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Abstract
A simple, cost-effective, instrumental-free prototyping process has been developed for fabricating flexible, multilayer colori-
metric microfluidic sensor. A hand-hold punch was used to make microfluidic sensor pattern with no use of any expensive 
instruments (laser cutter, cutting plotter, screen printer, wax printer, etc.). Colorimetric analysis was carried out using a 
smartphone camera as a reader. Sensitive quantitation of copper has been demonstrated on the developed sensor under the 
optimal parameters. In the presence of copper ion, the Blue channel color values decreased with increasing the  Cu2+ con-
centration. The Blue channel color intensity was linear with the concentration of  Cu2+ in the range from 0 to 30 mg/L with a 
detection limit of 0.096 mg/L (3σ). The developed microfluidic sensor possesses good selectivity, satisfying reproducibility 
and high recoveries in tap water. Furthermore, through changing hole punch with different hole shape and hole numbers, it 
is extremely easy to produce microfluidic sensors with different design in quantity at low cost. What’s more, the developed 
sensor could be easily extended to detect other single analyte or multiple analytes, showing promising practical applications 
in environmental analysis.
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Introduction

Copper ion [Cu(II)], as the third most abundant transition 
metal ion after iron and zinc in the human body, has been 
proven to play important roles in a variety of physiological 
processes (O’Dell and Sunde 1997; Uriu-Adams and Keen 
2005). When human is exposed to low levels of copper, it 
is likely to be beneficial for human health as copper is an 
essential micronutrient for all living organisms (Besold et al. 
2018; Chetri et al. 2017). However, copper ions at elevated 
concentrations are highly toxic and can result in severe 

health effects such as gastrointestinal disturbance, jaundice, 
hemoglobinuria, kidney failure, liver damage, Wilson dis-
eases, Alzheimer’s diseases, and potentially death (Zeng 
et al. 2006; Yun et al. 2017). Therefore, it is of great impor-
tance to monitor the levels of copper in drinking water, food, 
soil and other environmental samples. The safe thresholds of 
 Cu2+ in drinking water are 1.3 mg/L and 2.0 mg/L accord-
ing to the US Environmental Protection Agency and World 
Health Organization, respectively (Bandara et al. 2018a, b; 
Fitzgerald 1998).

Till now, there are many analytical methods which has 
been reported for copper detection, such as flame atomic 
absorption spectroscopy (FAAS) (Antunes et al. 2017), 
atomic emission spectroscopy (AES) (Yu et al. 2016), induc-
tively coupled plasma-mass spectroscopy (ICP-MS) (Song 
et al. 2004), inductively coupled plasma-optical emission 
spectroscopy (ICP-OES) (Ferreira et al. 2002), electrochem-
istry (Wu et al. 2017) and fluorimetry (Fan et al. 2018). 
Although they are fast, reliable, and accurate for the quan-
titative detection of Cu(II) in environmental samples, they 
often suffer generalized disadvantages in terms of expensive 
instruments, tedious analysis time, the need for skilled oper-
ators, lack of instrument portability and in-filed capability 
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(Peng et al. 2017; Chen et al. 2017). Thus, it is highly desir-
able to develop a sensitive, rapid, simple, and cost-effective 
analytical method for precise monitoring of  Cu2+.

