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Abstract
Solid-state fermentation (SSF) is a bioconversion process for turning cheap agro-industrial materials to added-value products. 
For enrichment of agro-industrial materials with arachidonic acid (ARA; C20:4 n-6), SSF process of Mortierella sp. was 
developed by optimizing cultivation medium and parameters. The results showed that the fungal cultivation on the medium 
with optimal ratio of selected agricultural materials provided the fermented mass containing high ARA proportion of total 
fatty acid. Inclusion of the optimal medium with suitable amount of spent mushroom substrate, which was used as an internal 
support, significantly promoted the ARA production yield. Using the predicted quadratic model generated by Box–Behnken 
design, the maximal ARA production yield was achieved, thereby the fermentation parameter set for ARA production was 
experimentally validated using the developed medium formula. Of variables studied, the culture temperature and initial 
moisture content were important for the ARA production. The developed SSF process would provide a prospect for larger 
scale production of ARA by this fungal strain.

Keywords  Arachidonic acid · Agro-industrial materials · Mortierella sp. · Solid-state fermentation · Spent mushroom 
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Abbreviations
ARA​	� Arachidonic acid
SSF	� Solid-state fermentation
SMS	� Spent mushroom substrate
TFA	� Total fatty acid
PUFA	� Polyunsaturated fatty acid
FAME	� Fatty acid methyl ester

Introduction

Agro-industrial residues are inexhaustibly generated from 
various agriculture and food industries. Some of them, such 
as wheat bran, soybean meal and spent malt grain, have long 
been exploited as feed ingredients. Recently, there is con-
siderable attention in increasing nutritional value of such 
residues for boosting animal health. Bioconversion of feed 
ingredients by fungal fermentation is a promising approach 
for sustainable production of added-value products. Of them, 
the fermented product enriched with arachidonic acid (ARA, 
5,8,11,14-cis-eicosatetraenoic acid), which is an essential 
fatty acid in n-6 series, is of particular interest due to its 
biologically active function. This 20-carbon polyunsaturated 
fatty acid (20C-PUFA) is a precursor for synthesis of certain 
eicosanoid, series-2 prostaglandin (Bell and Sargent 2003; 
Ricciotti and FitzGerald, 2011). In addition to application in 
infant formula, the 20C-PUFA has been proven to benefit for 
aquacultures. There is evidence, showing that the inclusion 
of ARA oils into fish feeds led to enhance growth, devel-
opment and survival of freshwater and marine fish species 
(Bessonart et al. 1999; Castell et al. 1994).
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Mortierella spp. belonging to Zygomycete fungi are 
promising producers for ARA (Castell et al. 1994; Kendrick 
and Ratledge 1992; Rayaroth et al. 2017). One of microbial 
process platforms for ARA production is solid-state fer-
mentation (SSF), which offers several advantages over the 
counter part of submerged fermentation, such as utilization 
of low-priced agro-industrial substrates, simple operation 
mode and cost-effectiveness (Certik et al. 2012; Lio and 
Wang, 2012; Soccol et al. 2017). Moreover, the decrease of 
anti-nutrient compounds in agro-industrial substrates was 
also derived as a result of enzyme catalytic function dur-
ing fungal growth. However, the ability in ARA production 
of this fungal group is strain-dependent, and thus special 
effort has been made to screen the potential strains from 
natural habitats (Aki et al. 2001; Zhu et al. 2004). A variety 
of agro-industrial materials with nutritional diversity have 
been exploited for ARA production through fungal SSF 
(Jang et al. 2000). Supplementations of basic solid substrates 
with spent malt grain and plant oils as an internal support 
and fatty acid precursors, respectively, have been postulated 
to be efficient approaches for enhancing PUFA production 
yield (Certik et al. 2013). In addition to the nutrient compo-
sition and physical structure of substrates, optimization of 
cultivation parameters is also a crucial step in enrichment 
of the tailored-made oils in the fermented products (Asadi 
et al. 2015). However, the techno-economic feasibility and 
scalability of the 20C-PUFA production process should be 
taken into account.

