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Abstract
A novel quinoline-based Schiff base fluorescent sensor BQPA had been synthesized and characterized by common spectro-
scopic methods. It showed highly sensitive fluorescent enhancement (300-fold) and ratiometric absorbance for the determina-
tion of  Al3+ with low detection limits of 31 nM in  CH3CH2OH/H2O (1: 9, v/v) solution. The stoichiometry of the BQPA–Al3+ 
complex was 1:1, determined by Job plots curve and further confirmed by HRMS, 1H NMR titration and FT-IR spectrum. 
Moreover, the potential application of BQPA in the detection of  Al3+ was estimated in real water samples.
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Introduction

The fluorescent method, due to its high selectivity and sensi-
tivity, rapidity and convenient operation, has been employed 
in the detection of many kinds of analytes including various 
ions (Carter et al. 2014; Fu et al. 2019; Manjare et al. 2014; 
Öksüza et al. 2019; Özyol et al. 2018; Saçmaci et al. 2017), 
biothiols (Ren et al. 2018; Wang et al. 2018a, b), saccharide 
(Hosseinzadeh et al. 2015; Wang et al. 2015a, b) and protein 
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(Chen et al. 2015; Huang et al. 2017). Aluminum, as the 
most abundant metal with its metallic forms in environment, 
has been widely used in human production activities includ-
ing water treatment, package of food and medicines, and the 
production of light alloys (Kumawat et al. 2016; Shyamal 
et al. 2016). However, it is able to accumulate in environ-
ment and could affect human health through the biologic 
chain via water and organisms, and high levels of  Al3+ may 
induce many physiological disorder and neurologic diseases, 
such as the Alzheimer’s disease (AD), Parkinson’s disease 
and so on (Good et al. 1992; Okem et al. 2015; Walton 
2007). Moreover, the limit of concentration of  Al3+ defined 
by the World Health Organization (WHO) in drinking water 
is 7.41 μM (Han et al. 2012). Hence, it is essential to develop 
highly selective and sensitive chemosensors for detecting the 
concentration of  Al3+, to protect the ecological environment 
and health.

Over the past few decades, many researchers had put 
their best efforts into developing chemosensors for metal 
ions, and a lot of  Al3+ chemosensors had been reported 
(Balakrishnan et al. 2017; Dai et al. 2018; Gan et al. 2017; 
Kang et al. 2016; Lim et al. 2018; Maniyazagan et al. 2018; 
Singh et al. 2017; Wang et al. 2017a, b, 2018a, b, c; Yıldız 
et al. 2017; Zeng et al. 2018; Zhang et al. 2018; Zhu et al. 
2016). However, there are some obstacles to designing an 
excellent fluorescent chemosensor for  Al3+. One is that  Al3+ 
has drawbacks in its weak ability in coordination and strong 
ability in hydration; the other is that many reported probes 
suffer from shortcomings including multi-steps synthesis, 
being disturbed by other trivalent metal ions  (Fe3+ and  Cr3+) 
and insolubility in water which further limits their practical 
applicability in real samples. More importantly, compared 
with the fluorescent turn-on (off) probes, the development of 
ratiometric probe is more appealing because it can eliminate 
the interference caused by the physical or chemical method 
through the ratio of two intensities of absorption or emission 
wavelength (Gupta et al. 2017; Manna et al. 2017; Naskar 
et al. 2018; Qin and Yang 2015a, b). Hence, the development 
of ratiometric probes for  Al3+ is of great importance for the 
application in complex samples.

Quinoline-based derivatives have proved to be a pop-
ular fluorophore in construction chemosensors due to 
their structural diversity, favorable photophysical prop-
erties and potent binding affinities to many metal ions 
(Li et al. 2016; Qin and Yang 2015a, b; Roy and Rajak 
2017; Singh et al. 2018; Wang et al. 2015a, b). However, 
only a few of them are ratiometric probes for the detec-
tion of  Al3+ (Roy et al. 2016; Zhu et al. 2016). In addi-
tion,  Al3+, as a hard acid, prefers a hard-base coordination 
sphere containing N and O as the binding site (Fan et al. 
2014). Taking the above statements into consideration, 
we designed a novel quinoline-based fluorescent probe 
N′-(2, 4-dihydroxybenzylidene)-2-(4-(2-oxo-2-(quinolin-

8-ylamino)ethyl) piperazin-1-yl)acetohydrazide (BQPA), 
which showed a significant fluorescence turn-on (300-fold) 
and ratiometric absorbance for the determination of  Al3+ 
in ethanol–water (1: 9, v/v) medium. Furthermore, BQPA 
was evaluated for the detection of  Al3 in real samples.