Microfluidic devices have gained significant popularity 
due to their low assay cost, reduced time consumption and 
low sample volume (Ko et al. 2017; Mukhitov et al. 2016). 
The recent technological improvements have increased the 
applicability of microfluidic devices in the real-world prob-
lems (Almeida et al. 2018; Cunningham et al. 2016). Till 
now, a great number of assay methods has been combined 
with microfluidic devices such as colorimetry (Sayad et al. 
2017), electrochemistry (Li et al. 2017), chemiluminescence 
(Hu et  al. 2017), electrochemiluminescence (Bist et  al. 
2017), fluorometry (Weng and Neethirajan 2017), surface 
plasmon resonance (SPR) (Nguyen et al. 2017), electropho-
resis (Fu et al. 2017), chromatography (Ianovska et al. 2017) 
and mass spectrometry (Pedde et al. 2017). Colorimetry 
combined with microfluidic devices is particularly attractive 
since some facile electronic platforms (e.g., desktop scan-
ner, digital camera and smart phone) can be used for image 
collection or data analysis, which greatly reduces the diag-
nostic cost and the usage of instrumentation (Bandara et al. 
2018a, 2018b; Pena-Pereira et al. 2016; Zheng et al. 2019). 
Among the electronic platforms, the smartphone, thanks to 
its multifunctional capabilities, imaging, and computing 
power, is increasingly playing a pivotal role in colorimetric 
microfluidic analysis (Kim et al. 2017a, b; Roda et al. 2014; 
Wu et al. 2015; Xu et al. 2015). The quantitative detection 
can be easily carried out using the smart phone and the color 
intensity can be measured by an open-source image process-
ing program (Jalal et al. 2017). The assay does not require 
expensive instruments and could be easily performed by 
anyone.

Until now, some colorimetric microfluidic devices have 
been fabricated for copper detection. Chaiyo et al. devel-
oped a microfluidic paper-based analytical device for copper 
detection with the help of wax printing (Chaiyo et al. 2015). 
Ratnarathorn et al. fabricated a colorimetric paper-based 
device for copper sensing using a computer-controlled X–Y 
knife plotter and cutting printer (Ratnarathorn et al. 2012). 
Rattanarat developed a multilayer paper-based device for 
colorimetric detection of copper using a  CO2 laser cutter 
and wax printing technique (Rattanarat et al. 2014). Koesd-
jojo et al. developed a colorimetric microfluidic device for 
copper assay using cutting plotter and laminator (Koesd-
jojo et al. 2015). All these works need the use of expensive 
instruments for cutting or printing, which increases the cost 
of microfluidic sensor fabrication.

In this paper, a home-made microfluidic sensor for cop-
per detection has been fabricated with the advantages of 
simplicity, low cost and rapid response. The sensor was 
manufactured by a simple prototyping process without using 
any expensive instruments (laser cutter, screen printer, wax 

printer, etc.). The sensor was composed of multiple layers by 
stacking 6-mm filter punches with sensing solution, electri-
cal tape with circular holes, punched PVC film with circular 
holes, double-sided adhesive tape and PVC film from top to 
bottom. Sodium diethyldithiocarbamate (DDTC) is a clas-
sical complexing agent, which is most commonly used in 
spectrophotometric analysis (Atanassova et al. 1998; Marc-
zenko and Balcerzak 2000). Therefore, DDTC was selected 
as the chelating agent to react with copper ions. Interaction 
of  Cu2+ ions with DDTC in the microfluidic assay resulted in 
the formation of a yellow-colored complex (Lou et al. 2009; 
Noll and Betz 1952). Several important parameters such as 
pH of the buffer solution, the concentration of DDTC and 
the reaction time between DDTC and copper ion were opti-
mized. Under the optimized parameter, the sensor showed 
good assay performance, satisfying selectivity, good repro-
ducibility and high recoveries in tap water.