Spent mushroom substrate (SMS) is a by-product derived 
from mushroom production after the completion of harvest. 
Even though SMS has low value, it contains some nutri-
ents and organic matter with beneficial effects on animal 
health (Medina et al. 2009; Paredes et al. 2009; Zhu et al. 
2012). Therefore, it is becoming challenge to explore new 
applications of such renewable resource. This work aimed 
to develop SSF process for ARA production by Mortiere-
lla sp. BCC40632, which is an ARA over-producing strain, 
using a combinatorial strategy. The medium composition 
for SSF was optimized by combining the suitable type of 
agricultural substrates with optimal ratio. In addition, SMS 
was also included into the optimized medium for investigat-
ing its effect on ARA production. Statistically experimental 
design was employed for assessing significant variables and 
fine-tuned optimizing the ARA production yield of Mor-
tierella sp.

Experimental

Microorganism

Mortierella sp. strain BCC40632, which has been deposited 
in BIOTEC Culture Collection (BCC), was subjected for 

SSF. It was maintained on potato dextrose agar (PDA) slant 
at 4 °C and regularly transferred every 2 months.

Inoculum preparation

The fungal cells grown on PDA medium at 30 °C for 7 days 
were used for inoculum preparation. A primary inoculum 
was prepared in 250-mL baffle flask containing 50 mL 
of semi-synthetic medium, which one liter consisted of 
40.0 g glucose, 5.0 g yeast extract, 2.4 g KH2PO4, 0.5 g 
MgSO4.7H2O, 0.1  g CaCl2.7H2O, 0.2  g NH4Cl, 10  mg 
MnSO4.H2O, 0.5 mg CuSO4.5H2O, 15 mg FeCl3.6H2O and 
7.5 mg ZnSO4.7H2O. The culture was grown at 30 °C with 
shaking at 250 rpm for 3 days. For preparation of the second-
ary inoculum, 7–13% (v/v) of the active mycelial cells were 
transferred into 500-mL baffle flask containing 100 mL of 
the semi-synthetic medium and cultivated at the condition 
as described above. Then, the mycelial suspension was used 
as an inoculum for SSF.

SSF by Mortierella sp. using agricultural 
and agro‑industrial materials

SSF was carried out in a 250-mL Erlenmeyer flask contain-
ing 20 g of substrate. For screening of suitable substrate 
for ARA production, various agricultural and agro-indus-
trial materials, including corn (CO), defatted soybean meal 
(DFSB), full-fat soybean (FSB), polished rice (PR) and rice 
bran (RB) were individually used as basal substrates. Fur-
thermore, the agricultural material (RB), which provided 
the highest ARA content, were selected as a substrate base 
for optimizing the composition of seven solid media (Mix 
1–Mix 7), as shown in Table 1. The spent mushroom sub-
strate derived from oyster mushroom cultivation was chosen 
as an internal support. The SMS, which consisted of 36.42% 
carbohydrate, 2.21% total nitrogen and 0.06% fat (w/w), was 
prepared by mechanical grinding to derive the particle size 
of about 1.0–1.5 mm. The ground SMS was added into the 

Table 1   Composition of seven mixed media for ARA production by 
Mortierella sp.

Culture Ratio of agricultural materials Spent mushroom 
substrate (% w/w)

Polished rice Full-fat 
soybean

Rice bran

Mix 1 – – 1 10
Mix 2 – – 1 20
Mix 3 – – 1 30
Mix 4 – – 1 40
Mix 5 – – 1 50
Mix 6 1 1 1 –
Mix 7 1 1 1 10
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culture medium at different amounts (10–50%, w/w). For 
some experiments (Mix 6 and Mix 7), polished rice and 
full-fat soybean were also included to investigate the effect 
of mixed agricultural substrates on ARA production. Full-fat 
soybean contained high content of lipids, which consisted 
of high levels of oleic acid (C18:1 n-9) and linoleic acid 
(C18:2 n-6). Fatty acid profile and total fatty acid content of 
all substrates used in this work are provided in Supplemen-
tary 1. In addition, effect of supplementation of plant oils, 
including rice bran oil, soybean oil and sunflower oil, with 
different amounts (1, 3 and 5% w/w) on ARA production 
was investigated.