Experimental

Materials

All chemicals and reagents were purchased from commercial 
sources. The fluorescent spectra were recorded at room tem-
perature on a Perkin Elmer LS55 fluorescence spectrometer. 
UV–Vis absorption spectra were obtained using a Pgeneral 
TU-1901 UV–Vis spectrophotometer. 1H NMR and 13C 
NMR spectra wererecorded on a Bruk AV-600 spectrometer, 
respectively. Mass spectra were measured on a Waters Xevo 
UPLC/G2-SQ Tof MS spectrometer.

Preparation of stock solution

A stock solution of BQPA (10 μM) was prepared with the 
solution of ethanol–water (1: 9, v/v).

Stock solutions (10 mM) of the cationic salts  (Na+,  K+, 
 Ca2+,  Mg2+,  Ba2+,  Cr3+,  Mn2+,  Fe2+,  Fe3+,  Cu2+,  Ag+, 
 Co2+,  Ni2+,  Zn2+,  Cd2+,  Al3+ and  Pb2+) were prepared with 
ultrapure water, respectively. For spectrum measurement, the 
test solutions were prepared by adding a certain amount of 
stock solution using a pipette into the BQPA stock solution. 
During the measurement of fluorescent spectrum, the excita-
tion was set at 350 nm, emission wavelength was recorded 
in the range of 300–600 nm, and emission intensity was 
recorded at 420 nm for the fluorescence titration, competi-
tive experiments and Job’s plot. The excitation and emission 
slit widths were 10 nm and 10 nm, respectively.

Al3+ standard solution (10 mM) was prepared by dissolv-
ing Al(NO3)3·9H2O (0.5 mmol) in ultrapure water (50 mL).

Fluorescence and colorimetric measurements

Al(NO3)3·9H2O (0.5  mmol) was dissolved in ultrapure 
water (50 mL). 2–50 μL of the  Al3+ solution (10 mM) was 
transferred to BQPA solution (10 μM) prepared above, 
respectively. After mixing them for a few seconds, fluores-
cence spectra and UV–Vis absorption spectra were taken 
at room temperature, respectively. The color changes of 
BQPA (10 μM) were obtained in the presence of  Al3+ ions 
(5 equiv.) in ethanol–water (1:9, v/v) under UV light of 
365 nm.
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Determination of binding constant and detection 
limit

According to the fluorescence intensity data, the binding 
constant of BQPA with  Al3+ was calculated based on the 
modified Benesi–Hildebrand equation (Kadar et al. 2005), 
where, Fmax, F and Fmin are the fluorescence intensities of 
BQPA in the presence of  Al3+ at saturation, at an inter-
mediate  Al3+ concentration, and absence of  Al3+, respec-
tively. K is the stability constant.

The limit of detection (LOD) of  Al3+ was calculated on 
the basis of 3σ/S according to the fluorescence changes, 
where σ is the standard deviation of the blank solution and 
S is the slope of the calibration curve (Liu et al. 2016).

The limit of quantification (LOQ) of  Al3+ was calcu-
lated on the basis of 10 σ/S according to the fluorescence 
changes, where σ is the standard deviation of the blank 
solution and S is the slope of the calibration curve (Chitnis 
and Akhlaghi 2008).

The quantification limit for  Al3+ in water samples 
was spiked with standard  Al3+ ions at different concen-
tration levels, then diluted within working linear range, 
and analyzed with the method proposed under optimized 
conditions.
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NMR titration

In three NMR tubes, BQPA (5 mg) dissolved in DMSO 
(0.5 mL) was added. Then different equivalents (0, 0.5 and 
1 equiv.) of Al(NO3)3 in DMSO (0.5 mL) were added sepa-
rately to the corresponding tube, and 1H NMR spectra were 
measured in turn at room temperature.

Synthesis of compound BQPA

Compound BQPA was synthesized according to the syn-
thetic route outlined in Scheme 1. The intermediate com-
pounds 1–4 were prepared by the reported literature (Shao 
2010; Wang et al. 2017a, b; Li et al. 2018).

