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Abstract
Mordenite zeolite is considered a molecular sieve because of its adsorbent material characteristics used in the industry as a 
gas separator. High Si/Al ratios of this zeolitic material in its crystal lattice provide high thermal stability in the structure. 
To minimize the production costs, this work synthesized the mordenite zeolite in absence organic template (high costs of 
production). For this purpose, rice husk ash (silicon source) was used from a thermoelectric plant that uses biomass for power 
generation under the “Moving Grade Reactor” method and metakaolin (aluminium source) derived from the construction. 
To obtain the zeolitic material, an alkaline treatment with sodium hydroxide and deionized water was required. Different Si/
Al ratios (5, 10, 15, and 20) were used to evaluate the highest efficiency in adsorption capacity. The textural properties of 
mordenite as a function of specific surface area ranged from 314 to 347 m2/g, with micropore volume 0.198–0.279 cm3/g 
with average pore diameter ranging from 5.9 to 6.2 Å.  N2 adsorption/desorption isotherms obtained for mordenite presented 
type IV hysteresis, characteristic of microporous materials. X-ray diffraction showed crystalline phases of mordenite zeolite, 
mostly. The FTIR reinforces the success of mordenite synthesis by the vibration bands corresponding to the zeolitic material. 
TGA revealed water desorption and absence of an organic director. The mean cation-exchange capacity values ranged from 
1.10 to 1.78 meq/g indicating a 62% increase of 20-mordenite zeolite compared to 5-mordenite in the zeolitization process. 
This result is satisfactory and promising for the use of mordenite as adsorbent material.
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Introduction

Zeolites are hydrated aluminosilicates which have a crys-
talline structure formed by the combination of silica 
 (SiO4)4− and alumina  (AlO4)5− tetrahedra joined by oxygen 
atoms (Klunk et al. 2019a; Lu et al. 2019; Auerbach 2003). 

For each aluminium atom contained in the structure, an 
excess negative charge is generated, producing an electrical 
imbalance (Cherkasov et al. 2016; Matsunaga et al. 2012). 
Alkali and alkaline Earth act as stabilizers, a striking feature 
of clay minerals (Klunk et al. 2019b; Elgamouz and Tijani 
2018).

The mordenite zeolite (MOR) has 12-ring pores about 
6.5 × 7.0 Å in the crystallographic direction of [001] (Ma 
et al. 2016; Zang et al. 2008; Wahono et al. 2019). They are 
connected by small pores 8-ring along the direction [010]. 
MOR belongs to the orthorhombic crystalline system con-
sisting of three mutually perpendicular crystallographic axes 
with different lengths (a = 18.1, b = 20.5, and c = 7.5 Å). This 
is an important feature, because the diffusion process is slow 
compared to the other two- or three-dimensional molecu-
lar sieves (13 × and 4A) (Fischer et al. 2018; Garshasbi 
et al. 2017; Panda and Kumar 2017; Zhou et al. 2015). This 
behaviour is intensified when the adsorbate molecules are 
approximately the same size as the pore diameter (Klunk 
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et al. 2019c; 2020). As a result, a small fraction of specific 
molecules can be adsorbed into the cavities of MOR, giving 
it selectivity, a fundamental feature of molecular sieves (Ma 
et al. 2016; Nishiyama et al. 1996).

Zeolites can be used for carbon dioxide  (CO2) adsorp-
tion to mitigate the environmental impacts caused by green-
house gas emissions (Santos et al. 2018; Klunk et al. 2019d; 
Cataluña et al. 2017, 2018; Caetano et al. 2015a). The wide 
application of zeolites for  CO2 adsorption is enabled due to 
larger pore cavities compared to the molecular diameter of 
carbon dioxide (Klunk et al. 2019e; Caetano et al. 2015b, c, 
2018). Gas separation in zeolite structure depends on three 
factors: crystal lattice structure and composition, cationic 
forms, and zeolite purity (Singh et al. 2018; Hernández-
Huesca et al. 1999).