In experiments of medium optimization, 10% (v/w) of 
mycelial suspension were added into individual substrates 

and mixed thoroughly. The initial moisture content of all 
substrates was adjusted to 70%. The cultures were incu-
bated at 30°C, gently shaken every day, and then harvested 
at different fermentation periods (3, 6 and 9 days). All the 
experiments were performed in triplicates, and the values 
are expressed as means ± SD. Statistical Program for Social 
Sciences (SPPS) software version 11.5 (SPSS software prod-
ucts, USA) was used for statistical analysis of data. One-
way analysis of variance (ANOVA) was used to compare 
the mean values using Tukey test. Data with p values ≤ 0.05 
were considered statistically significant.

Design of experiment

For maximizing the ARA production yield, Box–Behnken 
design (BBD) (Box and Behnken 1960) and response surface 
methodology (RSM) were used to generate a mathematical 
correlation between three independent variables on ARA 
production of Mortierella sp. The variables studied were 
initial moisture content of substrate (X1), culture tempera-
ture (X2) and inoculum size (X3). Each variable was tested 
at three levels, high (+), middle (0), and low (− 1), as shown 
in Table 2. Accordingly, the BBD of experiment consisted 
of 18 runs (Table 3), in which the optimized substrate mix-
ture (Mix 7) was employed. Before fungal inoculation, the 
initial moisture contents of the medium were adjusted to 
the set points (50–70%), regarding to the optimal range as 

Table 2   Actual values and coded levels of three independent vari-
ables used for Box–Behnken design for optimizing ARA production 
of Mortierella sp.

Actual value (coded level) of independent variables

Initial moisture 
content (X1)

Temperature (X2) Inoculum size (X3)

(%) (°C) (%v/w)

50 (− 1) 25 (− 1) 7 (− 1)
60 (0) 27.5 (0) 10 (0)
70 (+ 1) 30 (+ 1) 13 (+ 1)

Table 3   Experimental and 
predicted values of ARA 
production of Mortierella sp.

Run No. Independent variables (actual value) ARA yield (mg/g fermented 
mass)

Moisture 
content (X1)

Temperature (X2) Inoculum size (X3) Predicted value Experi-
mental 
value

1 − 1 (50) − 1 (25) 0 (10) 38.44 37.30
2 + 1 (70) − 1 (25) 0 (10) 38.56 41.00
3 − 1 (50) + 1 (30) 0 (10) 0.50 1.60
4 + 1 (70) + 1 (30) 0 (10) 2.86 3.20
5 − 1 (50) 0 (27.5) − 1(7) 9.07 10.60
6 + 1 (70) 0 (27.5) − 1(7) 10.94 14.60
7 − 1 (50) 0 (27.5) + 1(13) 8.87 9.20
8 + 1 (70) 0 (27.5) + 1 (13) 9.93 8.50
9 0 (60) − 1 (25) − 1(7) 42.27 48.80
10 0 (60) + 1 (30) − 1 (7) 8.67 6.90
11 0 (60) − 1 (25) + 1 (13) 44.53 45.40
12 0 (60) + 1 (30) + 1 (13) 9.50 9.50
13 0 (60) 0 (27.5) 0 (10) 16.90 20.60
14 0 (60) 0 (27.5) 0 (10) 16.90 17.60
15 0 (60) 0 (27.5) 0 (10) 16.90 17.20
16 0 (60) 0 (27.5) 0(10) 16.90 18.80
17 0 (60) 0 (27.5) 0 (10) 16.90 16.30
18 0 (60) 0 (27.5) 0 (10) 16.90 17.80
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previously reported (Jang et al. 2000). The amounts of myce-
lial suspension were varied (7, 10 and 13%, v/w), and the 
temperature variables were 25–30 °C, which the values were 
considerable concern for operating costs, including culture 
volume and chilling processes, respectively. 