A mixture of compound 4 (102 mg, 0.3 mmol) and 2, 
4-hydroxybenzaldehyde (0.4 mmol) dissolved in ethanol 
(20 mL) was refluxed for 2 h (monitored by TLC) and then 
cooled to room temperature. The solvent was removed under 
reduced pressure, and the crude substance was further puri-
fied by column chromatography using  CH3OH /CH2Cl2 (v/v, 
1/30) as eluent to get light yellow crystal BQPA (30 mg, 
0.06  mmol), yield: 21.6%, m.p: 290–292  °C. 1H NMR 
(600 MHz, DMSO-d6) (Fig. S1): δ (ppm) 11.41 (s, 1H), 
11.38 (s, 1H), 11.28 (s, 1H), 9.94 (s, 1H), 8.95 (m, 1H), 
8.65 (dd, J1 = 7.2 Hz, J2 = 1.2 Hz, 1H), 8.41 (m, 2H), 7.67(d, 
J = 7.8 Hz, 1H), 7.58–7.62 (m, 2H), 7.26 (d, J = 8.4 Hz, 
1H), 6.31–6.36 (m, 2H), 3.34 (s, 2H), 3.19 (s, 2H), 2.69 (s, 
8H). 13C NMR (151 MHz, DMSO-d6) (Fig. S2): δ (ppm) 

Scheme 1  The synthetic route of BQPA
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169.11, 165.44, 161.34, 160.00, 149.72, 149.24, 138.49, 
137.15, 134.61, 131.93, 128.44, 127.59, 122.76, 122.04, 
115.94, 110.65, 107.97, 102.89, 62.25, 60.66, 53.38, 52.92. 
HRMS m/z (TOF MS  ES+) (Fig. S3): calcd for  C24H27N6O4: 
463.2094 [M+H]+, found: 463.2097.

Results and discussion

Fluorescence spectra response of BQPA to ions

The selectivity of BQPA to various metal ions was examined 
in ethanol/water (1: 9, v/v). As shown in Fig. 1, there was 
almost no change in the fluorescence spectrum between the 
free BQPA and the mixture of BQPA with the tested metal 
ions  (Na+,  K+,  Ca2+,  Mg2+,  Ba2+,  Cr3+,  Mn2+,  Fe2+,  Fe3+, 
 Cu2+,  Ag+,  Co2+,  Ni2+,  Zn2+,  Cd2+ and  Pb2+). However, a 
significant enhancement (300-fold) in fluorescence intensity 
was observed upon the addition of  Al3+ centered at 420 nm, 
and the color of the BQPA solution changed from colorless 
into blue under the irradiation of 365 nm UV-lamp. This 
result could be attributed to the inhibition of the C=N bond 
rotation and chelation-enhanced fluorescence (CHEF) (Nie 
et al. 2017; Pang et al. 2018).

To further investigate the binding property of probe 
BQPA, fluorescence titration of probe BQPA with  Al3+ 
was performed (Fig. 2). Upon excitation at 350 nm, probe 
BQPA alone exhibited a negligible emission at 420 nm. 
However, with the addition of  Al3+ (0–5.0 equiv.) to a 
solution of probe BQPA in ethanol/water (1:9, v/v), a 
gradual increase in emission intensity of BQPA at 420 nm 
was observed and then almost reached a plateau when 
the addition of  Al3+ was 20 μM (2 equiv.), indicating a 
stable complex formation between the probe BQPA and 

 Al3+ (Wen and Fan 2016). Moreover, the maximal emis-
sion intensity of BQPA and the concentration of  Al3+ 
(varying from 2 to 12 μM) showed a good linear relation-
ship (y = 143.0x − 37.0578) (Fig. S4), and the detection 
limit of BQPA for  Al3+ was calculated as 4.15 × 10−8 M 
(41.5 nM) (Liu et al. 2016), which met the requirement 
defined by the US Environmental Protection Agency 
(maximum allowed contamination of  Al3+ is 7.4 μM in 
drinking water) (Han et al. 2012). Moreover, the limit of 
quantification (LOQ) of BQPA for  Al3+ was calculated 
as 1.38 × 10−7 M (0.138 μM). These results indicated that 
BQPA could be used for the detection of  Al3+ in drink-
ing water.

To further visualize the fluorescence color changes with 
the addition of  Al3+ to BQPA, we drew coordinates of 
BQPA and the BQPA–Al3+ complexes in the CIE diagram, 
as shown in Fig. 3. Upon the addition of various concen-
trations  Al3+, the coordinate changed from (0.25, 0.34) 
to (0.16, 0.04), which indicated the change of color from 
light blue to dark blue.

