REVIEW

Fluorescent and colourimetric 1, 8‑naphthalimide‑appended chemosensors for the tracking of metal ions: selected examples from the year 2010 to 2017

Stephen O. Aderinto1 · Sarah Imhanria1

Received: 21 July 2017 / Accepted: 2 February 2018 / Published online: 27 February 2018 © Institute of Chemistry, Slovak Academy of Sciences 2018

Abstract

The global sensing science in the past couple of years has seen brilliant successes in the designs and syntheses of diverse fuorescent and colourimetric chemosensors of ultra-high selectivities and sensitivities for the tracking of metal ions in environmental and biological systems. Amongst the most widely employed fuorophores for the development of fuorescent and colourimetric chemosensors is the 1, 8-naphthalimide fuorophore, which is distinctive due to its possession of outstanding photophysical properties unequalled by other fuorophores. Many reported literatures are replete with employment of 1, 8-naphthalimide as a unique fuorophore for the construction of chemosensors for the monitoring of metal ions (such as Cu^{2+} , Hg^{2+} , Cr^{3+} , Fe^{3+} , Zn^{2+} , Ag^{+} , Pd^{2+} , Al^{3+} , Ba^{2+} , Au^{3+} , and Bi^{2+} , and/or a combination of any of them) with remarkable results documented from various labs. This review summarises recent advances in the development of representative fuorescent and colourimetric 1, 8-naphthalimide-based chemosensors reported within the past 7 years. It is believed that gaining insights into the various highlighted examples would help to refne our knowledge of the feld and pave the way for further advancement in the constructions of fuorescent and colourimetric 1, 8-naphthalimide-based chemosensors of improved sensing parameters and practical application values.

Keywords Fluorescent and colourimetric chemosensors · Metal ions · Fluorophore · 1, 8-Naphthalimide · Photophysical properties

Introduction

Over the past two decades of the advent of the supramolecular chemistry, research efforts have been directed towards the development of fuorescent chemosensors as vibrant tools for sensing various heavy metal ions and anions of environmental and biological signifcance, and hydrogen ion (i.e. proton) in biological systems (Gunnlaugsson et al. [2006](#page-24-0); Lodeiro and Pina [2009;](#page-26-0) Duke et al. [2010;](#page-24-1) Georgiev et al. [2011;](#page-24-2) Marinova et al. [2011\)](#page-26-1). Inasmuch as the fuorescent technique is a very useful sensing tool, it has enjoyed wide

 \boxtimes Stephen O. Aderinto 2014bsz528@stu.lzjtu.edu.cn; stephen_aderinto@yahoo.com Sarah Imhanria sarahimha@gmail.com

application in the research areas of clinical diagnostics, biotechnology, molecular biology and biochemistry, and materials and environmental sciences (Mason [1999;](#page-26-2) Lakowicz et al. [2006](#page-25-0)). The fluorescent signalling method offers the multiple advantages of high sensitivity and selectivity, realtime monitoring, local observation, simplicity of operation, inexpensiveness of equipment, and fast response time (Lee et al. [2015;](#page-25-1) Carter et al. [2014](#page-23-0); Zhang et al. [2014a;](#page-28-0) Kim et al. [2012\)](#page-25-2), and non-destructibility, that overrule the merits of extant traditional bulk methods of high-performance liquid chromatography, mass spectrometry, and atomic absorption spectroscopy. A closely related detection technique to fuorescence method is colourimetric method, which has also been used as a powerful sensing tool because it can afford naked eye detection even before the use of spectrophotometric analysis. The method has been successfully used in diagnostic assays like blood-glucose monitoring and early pregnancy tests (Bicker et al. [2011\)](#page-23-1).