Multiple regression analysis is explained by the following 
quadratic model equation:

where Y is the predicted respond. β0 is intercept. β1, β2 and 
β3 are the linear coefficients, whereas β11, β22 and β33 are the 
squared coefficients, and thus β12, β13 and β23 are the interac-
tion coefficients. The coefficients of the model, ANOVA for 
the experimental data, optimal parameters, and generation of 
response surface plot were calculated and plot using Design-
Expert® Software Version 11.0 (Stat-Ease Inc., MN, USA). 
As a consequence, experimental validation of the quadratic 
model was performed. Using the Mix 7 medium with opti-
mized initial moisture content (60%) and inoculum size 
(10%, v/w), the fungal fermentation at lower temperature 
(20 °C) was also conducted.

Fatty acid analysis

The fermented mass was harvested and dried at 60 °C to 
obtain a constant weight, and then subjected for fatty acid 
analysis. Fatty acid methyl ester (FAME) was prepared using 
the method modified from the previous report (Lepage and 
Roy 1984), and then analyzed using gas chromatography 
(GC-7890B; Agilent Technologies; USA) equipped with a 
flame ionization detector and an HP-88 capillary column 
(100 m × 250 μm × 0.2 μm, Agilent Technologies, USA). 
The injector and detector temperatures were maintained at 
240 °C, and oven temperature was programmed from 140 to 
240 °C with an increasing rate of 4 °C/min. Fatty acids were 
identified by comparing their retention times with FAME 
standards (Sigma, St. Louis, MO). Amounts of fatty acids 
were calculated from their chromatography peak areas using 
heneicosanoic acid (C21:0) as an internal standard.

Results and discussion

Evaluation of agro‑industrial and agricultural 
materials for ARA production by SSF

Fatty acid analysis showed that the nutritionally important 
20C-PUFA (ARA), which is a predominant fatty acid of 
Mortierella cells (Dyal and Narine 2005), was detected in 
all cultures of Mortierella sp. BCC40632, but it was absent 
in substrates, indicating that the fungus was able to grow 
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on all agro-industrial and agricultural substrates tested. At 
30 °C cultivation, there were significant differences in ARA 
contents and proportions among the cultures using various 
substrates (p < 0.05). With the exception of the rice bran 
culture, the maximal ARA contents in fermented mass were 
found in the Mortierella cultures grown for 6 days, which a 
range of 2–10 mg ARA/g dry fermented mass was obtained 
(Fig. 1).

Interestingly, the highest ARA proportion (75.8 ± 2.2% 
of TFA) was obtained in the 6th-day polished rice culture 
(Fig. 1a). Although the rice bran cultures contained lower 
ARA proportions in TFA as compared to the polished cul-
tures, the highest ARA content (about 30 mg/g dry fer-
mented mass) was observed in the rice bran cultures grown 
for 6 and 9 days (Fig. 1b). However, TFA contents in the 
rice bran culture decreased when prolonged cultivations 
(Fig. 1c), that might be explained by the fungal growth using 
the oils in rice bran as a carbon source. Possibly, the fatty 
acids constituted in rice bran might be transformed to ARA 
by the fungal cells as the sharp increase of ARA content, 
and the decrease of oleic acid and linoleic acid contents in 
the 6th-day fermented mass, when compared with rice bran 
substrate. Taken together, rice bran was the most effective 
substrate in terms of high ARA content in fermented mass 
followed by full-fat soybean and polished rice, which are in 
agreement with the previous reports for PUFA production 
by fungal fermentation (Jangbua et al. 2009; Oliveira et al. 
2011). It has been reported that rice bran was the best suit-
able substrate for ARA production by Mortierella alpina 
ATCC 32222 when cultivated at lower temperature (20 °C) 
for 8 days (Jang et al. 2000). Notably, corn and defatted 
soybean were poor substrates for ARA production by Mor-
tierella sp. BCC40632. In addition to the nitrogen source, 
the high amounts of lipids (TFA) rich in oleic acid (C18:1 n-
9) and linoleic acid (C18:2 n-6) in the nutrient-enriched rice 
bran and full-fat soybean (Supplementary 1) might be used 
as precursors for ARA biosynthesis of Mortierella cells.