To achieve this purpose, this work aims to synthesize 
MOR in high purity and crystallinity, in the absence of an 
organic template. To obtain MOR, rice husk ash (RHA) 
(silicon source) was used, and for the aluminium source, 
Metakaolin (MK)  (Al2O3.2SiO2) was used (Jun Zhang et al. 
2018; Zhang et al. 2007). In general, standard synthesis 
of zeolitic material involves a mineralizing agent (sodium 
hydroxide) and an organic template (tetrapropylammonium 
hydroxide) (Hamidzadeh et al. 2018; He et al. 2013; De la 
Iglesia et al. 2006; Casado 2003). The high cost of manu-
facturing the zeolitic material is associated with the organic 
template as they are high-value reagents (Klunk et  al. 
2019c). Given all these problems, many researchers have 
sought to develop a methodology for synthesizing MOR in 
the absence organic template (Radman et al. 2019; Singh 
et al. 2018; Idris et al. 2018; Zhang et al. 2015; Aly et al. 
2012; Huang et al. 2012; Cheng 2008; Kalipçiliar 2007).

To develop efficient adsorbents, MOR was synthesized 
with different Si/Al ratios (SAR) of 5, 10, 15, and 20. Thus, 
this work sought to deepen the understanding of the adsorp-
tion process and which parameters influence the synthesis 
of zeolitic material.

Materials and methods

The materials and methodology applied in this work con-
sisted of characterizing the raw materials (RHA and MK) 
as well as the zeolitic material formed.

Synthesis of mordenite

Mordenite synthesis in absence organic template was per-
formed according to Costa and Araujo (2010) with some 
modifications. For this purpose, RHA (silicon source) 
from a thermoelectric power plant located in the state of 
Rio Grande do Sul-Brazil was used. This company uses 
biomass for power generation under the method “Moving 

Grade Reactor” (Fernandes et al. 2016, 2017a, 2018; Moraes 
et al. 2014). Therefore, MK  (Al2O3.2SiO2) was used as an 
aluminium source. This feedstock is related to the passage 
from the hydrated state of kaolin  (Al2O3.2SiO2.2H2O) to 
dehydrate through dehydroxylation of the kaolinite molecule 
 (Al2Si2O5(OH)4) through calcination at controlled tempera-
tures (Gardolinski et al. 2003).

The contribution of metakaolin plays an important role in 
the adjustment of the effective charges in the crystal lattice 
of the zeolitic material. According to Table 1, we can iden-
tify that the major compounds are  SiO2 and  Al2O3. Unlike 
RHA, which has 90%  SiO2, metakaolin enters the mordenite 
synthesis not to aggregate  SiO2 to the structure, but to com-
pensate for the alumina  (AlO4)5− deficit in the molecular 
sieve tetrahedral lamellae. Another important point of MK 
is the contribution of  SiO2 in zeolite formation, even if less 
significant compared to  Al2O3.

The characteristics of the two raw materials, precursors of 
the zeolitic material, are shown in Table 1. Potential applica-
tions of RHA and MK were defined by the chemical com-
position, which was determined by X-ray fluorescence. The 
present compounds are derived from the inorganic fraction 
present in RHA and MK, so the results are presented as more 
stable binary oxides (Fernandes et al. 2017b).

The synthesis methodology consists of reactions under 
alkaline conditions (NaOH—3.5 mol/L). The reaction sys-
tem is divided into two equal parts of the same volume 
(500 mL of NaOH). The first part is used to dissolve the 
RHA and the second part to dissolve the MK according to 
the mass in grams of each raw material to obtain the Si/Al 
ratios (Table 2). The two solutions were then carefully mixed 
and left at room temperature to allow the transformation of 
the sol–gel process. The gel was then oven-dried at 90 °C for 
24 h. The dried solid was ground and subsequently calcined 
at 550 °C for 6 h.