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, People's Republic of China

Fluorescent chemosensors

Also known as probes, generally, chemical sensors or chemosensors are molecules that are capable of detecting matter or energy with the concomitant output of a signal that could be measured. Sensors which upon interaction with a species under test (i.e. an analyte) give fuorescence modulations are grouped collectively as fuorescent chemosensors. Typically, chemosensors are made up of three components and are usually designed on the 'fuorophore–spacer–receptor' paradigm (Bryan et al. [1989\)](#page-23-2) as illustrated in Fig. [1](#page-1-0). Given their diferences, each component of a chemosensor serves distinct role as briefy explained below (Parkesh et al. [2011;](#page-26-3) de Silva et al. [1995a](#page-23-3); Wasielewski [1992\)](#page-27-0):

The fuorophore

The fuorophore is the signalling moiety and is responsible for the transduction of the interaction between the receptor and the species being detected (i.e. analyte) into a readable signal of change in fuorescence. Chemosensors owe their colours to the structural features of the fuorophore moieties they embed. Commonly encountered fuorophores include boron-dipyrromethene (BODIPY), rhodamine, fuorescein, pyrene, anthracene, naphthalimide, and coumarin (Deng et al. [2017;](#page-23-4) Liu et al. [2017b](#page-26-4); Papalia et al. [2017](#page-26-5); Dey et al. [2017](#page-23-5); Jiang et al. [2017](#page-25-3); Mironenko et al. [2017](#page-26-6); Erdemir and Kocyigit [2017](#page-24-3); Fu et al. [2017a](#page-24-4); Hou et al. [2017;](#page-24-5) Goncalves et al. [2017](#page-24-6)a; Sun et al. [2017;](#page-26-7) Saura et al.

Fig. 1 The paradigm for a fuorescent chemosensor (a spacer may or may not be present)

[2017;](#page-26-8) Gupta et al. [2017;](#page-24-7) Liu et al. [2017b](#page-26-9); Gonçalves et al. [2017b](#page-24-8); Huang et al. [2017](#page-25-4)).

The spacer

The spacer links and keeps both the fuorophore and receptor at a convenient distance to allow for the feasibility of photoinduced electron transfer (PET) process which dictates the tunable fuorescence property of fuorescent chemosensors. Chemosensors necessarily may or may not anchor spacer. Most commonly encountered length of a spacer is a few carbon chains usually between a single to a double carbon chain.

The receptor

This is also known as the recognition unit, and it serves the purpose of binding to the analyte in a way that allows for selectivity and efectiveness.

The process whereby chemosensors interact with an analyte species to give off an energy that could be measured is known as signal 'transduction'. The fuorescence mechanism is one such desirable transduction mechanism since the emission wavelength always displays higher value than that of the excitation wavelength. Low concentrations of analyte substances are required for such signalling transduction. Figure [2](#page-1-1) gives a diagrammatic illustration of typical fuorescence signal transduction mechanism (de Silva et al. [1995a](#page-23-3)).

Ideally, fuorescent chemosensors must fulfl two stringent requirements: on the one hand, there must be enough affinity between the receptor unit and the relevant analyte; on the other hand, there must be no interferences from the other rival substances under the same investigation (Valeur and Leray [2001](#page-27-1)).

The 1, 8‑naphthalimide fuorophore

To date, several fuorophores have been widely used in the construction of fuorescent chemosensors, including

derived chemosensor-analyte complex

an analyte substance

boron-dipyrromethene (BODIPY), rhodamine, fluorescein, pyrene, anthracene, naphthalimide, coumarin, etc.). Amongst them, 1, 8-naphthalimide stands out as a much sought-after, exquisite fuorophore owing to its superior features of strong absorption band in the visible region (a wide range usually between 350 and 450 nm but can extend up to 650 nm), outstanding photostability, high fuorescent quantum yield (a wide range typically between 0.20 and 0.80), and large Stokes' shift (a wide range usually between 3500 and 6500 cm^{-1}), besides the possibility of an easy modification of its structure (Lippert et al. [2011;](#page-25-5) Shao et al. [2015](#page-26-10); Lee et al. [2013;](#page-25-6) Du et al. [2012](#page-24-9); Huang et al. [2014a;](#page-24-10) Lee et al. [2014;](#page-25-7) Shaki et al. [2010](#page-26-11)). 1, 8-naphthalimide contains a very strong naphthalene ring structure so that the interaction of its molecules with solvents or other solute molecules is reduced, making the external transfer energy to also be lowered, which is very beneficial to the emission of fluorescence. The presence of an electron donor conjugated system in its molecular structure allows for electrons in its system to be easily excited by the external light or electric feld so as to produce a strong fuorescence (Grabchev et al. [1995](#page-24-11)). Owing to its conjugated electron system (i.e. *π* electron system), the 1, 8-naphthalimide structure could be easily modifed via diferent synthetic approaches. This property can then be taken advantage of to interact with various substituents, thereby generating varied fuorescent transduction and properties. Figure [3](#page-2-0) gives the structure of the 4-amino-1, 8-naphthalimide, which is the more commonly employed architectural block, although the 3-amino-1, 8-naphthalimide unit is also occasionally used (de Silva et al. [1996](#page-23-6)).