Enhanced ARA production by mixing suitable 
substrates

Regarding to the result of substrate screening, three agri-
cultural materials, including full-fat soybean, rice bran and 
polished rice, were selected for further improvement of ARA 
production of Mortierella sp. by either mixing equal amount 
of each substrate or optimizing SMS amount (Table 1). 
Using the substrate mixtures (Mix 1–Mix 7), TFA contents 
of all cultures continually decreased along the fermentation 
period (Fig. 2), which might be a result of lipid degradation 
by the fungal cells, possibly for cell growth. Similar finding 
has been reported for SSF of other filamentous fungi using 
rice bran substrate (Oliveira et al. 2011; Oduguwa et al. 
2008). It is noteworthy that the ARA contents in the cultures 
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using the substrate mixtures increased and reached the maxi-
mum levels at 9th-day cultivation, corresponding to the 
induced ARA proportions (Fig. 2), which were not similar 
to the cultures grown on single substrate as aforementioned 
(Fig. 1). Obviously, the ARA content of the culture grown on 
the substrate mixture of rice bran and 10% (w/w) SMS (Mix 
1) significantly increased (51.67% increase) when compared 
with the culture using rice bran as a sole substrate (p < 0.05). 
When combined with higher amount of SMS (20–50% w/w) 
into the medium, the ARA content did not increase as com-
pared with the rice bran culture containing 10% SMS, which 
might be explained by insufficient nutrient for cell growth 
and ARA production as a consequence of reduced amount 
of rice bran in the medium. Probably, the combination with 
low amount of SMS (10% w/w) could sufficiently enhance 
either oxygen transfer or mycelial penetration into substrates 
as a result of the physical structure of SMS, which was a 
relatively porous material. Actually, fatty acid desaturation 

is oxygen-dependent reaction (Laoteng et al. 2011), and thus 
oxygen molecule is required for ARA biosynthesis. This 
finding is coincided with the previous report using spent 
malt grain as an internal support for gamma-linolenic acid 
production (Jangbua et al. 2009). Besides, SMS derived 
from oyster mushroom cultivation also consisted of some 
metal ions (Ashrafi et al. 2014; Lou et al. 2017), which 
might positively affect the ARA production of Mortierella 
sp. as previously described (Laoteng et al. 2011).

Combining rice bran with polished rice and full-fat 
soybean (1:1:1) in the Mix 6 culture markedly enhanced 
both ARA content and proportion in TFA when compared 
with those of the culture using rich bran as a sole substrate 
(Figs. 1, 2). Expectedly, slight increase of ARA content was 
also obtained by adding 10% SMS into the culture (Mix 
7). These findings suggest that equal amounts of the three 
agricultural substrates might provide optimal C:N ratio for 
the 20C-PUFA production.

Fig. 1   Solid-state fermentation of Mortierella sp. BCC40632 using 
20 g of individual corn (CO), defatted soybean (DFSB), full-fat soy-
bean (FSB), polished rice (PR) and rice bran (RB) as sole substrates. 
The ARA proportion in total fatty acid a, ARA content of fermented 

mass b, and total fatty acid content in fermented mass c of Mortiere-
lla cultures are illustrated. Diagonal, black and white bars indicate the 
cultures grown at 30 °C for 3, 6 and 9 days, respectively
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A similar fashion was also observed in all cultures sup-
plemented with individual plant oils (sunflower, rice bran 
and soybean oils), in which ARA contents induced with the 
increase of plant oil concentrations (Fig. 3). However, the 
supplementation with plant oils with different concentra-
tions did not significantly promote the ARA production 
when compared with the Mix 7 culture without oil supple-
mentation, except for the culture added with 5% sunflower 
oil (53.3 ± 3.6 mg/g of ARA in fermented mass). It has been 
reported that sunflower oil cake was the best substrate for 
ARA production of M. alpina as its constituents of 85% 
unsaturated fatty acids, including oleic acid and linoleic 
acid (Ghobadi et al. 2011; Jacobs et al. 2010). Nevertheless, 
the ARA proportions in TFA of all cultures supplemented 
with plant oils were lower than that of the Mix 7 culture 
without plant oil addition. These results indicated that the 
ARA production yield depended on not only the plant oils 
type, but also concentration of the supplemented oils. The 
inconsistency of plant oil supplementation on ARA synthe-
sis of Mortierella fungi has been documented that exogenous 
lipids repressed de novo fatty acid synthesis, but had no 

