol3) computations and the Tauc’s equation 
calculations. Based on the EOpt

g  values and DFT calculation 
( EHOMO − ELUMO ) of [BTB] and [BTB]Keto can be used as 
an application to textile industrial wastewater treatment.

Fig. 7   a MEP of [BTB]; b potential of [BTB]; c MEP of [BTB]Keto and d potential of [BTB]Keto by use the material studio and Gaussian pro-
gram calculation DFT
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