Experimental

Chemicals and instruments

Copper dinitrate, potassium nitrate, zinc nitrate, calcium 
nitrate, lead nitrate, nickel nitrate, magnesium nitrate, 
sodium nitrate, ferrous nitrate, ferric nitrate, cobaltous 
nitrate, dibasic sodium phosphate, citric acid, nitric acid, 
ethylenediaminetetraacetic acid disodium salt (EDTA), 
sodium diethyldithiocarbamate (DDTC) were of analytical 
grade and bought from Sinopharm Chemical Reagent Co., 
Ltd. (China). Ultrapure water was used for solution prepa-
ration. The standards with differing concentrations of  Cu2+ 
were prepared by diluting the standard stock solutions with 
0.5%  HNO3. The sensing solution was prepared by dissolv-
ing EDTA and DDTC in the buffer solution [disodium acid 
phosphate (0.2 M) and citric acid (0.1 M), pH 7.6]. What-
man filter paper no. 1 was purchased from Whatman Interna-
tional Ltd. (Maidstone, England). A 6-mm diameter single-
round hole punch was bought from local store for cutting 
patterned layer. Transparent PVC film with A4 size, black 
electrical tape and double-sided adhesive tape were also pur-
chased from local store. A cell phone (oppo A53 M) made 
in china was used to take the digital pictures of the colored 
products in the detection zones. The sensor area was strictly 
controlled by the 6-mm diameter single-round hole punch. 
RGB values for each of the detection zones were measured 
using ImageJ software (version 1.50b, National Institutes 
of Health, USA) by analyzing the color intensities of the 
entire detection zone (“Analyze”/“Histogram”/“RGB”). The 
control experiment for the developed sensor was studied in 
the presence of other commonly occurring inorganic cations 
 (K+,  Zn2+,  Ca2+,  Pb2+,  Ni2+,  Mg2+,  Na+,  Fe2+,  Fe3+, and 
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 Co2+). The tap water in the lab was used as real water sample 
for the recovery test.

The fabrication of colorimetric microfluidic sensor

A simple, inexpensive and fast process of sensor fabrication 
was carried out in this paper without using any expensive 
instruments such as wax printer and screen printer. The sens-
ing zone was at first fabricated. Through punching circu-
lar holes into Whatman paper No. 1, filter punches with a 
diameter of 6 mm were generated. Then the filter punches 
were spotted with 6 μL of the sensing solution (50,000 mg/L 
EDTA and 900 mg/L DDTC, pH 7.6) and allowed to dry in 
a vacuum oven at 40 °C for 15 min. The patterned layers 
were cut by hand hole puncher into black electrical tape 
and transparent PVC film. The layer of black electrical tape 
was used to make the colorimetric reactions to be observed 
easily. The sensor was assembled by stacking filter punches 
with sensing solution, electrical tape with circular holes, 
punched PVC film with circular holes, double-sided adhe-
sive tape and PVC film according to the finished layout pro-
vided in Fig. 1.

Copper detection

Different concentration of copper standard solution with 
a volume of 6 μL was added to the microfluidic sensor to 

investigate the assay performance. The copper ions reacted 
with the assay reagents for 10 min and yellow-colored com-
plex was formed in the sensing zones. A cell phone was used 
to record the images of the sensors and ImageJ software was 
utilized to analyze the color intensity values in Red, Green 
and Blue channels. To study the selectivity of the developed 
microfluidic sensor, several commonly occurring inorganic 
cations  (K+,  Zn2+,  Ca2+,  Pb2+,  Ni2+,  Mg2+,  Na+,  Fe2+,  Fe3+, 
and  Co2+) have been checked. The spiked tap water was 
used as real sample to investigate the recovery of the sensor.

Results and discussion

The feasibility of the developed microfluidic sensor

The feasibility of the developed microfluidic sensor was 
demonstrated by measuring the color intensity in RGB 
channels. According the reported work (Sadollahkhani et al. 
2014), the linear range for colorimetric detection of cop-
per using paper-based sensor was 0.95–95.32 mg/L. There-
fore, the intermediate level of concentration (50 mg/L) was 
selected for the feasibility experiment. Figure 2a showed the 
RGB profile plot for the blank sample and the mean color 
intensities for Red, Green and Blue channels were 180, 190 
and 187, respectively. It is noted that the RGB profile plot 
for copper standard solution (50 mg/L) is shown in Fig. 2b 

Fig. 1  Schematic diagram of the 
microfluidic sensor design
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and the mean color intensities for Red, Green and Blue chan-
nels were 171, 173 and 116, respectively. So, the absolute 
value of the color intensity changes for Red, Green and Blue 
channels for copper standard solution (50 mg/L) were 9, 17 
and 71, respectively. These results indicate that Blue channel 
intensity for copper detection showed the highest sensitiv-
ity. Thus, Blue channel intensity was chosen for analysis 
throughout the rest of the experiments.