effect on fatty acid desaturation and elongation (Wynn and 
Ratledge 2000). Considering cost structure of the production 
process, particularly in the medium cost, the oil supplemen-
tation would be not practical. Hence, the Mix 7 medium 
was the best substrate for ARA production in terms of high 
ARA proportion and content that might be come from both 
optimum nutrient composition and physical structure of the 
substrate mixture. Due to the scrupulous and dense proper-
ties of moisten rice bran, the optimized Mix 7 medium may 
offer a solution in ARA production of the filamentous fungus 
at larger scale.

Optimization of fermentation parameters using 
Box–Behnken design

Three independent variables, including initial moisture con-
tent of the medium, culture temperature and inoculum size, 
which are important for fungal SSF, were chosen to inves-
tigate their interactions on the dependent response of ARA 
production yield. The experimental results (actual values) 
and predicted values of ARA production yield are shown 

Fig. 2   Solid-state fermentation of Mortierella sp. BCC40632 using 
substrate mixtures (Mix 1–Mix 7, see Table 1). The ARA proportion 
in total fatty acid a, ARA content of fermented mass b, and total fatty 

acid content in fermented mass c of Mortierella cultures are illus-
trated. Diagonal, black and white bars indicate the cultures grown for 
3, 6 and 9 days, respectively
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in Table 3. The multiple correlation coefficients (R2) of 
the model was 0.940, indicating the model strength, which 
permits description of the response (Babu and Satyanaray-
ana 1995; Jatinder et al. 2006; Malaiwong et al. 2016). In 
addition, the ANOVA result revealed that X2, X1

2, and X2
2 

were highly significant variables for the ARA production 
(p < 0.05), as shown in Table 4.

For ARA production of Mortierella sp., a significant lin-
ear effect was influenced by culture temperature (p = 0.000), 
and the quadratic effects were exerted by both culture tem-
perature (p = 0.000) and initial moisture content (p = 0.000). 
The optimal values of individual variables are presented by 
three-dimensional response surface plots (Fig. 4), which 
were generated to correlate the variables interaction with 
the ARA production yield.

Of the variables studied, temperature had the greatest 
impact on the ARA production, whereas the 20C-PUFA 
yield was not significantly affected by varying the inoculum 
sizes. The decrease of the culture temperature led to increase 
the ARA production yield, and the maximum ARA level 
was found in the culture grown at 25 °C, which was the 

Fig. 3   ARA proportion in total fatty acid a, ARA content of fer-
mented mass b and total fatty acid content in fermented mass c of 
Mortierella cultures supplemented with different amounts (1, 3 and 
5%, w/w) of plant oils, including rice bran oil (RBO), soybean oil 

(SBO) and sunflower oil (SFO). Diagonal, black and white bars indi-
cate the cultures grown for 3, 6 and 9 days, respectively. The Mix 7 
culture without oil supplementation was used as a control

Table 4   ANOVA analysis of ARA production using RSM

a Considered statistically significant at p ≤ 0.05, R2 = 0.940

Terms ARA production

Sum of 
squares

Degree 
of free-
dom

Means 
square

t value p valuea

Regression 9404.4 9 1044.94 – –
X1 9.3 1 9.3 0.82 0.41
X2 8132.8 1 8132.8 − 24.43 0.00
X3 5.5 1 5.5 − 0.63 0.53
X1

2 577.4 1 697.6 − 7.15 0.00
X2

2 665.6 1 658.4 6.95 0.00
X3

2 0.1 1 0.1 0.09 0.92
X1X2 3.7 1 3.7 0.52 0.62
X1X3 0.5 1 0.5 − 0.18 0.85
X2X3 9.5 1 9.5 0.83 0.41
Total SS 10,003.9 53 – – –
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lowest temperature tested by BBD due to concerning the cost 
of chilling process for further application at larger scale. It 
has been reported for submerged fermentation process that 
low culture temperature favored the production of PUFAs 
by increasing the degree of fatty acid unsaturation in Mor-
tierella spp. (Sakuradani et al. 2005).