To investigate the anti-interference from the co-existing 
metals during the detection of  Al3+, competitive experi-
ments in the presence of other metal ions  (Na+,  K+,  Ca2+, 
 Mg2+,  Ba2+,  Cr3+,  Mn2+,  Fe2+,  Fe3+,  Cu2+,  Ag+,  Co2+, 
 Ni2+,  Zn2+,  Cd2+ and  Pb2+) were conducted. As shown 
in Fig. 4, the fluorescence intensity of the BQPA–Al3+ 
complex had no obvious variation upon the addition of 
competitive metal ions except  Cu2+, which caused the flu-
orescence of the BQPA–Al3+ complex to be completely 
quenched due to its paramagnetic property reported by 
other researchers (More and Shankarling 2017).

Fig. 1  Fluorescence spectra of BQPA (10  μM) with different metal 
ions (50 μM) in ethanol/water (1:9, v/v)

Fig. 2  Fluorescence emission spectra of BQPA in ethanol/water (1: 9, 
v/v) solution upon the addition of  Al3+ (0–5.0 equiv.) with an excita-
tion of 350 nm. Inset shows the fluorescence change at 420 nm with 
the addition of  Al3+
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UV–Vis response of BQPA toward  Al3+

According to the specific fluorescence responses of BQPA 
to  Al3+ among the tested cations, the UV–Vis spectrum of 
BQPA (10 μM) were measured in the absence and pres-
ence of  Al3+ (50 μM) in ethanol/H2O (1/9, v/v) solution, 
respectively (Fig. 5). BQPA alone showed the maximum 
absorption centered at 295 nm and 317 nm, respectively. 
Importantly, a significant redshift (from 295 to 305 nm) was 
observed upon the addition of  Al3+. This result could be 
attributed to the enhancement of the conjugate system after 
the complexation of BQPA with  Al3+ (Zhou et al. 2018).

Moreover, UV–Vis titration experiments were further car-
ried out to investigate the binding properties of BQPA with 
 Al3+ (Fig. 6). On gradual addition of  Al3+ (0–2 equiv.) to the 

solution of BQPA (Fig. 6a), an isosbestic point at 304 nm 
was observed, indicating the formation of the BQPA–Al3+ 
adduct. In addition, the absorbance intensity ratios of the 
BQPA at 317 nm and 295 nm (A317/A295) decreased gradu-
ally on the addition of  Al3+ (Fig. 6b), and a good linear 
relationship (y = − 0.2858 + 1.1745) could be seen between 
the absorbance intensity ratios (A317/A295) and the amount of 
 Al3+ in the range of 4–9 μM (Fig. S5), indicating the prac-
ticability of the probe BQPA with the ability of ratiometric 
absorbance detection toward  Al3+. The detection limit and 
quantification limit were calculated to be as low as 31 nM 
and 103 nM, respectively, which were lower than the ones 
calculated above based on fluorescence titration. According 
to the above results, as for the probe BQPA, the ratiometric 
absorbance detection was more sensitivity than that by fluo-
rescence intensity in the detection of  Al3+.

Analysis sensing mechanism of BQPA for  Al3+

Confirmation of binding stoichiometry

To determine the binding stoichiometry of BQPA with 
 Al3+, both mole–ratio plot and Job’s plot were measured. 
According to the results of fluorescence titration (Fig. 2, 
insert) and UV–Vis titration (Fig. 6b) of probe BQPA with 
 Al3+, both the fluorescence intensity and absorbance ratios 
(A317/A295) almost remained constant when the addition 
of  Al3+ was less than 1.5 equiv., which could be used as 
a preliminary proof for the 1:1 stoichiometry between 
BQPA and  Al3+. Moreover, the 1:1 binding stoichiometry 
was further identified by the Job’s plot on the basis of its 
fluorescence intensity at 420 nm (Fig. 7). The maximum 
fluorescence intensity was seen when the mole fraction 

Fig. 3  The distribution of BQPA and BQPA with different equiv. 
 Al3+ (0.1, 0.5, 5.0) in CIE

Fig. 4  Competitive selectivity of compound BQPA toward  Al3+ over 
other metal ions (5 equiv.) in ethanol/water (1: 9, v/v)

Fig. 5  UV–Vis absorption spectra of BQPA (10 μM) in the absence 
(black curve) and presence (red curve) of 5 equiv. of  Al3 in ethanol/
water (1: 9, v/v)
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of  Al3+ was around 0.5, confirming a 1:1 stoichiometry 
for BQPA–Al3+ complexes in ethanol/water (1:9, v/v) 
solution.