Characterization of materials

The characterization of the zeolitic material is fundamental 
for understanding the adsorption process. Thus, the tech-
niques used in this work are: (1) specific surface area (BET), 

Table 1  Chemical analysis of 
the compounds present in the 
RHA (Fernandes et al. 2016) 
and MK (wt%) by XRF

Composition RHA MK

SiO2 90.02 48.27
Al2O3 0.08 35.34
Fe2O3 0.01 1.08
K2O 0.81 2.62
CaO ND 3.80
MgO ND 2.97
TiO2 ND 3.58
SO3 0.07 ND
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(2) chemical composition (XRF), (3) mineral composition 
(XRD), (4) identification of specific functional groups 
(FTIR), (5) SEM/EDS was utilized in the present work to 
complement the other characterization techniques, (6) ther-
mal analysis in which the variation of sample mass (loss or 
gain) is determined as a function of temperature and/or time 
(TGA), and (7) cation-exchange capacity (CEC). To evaluate 
CEC, the methodology of Shinzato et al. 2008 with some 
modifications was applied.

The cation-exchange capacity (CEC) was performed as 
follows:

(1) 1.0 g of sample with 100 mL of one molar sodium 
acetate solution  (CH3COONa.3H2O).
(2) Stirring at room temperature for 24 h at 120 rpm.
(3) Filter the sample, and the analyte retained on the fil-
ter, should be washed with 1.0 L of deionized water, and 
oven-dried at 80 °C for 2 h.
(4) In the dry sample, stir at room temperature for 24 h at 
120 rpm with 100 mL of one molar ammonium acetate 
solution  (CH3COONH4).
(5) Filter the suspension and the  Na+ ions and concentra-
tion determined by the inductively coupled plasma optical 
emission spectrometry (ICP-OES) technique. The amount 
of sodium ion was expressed in mg/L (ppm) and con-
verted to the usual milli-equivalent of CEC units (meq/g).

Results and discussion

Characterization of mordenite

Table 3 shows the amounts in grams of unreacted material 
after alkaline treatment as well as the yield of mordenite 
synthesis.

We can observe that for all samples, the reaction sys-
tem yield is above 70%. The residues found in the reactions 
come from the sol–gel system filtration step. The remaining 
(unreacted) precursor materials composed of  SiO2 (RHA) 

and  Al2O3.2SiO2.2H2O (MK) obstruct the filtration system 
making it difficult to separate sol–gel.

Measurements of the surface area (BET), volume, and 
average pore diameter of the zeolitic material are listed in 
Table 4. For low and intermediate silicon ratios, between 
5 and 10, the BET ranged from 314 to 328 m2/g, with an 
average pore diameter of 5.9 Å. Therefore, for high Si/Al 
ratios, between 15 and 20, the surface area is in the range 
of 339–347 and an average pore diameter between 6.0 and 
6.2 Å. The BET results found in this study are in agreement 
with the works of Zhang et al. (2011), Mignoni et al. (2007), 
Dimitrova et al. (2006), and Hincapie et al. (2004) that use 
the synthesis of mordenite by the traditional method.

Synthesized mordenite has, in all Si/Al ratios, pore vol-
ume identified in the micro-range (less than 2 nm) according 
to Meier and Olson (1992).

Increased SAR results in an 11% increase in surface 
area (Table 4). This increase is related to the formation of a 
crystal lattice made up of Si and Al tetrahedra. The results 
indicated that as Si and Al are incorporated into the crystal 
lattice, the micropore volume of mordenite increases, which 
leads to a larger pore volume. Another factor contributing 
to the increase in surface area is the fact that adsorption 
of nitrogen molecules does not occur uniformly in a mon-
olayer, but in the form of irregular layers, where the mon-
olayer is often not fully filled until another layer begins to 

Table 2  Quantities of raw material and molar composition used for 
the synthesis of mordenite in absence organic template for the differ-
ent Si/Al ratios

SAR RHA (g) MK (g) Molar composition

5 3.85 7.80 0.23SiO2:0.12Al2O3:11.19NaOH:27.
78H2O

10 4.52 9.14 0.27SiO2:0.15Al2O3:11.19NaOH:27.
78H2O

15 5.73 11.59 0.34SiO2:0.18Al2O3:11.19NaOH:27.
78H2O

20 6.81 13.88 0.41SiO2:0.22Al2O3:11.19NaOH:27.
78H2O

Table 3  Gel quantity and leftover grams of Si and Al forming impuri-
ties as well as the yield of the reactions

