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Abstract
Aqueous formic acid is used for the synthesis of α-aminophosphonates through Kabachnik–Fields reaction applying aro-
matic amine, phosphite, and carbonyl compounds. Using formic acid as an efficient and low-cost organocatalyst provides 
environmental friendly, high yields, low reaction time and mild reaction condition. The isolated products were analyzed by 
IR, NMR, and mass techniques.
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Introduction

α-Aminophosphonates have always been in the center 
of attention among the organophosphorus compounds. 
α-Aminophosphonates are structural analogues of the cor-
responding α-amino acids in which a carboxylic motif is 

replaced by phosphonic acid or related groups. Due to inter-
esting biological activities such as antifungal (Maier and 
Diel 1991), antibacterial (Atherton et al. 1986; Eshtiaghi 
2013), anticancer activity (Huang and Chen 2000; Kafar-
ski and Lejczak 2001; Lavielle et al. 1991; Prasad and Rao 
2013), enzyme inhibitors (Giannousis and Bartlett 1987), 
catalytic antibodies (Hirschmann et al. 1994), antibiotics and 
pharmacologic agents (Atherton et al. 1986; Baylis et al. 
1984), aminophosphonates are considered as an important 
class of compounds. Additionally, it is found that they can 
act as antagonists of amino acids through inhibition of the 
metabolism of the involved enzymes. Thus, affects the physi-
ological activities of the cell. These effects may be used as 
peptide mimics, plant growth regulatory or neuromodula-
tory (Kafarski and Lejczak 1991). Anti-HIV effect of some 
α-aminophosphonates and phosphoramidates derivatives 
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have been reported (Bhattacharya et al. 2012; Bonini et al. 
2005; Peyman et al. 1994). Furthermore, aminophospho-
nates were used in the synthesis of new radioprotecting 
agents (Sal’keeva et al. 2002).

Therefore, a variety of synthetic approaches have been 
developed for synthesis of α-amino phosphonates during 
the last decades. Two main pathways have been developed 
for the synthesis of α-aminophosphonates: Pudovik reaction 
and Kabachnik–Fields reaction (Scheme 1). The Kabach-
nik–Fields reaction is a Mannich-type three-component cou-
pling of a carbonyl, an amine, and a hydrophosphoryl com-
pound in the presence of either a base or an acid that leads 
to α-aminophosphonates (Wang 2010). This reaction was 
discovered by Kabachnik and Fields (Fields 1952; Kabach-
nik and Medved 1952, 1953).

Literature survey reveals that the corresponding three-
component reaction is carried out in the presence of Lewis 
and Brønsted acids such as: LPDE (Heydari et al. 1998), 
SnCl4 (Laschat and Kunz 1992), Mg(ClO4)2 (Wu et  al. 
2006), BF3–OEt2 (Ha and Nam 1992), FeCl3 (Rezaei et al. 
2009), AlCl3 (Manjula et al. 2003), TiO2 (Hosseini-Sar-
vari 2008), TiO2–SiO2 (Chinthaparthi et al. 2013), SiO2/
ZnCl2 (Subba et al. 2013), ZnI2 (Karimi-Jaberi et al. 2012), 
BiCl3 (Zhan and Li 2005), Bi(NO3)3 (Bhattacharya and 
Kaur 2007), Bi(OTf)3 (Banik et  al. 2010), H3PW12O40 
(Heydari et  al. 2007), Cu(OTf)2 (Paraskar and Sudalai 
2006), SbCl3/Al2O3 (Ambica et al. 2008), Ln(OTf)3 (Qian 
and Huang 1998), SmI2 (Xu et  al. 2003), InCl3 (Ranu 
et  al. 1999), Yb(PFO)3 (Tang et  al. 2011), TaCl5–SiO2 
(Chandrasekhar et al. 2001), Zr4+ (Yadav et al. 2001a), 
ZrOCl2·8H2O (Bhanushali et al. 2009), ZrCl4 (Yadav et al. 
2001a), TMSCl (Pokalwar et al. 2010), CF3COOH (Akiy-
ama et al. 2003), scandium tris(dodecylsulfate) (Manabe and 
Kobayashi 2000), scandium(III)-N,N′-dioxide (Zhou et al. 
2009), zinc di(l-prolinate) (Domingues et al. 2016), HfCl4 
(Li et al. 2016) and hypophosphorous acid (Kaboudin and 
Jafari 2008). Rostamnia and Amini (2014) used combined 
ultrasonic (US) and [bmim]AlCl4 ionic liquid for Kabach-
nik–Fields reaction. Catalyst-free ultrasonic-promoted syn-
thesis of some tertiary α-amino phosphonates was reported 
by Kalla et al. (2017).