Furthermore, HRMS of BQPA in the presence of  Al3+ 
was measured and the result is shown in Fig. 8. The peaks at 
487.1680 were attributed to [BQPA − 2H+ + Al3+]+ (Calcd. 
m/z 487.1674), which was another credible evidence for the 
1:1 binding stoichiometry of BQPA with  Al3+ resulting from 
Job’s plot analysis. So, the association constant of BQPA 
and  Al3+ was calculated as 7.48 × 105  M−1 (Fig. S6) accord-
ing to the nonlinear curve fitting of the absorbance titration 
data, which is higher than the calculated 7.4 × 104  M−1 based 
on the fluorescence titration data (Fig. S7).

H NMR titration

To get insight into the exact binding mode of BQPA–Al3+, 
1H NMR titration experiments were measured in DMSO-
d6. As shown in Fig. 9, on addition of  Al3+, the protons of 
hydroxyl  (Hb) and amide  (Hd) groups of BQPA disappeared, 
indicating deprotonation during the process of coordination 
of  Al3+ with the oxygen atom of the hydroxyl and the nitro-
gen atom of amide. Moreover, the protons of methylene  (He 
and  Hh) and the protons  (Hf and  Hg) of the piperazine ring of 
BQPA were all significantly shifted downfield to 3.49 ppm, 
indicating that the two nitrogen atoms acted as the binding 
sites involved in the coordination with  Al3+.

FT‑IR measurement

To obtain more details for the binding site of BQPA 
with  Al3+, the FT-IR spectra of free BQPA and complex 
BQPA–Al3+ were measured (Fig. S8). BQPA exhibited 
strong absorbance at 3260 cm−1 and 3240 cm−1, assignable 
to the stretching vibration of –OH and –NH, respectively. 
However, all of them disappeared in the spectra of com-
plex BQPA–Al3+, and two wide peaks at 3371 cm−1 and 
3146 cm−1 indicated the –OH and –NH stretching vibra-
tions, respectively. Moreover, the peaks at 1686 cm−1 and 
1506 cm−1, which belonged to the C=O and C–N stretching 
vibration of BQPA, shifted to the 1594 cm−1 and 1373 cm−1, 
respectively. The above results indicated the coordination 
of BQPA with  Al3+. In addition, the comparison of probe 
BQPA with the reported chemosensors is summarized in 
Table 1. Compared with the reported probes, the advantages 
of probe BQPA was its lower detection limit (nM level) 
and high sensitivity through fluorescent signal response 

Fig. 6  a UV–Vis absorption spectra of BQPA (10 μM) in ethanol/water (1:9, v/v) upon the addition of  Al3+ (0–2 equiv.); b the scatter plot of 
absorbance ratios (A317/A295) and  Al3+ concentration

Fig. 7  Job’s plot for determining the stoichiometry between BQPA 
and  Al3+ ethanol/water (1:9, v/v) solution; the total concentration of 
BQPA and  Al3+ was 10 μM)
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(300-fold), but its insolubility in neat water was its short-
coming, which might to some extent limit its application in 
environment and in vivo.

Hence, according to the analysis of the experimental 
results mentioned above, a feasible bonding mode between 
BQPA and  Al3+ was proposed (Scheme 2).

The effect of pH on the fluorescence of BQPA

The effect of pH ranging from 2.0 to 12.0 on the emission 
intensity (λem = 420 nm) of BQPA in the absence and pres-
ence of  Al3+ was investigated (Fig. 10). The probe BQPA 
had almost no fluorescence emission in the wide pH range 
2.0–12.0, but upon addition of  Al3+ into BQPA at differ-
ent pH conditions, obvious fluorescence enhancement was 
observed from pH 4–6, indicating that BQPA could be a 
good probe for  Al3+ detection in acidic medium.

To understand the effect of pH on the detection of BQPA 
for  Al3+ in acidic conditions, we detected the variation of pH 
with increase in the concentration of  Al3+, and the results 
were recorded by the double coordinate graph according 
to the fluorescence intensity (λem = 420 nm) and pH with 
various concentrations of  Al3+ in ethanol–water (1:9, v/v) 
(Fig. 11). Within the 0–1.0 equiv. of  Al3+ content, both pH 
and fluorescence intensity (λem = 420 nm) had good linear 
relationship with the concentration of  Al3+, which indicated 
that BQPA could detect  Al3+ qualitatively and quantitatively 
by pH and fluorescence intensity under acidic conditions.