SAR Gel composition 
(g)

Residues of Si/
Al (g)

Yield (%)

5 11.66 3.14 73
10 13.74 4.09 70
15 17.33 5.02 71
20 20.70 5.59 73

Table 4  Textural properties of mordenite zeolites in different SARs

*Used to determine the microporous volumes in porous materials 
including hierarchical zeolites
**Barett–Joyner–Halenda method (method to calculate the mesopore-
size distribution from adsorption isotherm data)

SAR BET surface 
area  (m2/g)

Pore volume  (cm3/g) Average pore 
diameter (Å)

Micropore 
(t plot)*

Mesopore 
(BJH)**

5-MOR 314 0.198 0.01 5.9
10-MOR 328 0.237 0.02 5.9
15-MOR 339 0.252 0.02 6.0
20-MOR 347 0.279 0.03 6.2
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form, which, consequently, changes the value of the specific 
surface area.

After obtaining the zeolitic material, the micropore vol-
ume has increased from 0.198 to 0.279 cm3/g. The size of 
the adsorbed molecules plays an important role in their 
adsorption on zeolite. Zeolite cavities are a selective factor 
for adsorbed molecules. Mordenite can adsorb molecules 
that have a maximum diameter of 0.4 nm, indicating that 
 CO2 adsorption (diameter = 0.33 nm) is not limited by this 
steric factor (Bonenfant et al. 2008; Aguilar-Armenta et al. 
2001; Hernández-Huesca et al. 1999). In addition, the time 
required to reach the middle  CO2 adsorption capacity is pro-
portional to the diameter of the adsorbed molecules (Dunne 
et al. 1996; Hayhurst 1980). This behaviour is similar when 
other forms of adsorbents such as non-mineralizable coals 
are used (Klunk et al. 2018). Figure 1 shows the nitrogen 
adsorption–desorption isotherms for mordenite zeolite 
samples in the different SARs. The results indicate a slight 
increase in relative pressure (p/p0) in the ranges of 0.01 and 
0.97.

For low relative pressure, this behaviour can be inter-
preted by the fact that zeolites are filling the micropores of 
their structure, which means the presence of microporous 
cavities. Therefore, for high pressures, rapid absorption 
occurs indicating the existence of empty cavities result-
ing from the crystalline structure of the zeolitic material. 
In addition, the formed zeolites show a hysteresis loop at 
relative pressures (p/p0) between 0.42 and 0.96 caused by 

mesoporous channels. The obtained isotherms demon-
strated that all samples exhibit the typical type IV adsorp-
tion isotherm with the H3 hysteresis loop, as identified by 
the IUPAC.

According to Table 5, there was a wide variation between 
the contents of the main components present in zeolites 
formed with different SARs.

For 5-MOR zeolite, X-ray fluorescence reveals that SAR 
is 4.64. In sample 10-MOR, the Si/Al ratio is 10.32. Thus, in 
zeolitic materials 15-MOR and 20-MOR, the SAR are 15.47 
and 21.96, respectively. Due to experimental errors, reagent 
impurity, and instrumental inaccuracy, the exact SARs of 
5, 10, 15, and 20 could not be obtained by synthesis. The 
zeolites formed presented, in general, high contents of silica, 
alumina, ferric oxide, and sodium oxide that favour the for-
mation of mordenite. Calcium oxide, titanium, magnesium, 
sulfur, potassium, and other compounds were also found in 
amounts of less than 5%.

The low sulfur content and high amounts of calcium 
enhance the use of these materials. Sodium content is related 
to its incorporation into the zeolitic material by hydrother-
mal synthesis, where metakaolin was used as an external 
aluminium source and activating agent, respectively. Expo-
sure of the material to solutions with higher NaOH concen-
trations during synthesis increased the amount of sodium in 
the zeolite structure (Scott et al. 2001).