The optimization of several experimental 
parameters

Several experimental parameters such as the pH of the buffer 
solution, the concentration of DDTC and the reaction time 
were optimized by comparing the results of the Blue channel 
intensity of sensors after the addition of  Cu2+. For optimiza-
tion of experimental parameters, 100 mg/L copper standard 

solution was selected as the analyte because the linear range 
for colorimetric detection of copper using paper-based sen-
sor was up to nearly 100 mg/L as shown in the reference 
(Sadollahkhani et al. 2014). It is noted from Fig. 3a that 
the pH of the buffer solution was optimized over the range 
of 5.4–7.8. The Blue channel intensity greatly decreased 
when the pH of the buffer solution increased from 5.4 to 
7.6 but plateaued with further increase. Therefore, 7.6 is 
chosen as the optimum pH value for the buffer solution. 
DDTC was used to react with copper ion to produce yellow 
color because of the formation of the Cu-DDTC complex. 
More importantly, Cu-DDTC complex is ideal for copper 
detection because of its sensitivity, simplicity (no prereduc-
tion is required) and, especially, tolerance to interferences 
(Chen et al. 1997). So it is of great importance to optimize 
the concentration of DDTC (CDDTC) to react with low con-
centration of copper ion and generate a measurable analyti-
cal signal. Figure 3b shows that the Blue channel intensity 
greatly decreased when CDDTC changed from 0 to 900 mg/L 
but plateaued with further increase from 900 to 1700 mg/L. 
Therefore, 900 mg/L was selected as the optimum CDDTC. 
The reaction time for the interaction between  Cu2+ and 
DDTC was also optimized. It is noted from Fig. 3c that 
the color value greatly decreased when the reaction time 
changed from 5 to 10 min but slightly increased from 10 to 
15 min. So, 10 min was selected the optimum reaction time.

Copper assay

Under the optimal parameters, the assay performance of 
the microfluidic sensor was investigated. After adding a 
series of  Cu2+ standards on the sensor, a digital photo of 
the sensor was taken by a cell phone and the Blue channel 
intensity of the detection zone was measured under the help 
of ImageJ software. The color intensity values at the assay 
zone on paper-based devices were examined at room tem-
perature in the presence of  Cu2+ in the range of 0 – 70 mg/L. 
It is noted from Fig. 4a that the Blue channel color val-
ues decreased with increasing of  Cu2+ concentration. Fig-
ure 4b indicates that the sensing system exhibited a linear 
relationship between the Blue channel color value and the 
copper concentration in the range 0 – 30 mg/L (Blue chan-
nel intensity = − 1.7918CCu + 186.2584, R2 = 0.9968). Thus, 
the detection limit is 0.096 mg/L (3σ), which was calculated 
according to the linear equation of  Cu2+. Table 1 provides 
a performance comparison of different colorimetric sen-
sors for detection of Cu(II). As shown in the table, the LOD 
value obtained in this paper is lower than those reported in 
the literature, indicating a high sensitivity of the developed 
sensor towards the copper assay. Furthermore, compared to 
the commercial pack test for copper detection manufactured 
by Kyoritsu Chemical-Check Lab., Corp. (https ://kyori tsu-
lab.co.jp/engli sh/seihi n/list/packt est/cum.html), the sensor 

Fig. 2  RGB profile plots for sensor after reacting with copper ion 
with the concentration of 0 mg/L (a) and 50 mg/L (b). The solid lines 
with Red, Green and Blue color in RGB profile plots represented 
the color intensities for Red, Green and Blue channels, respectively. 
Inserts: actual device used to measure 0 mg/L (a) and 50 mg/L (b) 
(n = 10) of copper ion standards

https://kyoritsu-lab.co.jp/english/seihin/list/packtest/cum.html
https://kyoritsu-lab.co.jp/english/seihin/list/packtest/cum.html
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developed in this work enables not only qualitative analysis 
but also quantitative analysis for copper detection and exhib-
its a broader linear range.