Quantitative synthesis of α-hydroxyphosphonates and 
α-aminophosphonates from aldehydes and imines in sol-
vent-free condition in the presence of chlorotrimethylsilane 
(Pokalwar et al. 2010), solid LiClO4 (Azizi et al. 2004), 

Al(H2PO4)3 (Maghsoodlou et  al. 2010) and Na2CaP2O7 
(Zahouily et al. 2005) at room temperature and short reac-
tion time was introduced as a green process. Veeranjaneyulu 
reported the synthesis of α-amino phosphonates by reaction 
of α-amido sulfones with dialkyl trimethylsilyl phosphites 
in the catalytic presence of FeCl3 (Veeranjaneyulu and Das 
2017).

The above-mentioned approaches mainly suffer from sig-
nificant limitations in terms of long reaction time and low 
yields. In addition to high-cost, moisture sensitivity, highly 
toxic or toxic, using the stoichiometric amount of catalyst is 
the constant feature of many transformations in this regard. 
In recent years many efforts have been conducted to improve 
the reaction condition. There are some reports using one-
pot procedures, microwave or solvent-free conditions (Bálint 
et al. 2015; Chandra Sekhar Reddy et al. 2014; Gyorgy and 
Anna 2008; Keglevich and Balint 2012; Thaslim Basha et al. 
2016; Tibhe et al. 2012).

In recent years many efforts have been conducted to 
improve the reaction condition. Among these cases, oxalic 
and citric acid (Hellal et  al. 2016; Vahdat et  al. 2008), 
tetramethyl guanidine (TMG) (Reddy et al. 2010), dehy-
droascorbic acid (DHAA) (Saberi et al. 2013), graphene 
oxide (Dhopte et  al. 2015), Triton X-100 (Reddy et  al. 
2016), 2,3-dibromo succinic acid (Hazeri and Aboonajmi 
2014), bromodimethylsulfonium bromide (Kudrimoti and 
Bommena 2005), glycerol (Azizi et al. 2014), PhNMe3Cl 
(Heydari and Arefi 2007), [BMIM]Cl (Bai et al. 2011), 
Trifluoroethanol (Heydari et al. 2009) and pentafluorophe-
nylammonium triflate (PFPAT) (Malamiri and Khaksar 
2014) are used as catalyst for this reaction. Additionally, 
some recyclable catalysis such as HClO4–SiO2 (Maghsood-
lou et al. 2011), amberlite IRC-748 (Shashikumar 2013), 
natrolite zeolite (Bahari and Sajadi 2012), montmorillon-
ite clay (Yadav et al. 2001b), Fe3O4@ZrO2/SO4 (Ghafuri 
et al. 2016b), DHAA-Fe3O4 (Saberi et al. 2013), Fe3O4@
SiO2-imid-PMAn (Esmaeilpour et al. 2016), have been docu-
mented for synthesis of α-aminophosphonates.

Formic acid or methanoic acid, HCOOH, is a colorless, 
corrosive liquid with a pungent odor. It is completely soluble 
in water and many polar solvents. It is sufficiently stronger 
than carboxylic acids with longer chains. Formic acid has 
aldehydic nature and reducing properties and it is used in 
many of organic transformations. In comparison with min-
eral acids, formic acid evaporates without leaving any resi-
due (Hietala et al. 2000).