To identify the formation of the crystal structure of MOR 
in the absence of organic template, they were submitted to 
XRD analysis. The diffractograms obtained are shown in 
Fig. 2. The results of XRD were based on the International 
Union Database Database’s Joint Committee on Powder 
Diffraction Standards (JCPDS) (Scapin 2003; Atkins and 
Jones 2001). The peaks between 2θ of 5° and 30° corre-
spond to mordenite in all SARs. Thus, mordenite is favoured 
by the addition of metakaolin due to the high amounts of 
calcium and potassium elements that are part of its crystal 

Fig. 1  N2 adsorption and desorption isotherms of mordenite

Table 5  Chemical analysis of the compounds present in the MOR (% 
by mass)

Oxides 5-MOR 10-MOR 15-MOR 20-MOR

SiO2 59.41 61.08 62.95 65.67
Al2O3 12.8 5.92 4.07 2.99
Fe2O3 3.53 3.92 4.95 4.88
Na2O 0.54 0.59 0.66 0.80
K2O 5.81 5.91 6.60 6.78
CaO 1.52 1.66 1.70 2.07
MgO 0.79 0.80 0.91 0.88
TiO2 4.88 4.51 3.80 3.00
SO3 0.08 0.07 0.06 0.01
SiO2/Al2O3 4.64 10.32 15.47 21.96
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lattice. The chemical formulas of the crystalline phases of 
the zeolitic material are shown in Table 6.

The diffractograms reveal the formation of kaolinite, mul-
lite, and quartz between 2θ of 31° and 50° (peaks with low 
intensity). These results are in accordance with research con-
ducted by Mignoni et al. (2007) and Shao et al. (2001) who 
synthesized mordenite with external sources of aluminium. 
The occurrence of kaolinite and mullite is related to the 
reactions that occur between  SiO2 (RHA) and  Al2O3.2SiO2 
(metakaolin).

In general, quartz cannot be dissolved by hydrothermal 
processes and remain in the zeolitic material. These com-
pounds were found in varying amounts in all samples. Alu-
minium is an element that constitutes the crystalline network 
of zeolites, and therefore, its quantities directly influence the 
formation of adsorbents. It is noteworthy that the identifica-
tion of the crystalline phases in the samples with the addi-
tion of metakaolin served to obtain the various Si/Al ratios.

The results, compared with literature data, prove that the 
molar ratios used and the synthesis conditions favour the for-
mation of the zeolitic material (Hisham et al. 2012; Xianfeng 
et al. 2009; Zhang et a. 2002).

Fourier transform infrared spectroscopy (FTIR) of the 
5-MOR, 10-MOR, 15-MOR, and 20-MOR samples are in 
Fig. 3. All samples exhibit the same profile in the FTIR 
spectra. In this way, the samples reveal typical mordenite 
vibrational bands (Ivanova and Knyazeva 2013).

The mordenite FTIR spectra exhibit two vibrational 
peaks of 3744 cm−1 and 3605 cm−1 associated with the 
silanol end-groups (Si–O–H and Si–OH–Al). In addition, 
the band observed around 3655 cm−1 corresponds to alu-
minium vibrations (AlOH–). The H–OH flexion bands were 
observed at 1636 cm−1 and 1230 cm−1, and are attributed 
to the –OH vibration. Vibrational stretches were found at 
1040 cm−1 related to the Si–O group.

The wavelengths of 800 cm−1, 550 cm−1, and 468 cm−1 
are related to the vibrations of Al–O–Al, Si–O–Si, and inter-
nal asymmetric stretching of Al–O and Si–O (Bevilacqua 
and Busca 2002).

Fig.  4a and b shows the SEM/EDS demonstrations 
from mordenite zeolite (sample 20-MOR). This sample Fig. 2  Diffractogram of mordenite zeolites with different Si/Al ratios: 

a 5, b 10, c 15, and d 20

Table 6  Crystalline structures and chemical formula of zeolitic com-
pounds

Crystalline structures Chemical formula

Quartz SiO2

Mordenite (Ca,Na2,K2)Al2Si10O24•7(H2O)
Mullite Al4,44Si1,56O9,78

Kaolinite Al2Si2O5(OH)4

Fig. 3  Infrared spectrum for mordenite zeolites without different 
Si/Al ratios and without the use of organic guidance: a 5-MOR, b 
10-MOR, c 15-MOR, and d 20-MOR
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has a typical appearance characterized by the presence 
of irregular-shaped angular particles (RHA burning takes 
place in the pulverized form) of varying sizes (Fig. 4a). 
The combustion conditions of RHAs in the thermoelectric 
power plants determine the morphology of the particles.