Reversibility of BQPA for  Al3+

To evaluate its practical application, the reversibility of 
BQPA was necessarily investigated in ethanol/water (1:9, 
v/v) solution by adding  Na2EDTA, which is a good chelat-
ing agent, to  Al3+. On addition of  Al3+ to the solution of 
BQPA, both the UV–Vis absorption spectra (Fig. S9) and 
fluorescence spectra (Fig. S10) showed significant changes 
compared with the corresponding spectrum of BQPA 
itself. However, after addition of EDTA to the solutions of 
BQPA–Al3+, the UV–Vis absorption spectra and fluores-
cence spectra of the solution of BQPA–Al3+ showed much 
more similarity to that of BQPA in the absence of  Al3+, indi-
cating the recovery of BQPA. This result was also supported 
by the bonding constant of BQPA with  Al3+ calculated as 
7.4 × 104  M−1, which was far lower than that of EDTA with 
 Al3+ calculated as 1.99 × 1016  M−1.

Application of BQPA to water samples

To explore the practical application of BQPA for the detec-
tion of aluminum ions, detailed experiments were carried out 
for the determination of  Al3+ in real water samples collected 
from our university campus (Table 2). The results showed 
that BQPA had high accuracy for the practical application 
of aluminum ions in water. In addition, to investigate about 
the co-existence of  Cu2+ during the detection of  Al3+ in real 
water samples, different concentrations of  Cu2+ were added 

Fig. 8  ESI-MS spectrum of BQPA (50 μM) on addition of 5 equiv. of  Al3+ in  CH3CH2OH
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and the corresponding fluorescence spectrum tested (Fig. 
S11–13). The results showed that when the concentration of 
 Cu2+ was lower than 0.2 μM, the accuracy in the detection of 

 Al3+ was almost unaffected. This result indicated that BQPA 
could be used for  Al3+ detection in water samples even with 
the co-existence of trace  Cu2+.

Fig. 9  1H NMR spectra of BQPA with  Al3+ in DMSO-d6

Table 1  Comparison of BQPA with previously reported probes for Al 3+ ions

LOD the limit of detection, NR not reported in the corresponding paper

Mechanism Selectivity Linear range (μM) Solution (v/v) LOD (μM) Increased intensity 
by  Al3+ (times)

References

ICT Al3+ 3–7 EtOH–H2O (2:3) 0.0578 11 Singh et al. (2017)
CHEF Al3+ 0–10 EtOH–H2O (4:1) 0.299 20 Gan et al. (2017)
ESIPT Al3+ 0–0.01 EtOH–H2O (1:5) 0.00812 20 Balakrishnan et al. (2017)
hydrolysis Al3+,  Cu2+ 0–10 EtOH-H2O (6:4) 4.369 2 Zhang et al. (2018)
RET Se, Te NR EtOH–H2O (2:3) 1.0 NR Manjare et al. (2014)
PET Al3+ 3–11 DMF–H2O (1:1) 0.034 8 Wang et al. (2017a, b
ESIPT, CHEF Al3+,  F− 0–3 EtOH 0.924 200 Lim et al. (2018)
AIE Al3+, ppi 0–180 DMF–H2O (5:1) 0.39 35 Wang et al. (2018a, b, c)
CHEF Al3+,  Fe3+ 3.33–33.3 DMSO–H2O (1:1) 0.358 20 Dai et al. (2018)
FRET Al3+ 0–20 H2O NR 400 Maniyazagan et al. (2018)
CHEF Al3+ 2–12 EtOH–H2O (1:9) 0.031 300 Present work
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Conclusions

In summary, a novel fluorescent chemosensor BQPA was 
synthesized and characterized based on quinoline derivative. 
It showed significant fluorescence enhancement (300-fold) 
accompanied by color change from colorless to blue, and 
ratiometric absorbance for the highly sensitive detection of 
 Al3+ in ethanol/water (1:9, v/v). The 1:1 stoichiometry of 
the BQPA–Al3+ complexes was determined, and the detec-
tion limits of probe BQPA for  Al3+ was 31 nM, which was 
sensitive enough to detect  Al3+ in water samples.
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