Having been validated to be a fantabulous fuorophore, there have been several instances of engagement of 1, 8-naphthalimide as a key component in the design of fuorescent dyes for polymer materials (Bojinov and Grabchev [2003](#page-23-7)), laser active media (Gruzinskii et al. [1998](#page-24-12)), fuorescent markers in biology (Stewart [1981](#page-26-12)), anticancer agents (Ott et al. [2008\)](#page-26-13) and medicinal analgesics (de Souza et al. [2002\)](#page-23-8), fuorescence switches and sensors (Bojinov et al. [2009](#page-23-9)), light emitting diodes (Liu et al. [2006\)](#page-25-8), electroluminescent materials (Zhu et al. [2003](#page-28-1)) liquid crystal displays

 $R¹$ could be a hydrogen or an alkyl group R^2 is an alkyl group

Fig. 3 The structure of 1, 8-naphthalimide fuorophore with atom numbering showing the 1 and 8 positions and an amino group at the 4-position bearing the imide nitrogen atom

(LCDs) (Grabchev and Chovelon [2003a](#page-24-13)), ion probes (Cosnard and Wintgens [1998](#page-23-10)), logic gates (de Silva et al. [1997b](#page-23-11)), and organic photoconductive materials (Law [1993](#page-25-9)).

Over the years, there are a plethora of fuorescent chemosensors built from the 1, 8-naphthalimide fuorophore for the monitoring of metal ions. Such exist in previous publications (de Silva et al. [1995b](#page-23-12); Rurack et al. [2000;](#page-26-14) Burdette et al. [2001](#page-23-13); Grabchev et al. [2003b](#page-24-14); Gunnlaugsson et al. [2003](#page-24-15); He et al. [2003;](#page-24-16) Fan et al. [2005](#page-24-17); Bricks et al. [2005;](#page-23-14) Wang et al. [2005;](#page-27-2) Liu et al. [2005](#page-25-10); Xu et al. [2005](#page-27-3); Anikin and Fedko [2006](#page-23-15); Cosnard and Wintgens [1998;](#page-23-10) Xu et al. [2006;](#page-27-4) Lu et al. [2007](#page-26-15); Chovelon et al. [2007](#page-23-16); Mu et al. [2007;](#page-26-16) Parkesh et al. [2007](#page-26-17); Staneva et al. [2007;](#page-26-18) Grabchev et al. [2004](#page-24-18); Bojinov et al. [2008](#page-23-17); Grabchev and Chovelon [2008](#page-24-19); Duan et al. [2008](#page-24-20); Tamanini et al. [2009;](#page-26-19) Li et al. [2009;](#page-25-11) Bojinov and Panova [2009;](#page-23-18) Nandhikonda et al. [2009\)](#page-26-20). It should be made known that it is not the attempt of this review to revisit those pretty 'old' references but to report the 'newer' ones within the past seven years, i.e. between the years 2010 and 2017. Enough references, 76 articles thereabout, have been reviewed in strength so as to bring to the research spotlight the tremendous works that have done in this feld but at the same time ensure conciseness of the report. Moreso, the works reported focus on some representative metal ions, including but not limited to Cu^{2+} , Hg²⁺, Zn²⁺, Ag⁺, Pd²⁺ and Au³⁺, and/or a combination of them. Restriction has been placed on the 1, 8-naphthalimide as the fuorophore, with various receptors been successfully coupled with it. All reported compounds either make use of the fuorescence method or combined fuorescence and colourimetry method in their detection modes. To the best of the author's knowledge, such a recently published review of various 1, 8-naphthalimide-based chemosensors for diferent cations within the 7-year duration has not been reported.