According to the EDS technique, the presence of the 
chemical elements Ca, Na, K, Al, Si, and  O2 acts as evi-
dence for the formation of zeolite called mordenite.

Thermogravimetric tests were performed to identify 
the mass loss regions for the zeolitic material formed. 
Thermogravimetric curves are shown in Fig. 5. These 
curves show a region of marked mass loss from 100 °C 
to approximately 300 °C. This loss comprises the desorp-
tion of water not bound to the structure and because they 
do not have organic material. The samples obtained in the 
absence of organic template had two less mass loss steps 
when compared to the studies by Frantz (2015), Costa 
(2013), and Caldeira (2011) that used organic template. 
Mass loss is higher for samples with lower Si/Al ratio. 
However, all samples stabilize mass losses around 400 °C.

The results of the cation-exchange capacity measure-
ments using ICP-OES of the zeolitic material are shown 
in Table 7.

Mean CEC values ranged from 1.10 to 1.78 meq/g. 
There was a 62% increase in CEC of 20-MOR zeolite com-
pared to 5-MOR in the zeolitization process. This was due 
to the high surface area (about 11% greater than 5-MOR 
compared to 20-MOR) associated with the micropore vol-
ume which increased 41%. 20-MOR zeolites are easier 
to exchange  NH4

+ when compared to 5-MOR. The CEC 
values found for all MOR zeolites, synthesized without an 
organic director, indicate that these materials have a high 
potential for use as ion exchangers.

Fig. 4  Scanning electron micrographs (a) and energy-dispersive spec-
troscopy (b) of mordenite zeolites formed from RHA and MK

Fig. 5  TGA plots of mordenite in SAR 5, 10, 15, and 20 in absence 
of organic template

Table 7  CEC for mordenite zeolites according to Si/Al ratio

Zeolite MOR CEC (meq/g) Average

5 1.10 1.10
1.09
1.10

10 1.36 1.36
1.36
1.36

15 1.57 1.57
1.57
1.57

20 1.80 1.78
1.77
1.77
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Conclusions

Synthesized mordenite from external sources of Si (RHA) 
and Al (MK) in absence organic template resulted in a 
high crystallinity zeolitic material, proven by XRD with 
70% of the yield. Zeolite characterization revealed an 
11% increase in surface area when compared to 5-MOR 
with 20-MOR. As a consequence, the  N2 adsorption/des-
orption isotherms obtained for mordenite presented type 
IV adsorption isotherm with the H3 hysteresis loop of 
microporous materials. The hysteresis curves revealed that 
they can be reused without loss in adsorption capacity. The 
chemical composition of Si/Al ratios in the formed zeo-
lites 5-MOR (4.64), 10-MOR (10.32), 15-MOR (15.47), 
and 20-MOR (21.96) proved the success of the synthesis. 
These transformations were due to the efficient alkaline 
treatment that provided the formation of zeolitic material. 
Fourier transform infrared spectroscopy reinforces the suc-
cess of mordenite synthesis by the vibration bands corre-
sponding to Al–O–Al and Si–O–Si stretches, and coupling 
vibration Al–O and Si–O typical of zeolitic material. The 
SEM demonstrations in the presence of irregular-shaped 
angular particles from RHA burning takes place in the 
pulverized form), and according to EDS technique, the 
presence of the chemical elements Ca, Na, K, Al, Si, and 
 O2 acts as evidence for the formation of zeolite called mor-
denite. The results of thermogravimetric tests reveal water 
desorption and absence of organic director with high mass 
loss in the range of 100–300 °C, acquiring stability after 
400 °C. Thus, it can be concluded that the higher the Si/
Al ratio in the samples, the higher the thermal stability. 
The 20-MOR cation-exchange capacity was 62% higher 
compared to the low Si/Al ratio. This result is satisfactory 
and promising for the use of MOR as adsorbent material.
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