In recent years, much attention has been made to formic 
acid. Formic acid (HCOOH, FA) is the simplest carboxylic 
acid. Formic acid has low toxicity (hence its use as a food 
additive), with an LD50 of 1.8 g/kg (tested orally in mice) 
(Hietala et al. 2000). Its liquid form and low toxicity render 
its transportation, refuelling, and handling straightforward. 
It is used as a hydrogen storage (Czaun et al. 2011; Eppinger 
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Scheme 1   Kabachnik–Fields reaction
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and Huang 2017; Joó 2008; Müller et al. 2017; Sordakis 
et al. 2017). Formic acid is decomposed to H2 and CO2 in the 
presence of RuCl3 (Czaun et al. 2014). The catalytic effect of 
formic acid in the rearrangement of Thevinols to Thevinals 
is documented (Grundt et al. 2003). Very recently, aqueous 
formic acid is used as efficient, inexpensive and environmen-
tally friendly organocatalyst for the synthesis of β-amino 
carbonyl derivatives (Ghafuri et al. 2015). Additionally, 
three-component Strecker synthesis of α-aminonitriles 
and imines with excellent yields is available (Ghafuri and 
Roshani 2014).

Based on these reports, we decided to explore the pos-
sibility of three-component Kabachnik–Fields reaction 
for the preparation of α-aminophosphonates from amines, 
phosphites, and carbonyl compounds in aqueous formic 
acid–ethanol (Scheme 2). Herein, we report a green and 
effective method for the synthesis of α-aminophosphonates 
in the presence of aqueous formic acid and ethanol, which 
is an inexpensive and highly efficient catalyst. This multi-
component reaction was done at room temperature with easy 
work-up.

Experimental

All purchased solvents and chemicals were of analytical 
grade and used without further purification. FT-IR spectra 
were obtained over the region 400–4000 cm−1 with a NICO-
LET IR100 FT-IR spectrometer with spectroscopic grade 
KBr. Mass spectra were measured on an agilent spectrometer 
(equipped with a direct inlet probe). The 1H NMR spec-
tra were obtained with a BRUKER 250.1 MHz instrument 
using CDCl3 as the applied solvent and TMS as the internal 
standard.

Results and discussion

General procedure for synthesis 
of α‑aminophosphonates

Aqueous formic acid–ethanol solution was prepared from 
1 ml formic acid (37%) and 4 ml ethanol (final concentration 

of formic acid is about 7%). Aldehyde (1.0 mmol) and ani-
line (1.1 mmol) was added to aqueous formic acid–ethanol 
solution at room temperature and after 5 min dialkyl phos-
phite (1.1 mmol) was added to the mixture. After comple-
tion the reaction, solvents were evaporated under reduced 
pressure. Water was added to the reaction mixture and the 
resulting solution was neutralized by sodium bicarbonate. 
The reaction product was extracted with dichlorometh-
ane. The crude mixture was purified by chromatography 
(hexane:ethylacetate; 3:1) to afford pure products.

First, the three-component reaction of benzaldehyde, ani-
line, and dimethyl phosphite in aqueous formic acid–ethanol 
at room temperature was selected as a model reaction.

Next, the optimization of time and temperature was inves-
tigated. The reaction was carried out at three different tem-
peratures, 20, 40 and 60 °C. According to these experiments, 
formation of imine was completed in the first 10 min at each 
temperature (with a little difference). After that, dimethyl-
phosphite was added. The disappearance of aldehyde and 
formation of α-aminophosphonate was followed with TLC. 
Among the evaluated conditions, performing the reaction 
at room temperature during 30 min was selected as an opti-
mized condition.

To investigate the effect of formic acid as a catalyst, the 
reaction of benzaldehyde, aniline, and dimethyl phosphite 
was repeated in the absence of formic acid. After 12 h at 
60–70 °C, no product was isolated.

Several α-aminophosphonates were prepared based on the 
optimized reaction conditions (Table 1). Both aromatic and 
aliphatic aldehydes provided excellent yields of the desired 
products (60–90%) in short reaction times. Additionally, 
cyclohexanone gave corresponding phosphonate in good 
yield (70%). 4-Methoxybenzaldehyde afforded the desired 
adduct in a longer time and higher temperature.

Aliphatic amines give very poor results in this test. Addi-
tionally, the better results were obtained for aromatic amines 
rather than aliphatic amines. The reaction of benzaldehyde, 
n-butylamine, aniline and dimethyl phosphite in aqueous 
formic acid–ethanol solution gave the aromatic derivative 
α-aminophosphonate (Scheme 3).