Selectivity, reproducibility and stability

The selectivity of the microfluidic sensor was evaluated 
by performing control experiments. The co-existing metal 
ions  (K+,  Zn2+,  Ca2+,  Pb2+,  Ni2+,  Mg2+,  Na+,  Fe2+,  Fe3+, 
 Co2+,  Mn2+, and  Bi3+) were chosen as the interferents for 
copper detection, most of which could interact with DDTC 
to form the DDTC-Mn+ complexes (Atanassova et al. 1998; 
Sato and Ueda 2001). From Fig. 5, the interferents induced 
a small color value change compared with the response 
signal of blank sample, while copper ion gave an obvious 
change of the Blue channel intensity. More importantly, 
the mixture containing  Cu2+ and interferents produced 
almost the same signal as that of  Cu2+. The reason is that 
the interference from  Zn2+,  Ni2+,  Fe3+,  Co2+, and  Mn2+ 
was largely eliminated as they form less stable DDTC-Mn+ 

Fig. 3  Effect of various parameters on the Blue channel intensity: a 
pH of the buffer solution, b the concentration of DDTC (CDDTC), c 
the reaction time between copper ion and DDTC. The concentration 
of  Cu2+ used for the optimization experiments is 100  mg/L. Error 
bars represent the standard deviation of three parallel experiments

Fig. 4  a Dependence of Blue channel intensity on  Cu2+ concen-
tration. The concentrations are 0  mg/L, 1  mg/L, 3  mg/L, 5  mg/L, 
10  mg/L, 20  mg/L, 30  mg/L, 50  mg/L, and 70  mg/L. b The linear 
fit plots of Blue channel intensity as a function of the concentration 
of  Cu2+. Error bars represent the standard deviation of ten parallel 
experiments
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complex than  Cu2+ (Wu et  al. 2008; Yan et  al. 2003). 
Furthermore, the interference from  Pb2+,  Ni2+,  Co2+, 
 Mn2+ and  Bi3+ can be eliminated using EDTA as mask-
ing agent. EDTA does not mask Cu(II) as DDTC ligand 
forms stronger complex (Uddin et al. 2013). These results 
suggest that the developed microfluidic sensor performed 
satisfactory selectivity for copper detection. The reproduc-
ibility of the sensor was also investigated by determining 
five concentration levels (1, 5, 10, 20, 30 mg/L) with ten 
replicate measurements using fresh microfluidic chip for 
each measurement. The relative standard deviations (RSD) 
of the measurements were 5.2, 5.6, 3.7, 2.8, and 4.0%, 
respectively, for the five concentrations studied, indicating 

that the reproducibility of the sensor for copper detection 
was acceptable. The stability of the developed microfluidic 
sensor in which DDTC was immobilized on the paper layer 
was investigated. It is noted from Fig. 6 that the sensor 
remains stable after a 3-h storage at − 15 °C, and the Blue 
channel intensities have no significant changes compared 
to the freshly fabricated sensor (0 h). However, the Blue 
channel intensity increased obviously after the developed 
sensor was stored at − 15 °C for longer than for 4 h. The 
possible reason is that DDTC could be spontaneously 
broken down to form carbon disulfide, diethylamine, and 
other metabolites (Jin et al. 1994; Yourick and Faiman 
1987).

Table 1  Comparison of the different colorimetric sensors for Cu(II) detection

TCPP tetrakis(4-carboxyphenyl)porphyrin, –NH2 amine of (3-aminopropyl)triethoxysilane, MePh toluene, PAN 1-(2-pyridylazo)-2-naphthol, 
Reporter 1 (E)-4-((2-((2-hydroxynaphthalen-1-yl)methylene)amino)phenyl-amino)-3-nitro-2H-chromen-2-one, TDMPzP meso-tetrakis(1,2-
dimethylpyrazolium-4-yl)porphyrin sulfonate

Sensing reagents/materials Sensing media Detector Linear range
(mg/L)