Metal‑specifc 1, 8‑naphthalimide‑based fuorescent chemosensors

Cation sensing has been one of the principal goals and pursuits of researchers in the feld of supramolecular chemistry owing to the indisputable roles and impacts of cations in our day-to-day life. The environmental and biological relevance of cations have been recognised (de Silva et al. [1997a;](#page-23-19) Xiao et al. [2007;](#page-27-5) Que et al. [2008;](#page-26-21) Kim et al. [2008;](#page-25-12) Xu et al. [2010c](#page-27-6); Zhang et al. [2011b](#page-27-7); Kim et al. [2012](#page-25-2)). This section maps out selected fuorescent and colourimetric 1, 8-naphthalimidebased chemosensors developed so far for cations.

Cu2+ ion‑selective chemosensors

The research team of Fu et al. made remarkable success in the synthesis of the chemosensor **1** that bears 1, 8-naphthalimide Schif base and photochromic diarylethene units

Fig. 4 Structure of **1** showing its UV–vis photochromism

(Fig. [4\)](#page-3-0) (Fu et al. [2017b](#page-24-21)). This compound which exhibited both fuorescent and colourimetric signalling modes effectively discriminated Cu^{2+} ion from other cations present together in acetonitrile solution with association constant and detection limit calculated to be 3.13×10^4 and 2.4×10^{-6} mol L⁻¹, respectively. Insight into the Job's plot analysis yielded a 1:1 binding ratio. The synthesised compound was also capable of monitoring F−. Despite all its other interesting features, the sensing mechanism of the reported compound was analytically irreversible.

In their recent work, the research group of Gao developed the water-soluble fuorescent chemosensor **2**, which anchors 1, 8-naphthalimide and two $[12]$ ane N_3 as fluorophore moieties (Gao et al. [2016\)](#page-24-22). The compound (Fig. [5\)](#page-3-1) displayed high selectivity and sensitivity for Cu^{2+} ion monitoring in coexistence with several other ions investigated under the same conditions in Tris–HCl buffer system. Furthermore,

the chemosensor experienced a quenching of its fuorescence upon binding with Cu^{2+} ion (a 127-fold dampening). As given by the titration experiment and Job's plot, its stoichiometric ratio of binding with Cu^{2+} ion was 1:2. In further experiment, the resultant complex 2 -Cu²⁺ was employed for the sensing of Adenosine-5′-triphosphate (ATP). The detection limits of chemosensor 2 towards Cu^{2+} ion and $2-Cu^{2+}$ complex towards ATP were obtained to be 1.3×10^{-8} and 8.5×10^{-9} M, respectively, while the respective quantum yields of complex **2**-Cu and complex **2**-Cu with ATP were calculated to be 0.0014 and 0.1588. The most interesting features of **2** are its regeneration potency (i.e. capability to reversibly detect Cu^{2+} ion) upon the addition of ATP and its ability for Cu^{2+} ion and ATP monitoring in living cell samples.

Stimulated by the interesting fuorescent properties of 1, 8-naphthalimide fuorophore, Chen et al. designed and

Fig. 5 Structures of **2** and **3** (up) and structure of **4** showing its binding mechanism with Cu^{2+} (down)

synthesised the simple but effective fluorescence 'turn on' chemosensor **3** (Chen et al. [2016](#page-23-20)). Noteworthy is that the chemosensor displayed an ultra-high sense of affinity towards $Cu²⁺$ in the mixture of other various metal ions tested in acetonitrile/water (50/50, v/v, 10 mM HEPES bufer, pH 7.4) solution. The binding ratio of the interaction of 3 and Cu^{2+} was established to be 1:1, and the detection limit was calculated as 0.0326 μM. The binding of the chemosensor with $Cu²⁺$ was demonstrated to be reversible. Finally, the chem-osensor (Fig. [5](#page-3-1)) was applied for Cu^{2+} imaging in living cells.

Compound **4**, which anchors a 1, 8-naphthalimide unit as the fuorophore group and a Schif base unit as the recognition group, was developed by Xu's research group as an efficient chemosensor for Cu^{2+} tracking (Fig. [5](#page-3-1)) (Xu et al. [2017\)](#page-27-8). The chemosensor's performance was optimal at pH = 7.2. In Tris–HCl (pH = 7.2) buffer–DMF (1:1, v/v) solution, chemosensor **4** displayed unique selectivity for Cu^{2+} ion amongst other co-existed alkali, alkaline earth, and transition metal ions with a marked reduction in the fuorescence intensity of **4**. Job plot and fuorescence titration experiments revealed the formation of a 1:1 complex between 4 and Cu^{2+} ion. The chemosensor worked best for Cu^{2+} quantification within the linear range of 0.5–5 μ M with detection limit and association constant of 0.23 μM and 1.328×10^6 M⁻¹, respectively obtained.