It seems that the hydrogen-bonding activation or protona-
tion of aldehydes and imines with formic acid is in place for 
catalysis of the Kabachnik–Fields reaction. The proposed 

Scheme 2   Kabachnik–Fields 
reaction in aqueous formic 
acid–ethanol
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Table 1   Products of the Kabachnik–Fields reaction in aqueous formic acid–ethanol

Entry Product Temp (°C) Time (h) Yield 
(isolated) 
(%)

Melting point (Lit. mp) °C References

1 r.t 2 93 123–125 (124–128) Ghafuri et al. (2016b); Heydari and Arefi (2007); 
Lukanov and Venkov (1992); Mu et al. (2006); 
Zhan and Li (2005)

2 r.t 3 80 103–105 (105–106) Lukanov and Venkov (1992)

3 60 3 75 121–124 (123–124) Bhagat and Chakraborti (2007); Ghafuri et al. 
(2016b); Karimi-Jaberi et al. (2012); Kudrimoti 
and Bommena (2005); Mu et al. (2006); Saidi 
and Azizi (2002)

4 r.t 3 91 73–75 (74–75) Bhagat et al. (2014)

5 r.t 3 90 88–90 (90–92) Azizi and Saidi (2003); Bhagat and Chakraborti 
(2007); Ghafuri et al. (2016b); Mu et al. (2006); 
Mulla et al. (2014); Saidi and Azizi (2002); 
Zhan and Li (2005)

6 r.t 3 90 116–118 (116–118) Karimi-Jaberi et al. (2012); Kudrimoti and Bom-
mena (2005); Lukanov and Venkov (1992); 
Mulla et al. (2014)

7 r.t 2 85 121–123 (122–124) Ghafuri et al. (2016b); Saidi and Azizi (2002)

8 r.t 2 90 Oily Bhagat and Chakraborti (2008)

9 r.t 2 75 127–129 (128–129) Ghafuri et al. (2016b)

10 r.t 2 85 137–140 (139–140) Bhagat and Chakraborti (2007); Lukanov and 
Venkov (1992); Mulla et al. (2014); Saidi and 
Azizi (2002); Vahdat et al. (2008)

11 60 °C 3 90 124–126 (123–125) Peng et al. (2015)
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mechanism for synthesis of α-aminophosphonates is shown 
in Scheme 4.

According to this mechanism, formic acid catalyzed the 
in situ formation of the imine intermediate, through genera-
tion of hydrogen bonds between the hydroxyl groups and the 
oxygen atom of the carbonyl group. In the presence of for-
mic acid, the imine carbon is attacked by dimethyl phosphite 
to give the desired product. According to our findings, the 

results show that the electronic of substitutes (on amine and 
aldehyde) have a pivotal role in the reaction. This is as fol-
lows, electron donating substitutes that increase the electron 
density on carbonyl and imine group decreases nucleophilic 
addition. Spectral analysis were consistent with the known 
derivatives (Azizi et al. 2004; Azizi and Saidi 2003; Bhagat 
and Chakraborti 2007; Bhattacharya and Kaur 2007; Dhopte 
et al. 2015; Ghafuri et al. 2016b; Hazeri and Aboonajmi 

Table 1   (continued)

Entry Product Temp (°C) Time (h) Yield 
(isolated) 
(%)

Melting point (Lit. mp) °C References

12 r.t 3 70 103–105 (99–102) Bhagat and Chakraborti (2007); Ghafuri et al. 
(2016a); Saidi and Azizi (2002)

13 60 °C 3 90 87–89 (88–90) Mu et al. (2006)

14 r.t 3 85 87–88 (86) Hosseini-Sarvari (2008)

Scheme 3   Selectivity of the 
Kabachnik–Fields reaction 
(α-aminophosphonates)
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2014; Hosseini-Sarvari 2008; Maghsoodlou et al. 2010; 
Saberi et al. 2013; Vahdat et al. 2008). Because most of the 
products have been characterized, analytical identification of 
the synthesized adducts is limited to the infrared, MS and 
melting point for some products. Spectral data for selected 
derivatives:

Dimethyl [anilino(4-nitrophenyl)methyl] phosphonate 
(1): Melting point: 123–125  °C, IR (KBr cm−1): 3305 
(N–H), 2924 (C–H), 1601 (C=C), 1518 (C=C), 1284 (P=O), 
1039 (P–O–C); 1H NMR (250 MHz, CDCl3): δ = 3.62 (3H, 
d, 3JPH = 10.7  Hz, OCH3), 3.80 (3H, d, 3JPH = 10.7  Hz, 
OCH3), 4.9 (1H, d, 2JPH = 25.5  Hz, CH), 5.30 (1H, br, 
NH), 6.55 (d, 2H), 6.69 (t, 1H), 7.1 (t, 2H), 7.66 (d, 2H), 
8.2 (d, 2H); 13C NMR (62.9 MHz, CDCl3): δ = 53.9 (d, 
2JCP = 6.9 Hz, OCH3), 54.3 (d, 2JCP = 6.9 Hz, OCH3), 55.5 (d, 
1JCP = 149.1 Hz, CH), 113.8, 119.2, 123.9 (d, 4JCP = 3.5 Hz), 
128.6 (d, 3JCP = 11 Hz), 129.4, 143.6 (d, 3JCP = 3.2 Hz), 145.3 
(d, 2JCP = 14.2 Hz), 147.7; 31P NMR (101.25 MHz, CDCl3): 
δ = 23.9; C15H17N2O5P (M+) 336.09, found 336.4.

Dimethyl [anilino(4-fluorophenyl)methyl] phospho-
nate (2): Melting point: 103–105 °C, IR (KBr cm−1): 3306 
(N–H), 2954-3045 (C–H), 1602 (C=C), 1504 (C=C), 1239 
(P=O), 1039 (P–O–C); 1H NMR (250  MHz, CDCl3): 
δ = 3.50 (3H, d, 3JPH = 10.5  Hz, OCH3), 3.75 (3H, d, 
3JPH = 10.7 Hz, OCH3), 4.81 (1H, d, 2JPH = 24.3 Hz, CH), 
5.03 (1H, br, NH), 6.59 (d, 2H), 6.69 (t, 1H), 7.01 (t, 2H), 
7.09 (t, 2H), 7.46 (m, 2H); 13C NMR (62.9 MHz, CDCl3): 
δ = 53.4 (d, 2JCP = 6.9 Hz, OCH3), 53.5 (d, 2JCP = 6.8 Hz, 
OCH3), 54.46 (d, 1JCP = 153.2 Hz, CH), 113.5, 115.3 (dd, 
2JCF = 21.7 Hz, 4JCP = 2.8 Hz), 118.2, 128.8, 129.1 (dd, 3JFC, 
3JPC = 5.3, 8.3 Hz), 131.1, 145.6 (d, 3JPC = 14.9 Hz), 162.1 
(dd, 3JFC = 247.6 Hz, 5JPC = 4.3 Hz); 31P NMR (101.25 MHz, 
CDCl3): δ = 24.9; 19F NMR (235.3  MHz, CDCl3): 
δ = − 113.9; C15H17FNO3P (M+) 309.28, found 309.4.

Dimethyl [anilino(4-methoxyphenyl)methyl] phos-
phonate (3): Melting point: 121–124 °C, IR (KBr cm−1): 
ν 3290 (N–H), 2839–3038 (C–H), 1602 (C=C), 1503 
(C=C), 1242 (P=O), 1024 (P–O–C); 1H NMR (500 MHz, 

CDCl3): δ = 3.47 (d, 3H, 3JPH = 10.4 Hz, P-OCH3), 3.67 
(d, 3H, 3JPH = 10.5 Hz, P-OCH3), 3.70 (s, 3H, OCH3), 5.03 
(dd, 1H, 2JPH = 25.6 Hz, 3JHH = 107 Hz, CH), 6.30 (br s, 
1H, NH), 6.53 (t, 1H), 6.79 (d, 2H), 6.88 (d, 2H), 7.01 
(t, 2H), 7.45 (d, 2H); 31P NMR (101.25 MHz, CDCl3): 
δ = 25.51.