LOD
(mg/L)

Reference

DDTC Paper Smart phone 0–20 0.29 Wang et al. (2014)
Functionalized Au nanoparticles Solution Spectrophotometer 63.55–635.5 0.95 Mehta et al. (2013)
Functionalized Au nanoparticles PDMS Naked eye 0.40–3.18 0.40 Liu et al. (2012)
ZnO@ZnS core–shell nanoparticles Paper Digital camera 0.95–95.32 0.95 Sadollahkhani et al. (2014)
TCPP, −NH2, MePh Paper Smartphone 0.95–3.50 0.95 Idros and Chu (2018)
PAN Paper Naked eye 1.5–20 1.5 Bandara et al. 2018a, 2018b
Functionalized Au nanoparticles Solution Spectrophotometer 0.32–47.66 0.16 Qiao et al. (2017)
Silica nanoparticles Microwell plate Scanner – 0.14 Kim et al. (2017a, 2017b)
Reporter 1 Solution Spectrophotometer – 1.87 Jo et al. (2014)
TDMPzP Paper Naked eye 1–6 1 Pratiwi et al. (2017)
Polyethyleneimine Paper Smartphone 6.36–63.55 1.91 Liu et al. (2018)
DDTC Paper Smartphone 0–30 0.096 This work

Fig. 5  Selectivity of the developed microfluidic sensor. The concen-
tration of  Cu2+ is 100 mg/L and the others are 5000 mg/L. Error bars 
represent the standard deviation of three parallel experiments

Fig. 6  Stability of the developed microfluidic sensor. The concentra-
tion of  Cu2+ used in this experiment is 100 mg/L. Error bars represent 
the standard deviation of three parallel experiments
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The applicability of the developed microfluidic 
sensor

To investigate the applicability and reliability of the pro-
posed microfluidic sensor, the spiked-recovery experiment 
was studied with diluted tap water. Ten independent meas-
urements were performed for each concentration. 5 ml of 
water sample was spiked with different concentrations of 
 Cu2+, and then diluted to 10 mL with 1%  HNO3. It is noted 
from Table 2 that the recoveries for the added  Cu2+ with 10, 
20, and 30 mg/L are 94, 106, and 105%. Then, the developed 
microfluidic sensor toward analyzing real samples was inves-
tigated by testing two different compound-premix-contain-
ing copper elements. Multiple samples (n = 6) were tested 
with the approach developed in this work and analyzed with 
a standard FAAS method. The two different compound-pre-
mixes were microwave-digested with nitric acid to dissolve 
all the copper. Then, the digested solution was heated to near 
dryness using an electric furnace to remove the excess acid. 
The results are summarized in Table 3. The microfluidic 
analysis results are comparable to the results obtained by 
FAAS, proving the practical applicability of the microfluidic 
assay.

Conclusions

A simple, low-cost prototyping technology for home-made 
microfluidic devices has been developed. A one-hole circle 
punch was utilized to make patterned layers and there was 
no use of any expensive instruments (laser cutter, screen 
printer, wax printer, etc.) during the entire process for sensor 
manufacture. The flexible, multi-layer microfluidic sensor 

we developed is very inexpensive to produce, requires only 
simple tools for its fabrication. The sensor design is read-
ily changed and optimized using hole punch with different 
hole shape. More importantly, the microfluidic sensor could 
be easily produced in quantity at low cost, especially when 
you use a six or more hole punches, resulting in the greatly 
improved working efficiency. We applied this device for 
the colorimetric detection of copper in tap water in a field-
portable device format. Using cell phone as photo collector, 
a competitive limit of detection (0.096 mg/L) was estab-
lished. In addition, the device had satisfactory selectivity, 
good reproducibility and high recovery in tap water. The 
simplicity, speed and stability of our fabrication and analyti-
cal approaches, coupled with the field portability, and low 
cost of our device, provides a highly useful and practical 
platform for frequent monitoring of  Cu2+ in environmental/
drinking waters.
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