As shown in Fig. 4, the modulate level of initial mois-
ture content in the medium (60%) was sufficient for the 
enhanced ARA production. Jang and Yang (2008) indicated 
that optimal initial moisture content of rice bran for produc-
tion of linoleic acid and ARA was about 75%. In fact, the 
optimized moisture content is crucial due to its impact on 
physical–chemical properties of solid substrate that affects 
the overall productivity (Ganesan et al. 2008). It has been 
documented that high moisture content of culture medium 
led to a risk of bacterial contamination, and reduction of 
substrate porosity affecting oxygen transfer during SSF 
(Babu and Satyanarayana 1995; Bastos et al. 2016; Lekha 
and Lonsane 1994). As a result, the optimal SSF condition 
for ARA production of this fungal species could be iden-
tified, which were 25 °C culture temperature, 57% initial 
moisture content and 10% (v/w) inoculum. Under such con-
dition, the predicted maximum yield of ARA production 
was 46.57 mg/g dry fermented mass. Previously, Certik et al. 
(2008) investigated the effect of cereal substrates on ARA 
production by M. alpina CCF185, which ARA production 
of 42.3 mg/g dry fermented mass was obtained when using 
the optimal ratio of wheat bran and spent malt grains (3:1). 
Similarly, Stredansky et al. (2000) improved the ARA pro-
duction of Pythium ultimum MUCL 16164 by mixing barley 
and spent malt grains with linseed oils.

Validation of the optimal condition for ARA 
production

Validation of the quadratic model and regression equation 
was conducted using the condition closed to the optimal 
levels of three variables (60% initial moisture content, 
25 °C culture temperature and 10% (v/w) inoculums size). 
Based on the model, the predicted ARA content and pro-
portion were 45.80 mg/g dry fermented mass and 48.2% 
of TFA, respectively. The experimental result showed 
that 46.72 ± 2.54 mg/g dry fermented mass of ARA was 
obtained in the 9th-day culture of Mortierella sp., which 
was unquestionably fitted with the predicted value, indicat-
ing the respectable model for maximizing the ARA pro-
duction of this fungal strain. Remarkably, the high ARA 
proportion (49.50 ± 3.23% of TFA) was also found, which 
is very close to the predicted value (Supplementary 2). Nev-
ertheless, the ARA production at lower temperature (20 °C) 
was also investigated using the optimized initial moisture 
content and inoculums size, yielding 21.6 ± 2.3% ARA/
TFA and 20.34 ± 1.54 mg/g ARA in fermented mass of 
the 9th-day culture. Although the ARA production at the 
low temperature increased when prolonged cultivation for 
12 days (33.5 ± 1.1% ARA/TFA and 36.67 ± 2.12 mg/g ARA 
in fermented mass), the production yield remained lower 
than the cultures grown at 25 °C for 9 days. Taken together, 
the fermented product rich in ARA was obtained, in which 
ARA was the highest proportion in total lipid. However, the 
ARA-enriched mass should be further assessed for animal 
trials, particularly in terms of nutrition properties and feed 

Fig. 4   Three-dimensional response surface plots for ARA production by Mortierella sp. BCC40632, showing interaction of two independent 
variables on ARA production yield; temperature and initial moisture content a, and initial moisture content and inoculum size b 
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formulation that would bring a perspective for its application 
as feed ingredient or feed supplement.

Conclusions

The optimized medium consisting of the mixture of agro-
industrial materials substantially attributed the ARA pro-
duction of Mortierella sp. BCC40632. Improvement of the 
ARA production yield was also achieved by optimizing the 
fermentation parameters using BBD. The quadratic model 
markedly points to the impact of culture temperature and 
moisture content on the ARA production. This is the first 
report to demonstrate the application of SMS as an internal 
support for enhancing ARA production that would be appli-
cable to the production process at larger scale.
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