Dimethyl [anilino(cyclohexyl)methyl]phosphonate 
(4): Melting point: 73–75  °C, IR (KBr cm−1): ν 3317 
(N–H), 2926, 2855 (C–H), 1601 (C=C), 1507 (C=C), 
1262 (P=O), 1053 (P–O–C); 1H NMR (250  MHz, 
CDCl3): δ = 0.883–2.176 (m, 11H, –C6H11), 3.65 (d, 
3H, 3JPH = 10.5 Hz, OCH3), 3.70 (d, 3H, 3JPH = 10.5 Hz, 
OCH3), 3.86 (br, 1H), 5.30 (s, 1H), 6.65 (d, 2H), 6.71 
(t, 1H), 7.17 (t, 2H); 13C NMR (62.9  MHz, CDCl3): 
δ = 16.1 (CH2), 18.4 (CH2), 20.9 (CH2), 29.8 (CH), 42.4 
(d, 2JCP = 7.5 Hz, OCH3), 44.7(d, 2JCP = 7.5 Hz, OCH3), 
45.8 (d, 1JCP = 154.1 Hz, CH), 103.1, 107.9, 119.4, 145.7; 
31P NMR (101.25 MHz, CDCl3): δ = 119.4; C15H24NO3P 
(M+) 297.34, found 297.4.

Table 2 shows the comparison of the 1H NMR results of 
synthesized products with previous reports, which shows 
that the results are in agreement.

Conclusions

Aqueous formic acid has been demonstrated to be a green, 
effective, inexpensive, insensitive to moisture and more 
accessible catalyst for synthesis of α-aminophosphonates 
through Kabachnik–Fields reaction in high yield and mild 
condition. To conclude, easy work-up, low-cost of catalyst 
and high efficiency make our method to be efficient and 
practical for synthesis of α-aminophosphonates. Further 
works need to be done to establish whether formic acid 
can be used in other acid catalyzed, nucleophilic addition 
and multi-component reactions in catalyst-free conditions.

Table 2   Comparison of the 1H NMR results of synthesized products with previous reports

Entry Obtained Reported References

(1) 3.62 (d, 3H), 3.80 (d, 3H), 4.9 (d, 1H), 5.30 (br, 
1H), 6.55 (d, 2H), 6.69 (t, 1H), 7.1 (t, 2H), 7.66 (d, 
2H), 8.2 (d, 2H);

3.60 (d, 3H), 3.78 (d, 3H), 4.80 (d, H), 6.53–8.21 
(m, 9H)

Bhagat et al. (2014)

(2) 3.50 (d, 3H), 3.75 (d, 3H), 4.81 (d, 1H), 5.03 (br, 
1H), 6.59 (d, 2H), 6.69 (t, 1H), 7.01 (t, 2H), 7.09 
(t, 2H), 7.46 (m, 2H);

3.45–3.86(2s, 3H), 3.65–3.70 (2s, 3H), 4.58–4.95 
(2S, 1H), 4.80(s, 1H), 6.55 (d, 2H), 6.60–7.60 (m, 
5H), 7.05 (d, 2H)

Lukanov and Venkov (1992)

(3) 3.47 (d, 3H), 3.67 (d, 3H), 3.70 (s, 3H), 5.03 (dd, 
1H), 6.30 (br, 1H), 6.53 (t, 1H), 6.79 (d, 2H), 6.88 
(d, 2H), 7.01 (t, 2H), 7.45 (d, 2H)

3.47–3.50 (3H, d), 3.73–3.77 (6H, 2s), 4.70–4.78 
(1H, d). 6.58–7.39 (9H, m)

Bhagat et al. (2014)

(4) 0.88–2.17 (m, 11H), 3.65 (d, 3H), 3.70 (d, 3H), 3.86 
(br, 1H), 5.30 (s, 1H), 6.65 (d, 2H), 6.71 (t, 1H), 
7.17 (t, 2H)

1.08–1.98 (11H, m), 3.6(3H, d), 3.7 (3H, d), 
3.84–3.88 (1H, m) 6.6–7.2 (5H, m)

Bhagat et al. (2014)
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