He et al. fabricated a new naphthalimide-based fuorescent chemosensor, **5**, for the analytical detection of Cu^{2+} ion (Fig. [6\)](#page-4-0) (He et al. [2015](#page-24-23)). In the absence of Cu^{2+} ion, 5 displayed strong greenish fluorescence. Upon the addition of 2 equiv. of Cu^{2+} ion to 5 in CH₃CN:H₂O (4:1, v/v) solution, there was disappearance of the greenish fuorescence with a simultaneous lowering of the emission intensity (a 30-fold quenching). The addition of other metal ions left a mild infuence on the fuorescence intensity of **5**. Results of the Benesi-Hildebrand plot and ESI–MS spectra gave a 1:2 stoichiometric binding ratio of 5 with $Cu²⁺$. The detection limit of 5 for Cu^{2+} detection was estimated to be 64 ppb. The compound was successfully assessed for practical detection of Cu^{2+} in living cells.

Fig. 6 Structures of 5 and 6 and structure of 7 with its reversible binding mechanism with Cu^{2+}

Hu and co-workers described a semicarbazide-based naphthalimide, **6**, as a colourimetric, fuorescent chemosensor for Cu^{2+} monitoring (Fig. [6](#page-4-0)) (Hu et al. [2015](#page-24-24)). In the presence of Cu^{2+} in buffer water/acetonitrile (80:20, v/v; pH 7.4), the compound underwent a signifcant enhancement in its fuorescence intensity. Importantly, **6** displayed high sensitivity and selectivity for Cu^{2+} over other tested alkali, alkaline-earth metals, and transition metal ions. The sensing of Cu^{2+} with 6 worked best within the linear range of 1.0×10^{-7} – 100.0×10^{-7} mol L⁻¹ ($R^2 = 0.9983$). The calculated detection limit was down to the level of 5.2×10^{-8} mol L^{-1} .

Yu's group constructed a simple 'off-on' fluorescent chemosensor **7** that bears the naphthalimide group (Yu et al. [2014b](#page-27-9)) with a detection limit and an association constant of 0.025 and 3.0×10^{-4} µM, respectively. 7 was effective for the detection of Cu^{2+} ion in ethanol–water solution (3:2, v/v, 50 mm HEPES, pH 7.4), amidst other tested metal ions and anions. **7** (Fig. [6](#page-4-0)) showed large fuorescence enhancement with Cu^{2+} ion, with linearity in the 0.05–1.5 μ M range $(R = 0.999)$. Following these results, the practicality of the chemosensor for real-time monitoring of Cu^{2+} was demonstrated by its potency to track Cu^{2+} ion in real water samples.

Chen et al. concerted their efforts to develop the naphthalimide derivative **8** that serves as a fuorescent chemosensor for Cu^{2+} detection (Chen et al. [2013b](#page-23-21)). In the presence of Cu^{2+} in acetonitrile–water (70:30, v/v) buffer solution of 3-(N-morpholino) propane sulfonic acid (MOPS, 10 mM, $pH = 7.0$, the fluorescence intensity of 8 was escalated (Fig. [7](#page-5-0)) in the order of a 4.5-fold enhancement. The linear detection range of **8** with Cu^{2+} lied between 4 μM to 7 μM with a detection limit of 0.15 μM calculated.

Lan and his team members intelligently designed two structurally similar fluorescent 'turn-on'

naphthalimide-appended chemosensors for quantitative detection of Cu^{2+} among other metal ions, viz. K^{+} , Ag^{+} , Ca^{2+} , Mg²⁺, Zn²⁺, Pb²⁺, Ni²⁺, Mn²⁺, Co²⁺, Cd²⁺, Hg²⁺, Fe²⁺, Fe³⁺ and Cr³⁺ (Fig. [7](#page-5-0)) (Lan et al. [2012\)](#page-25-13). Upon Cu²⁺ chelation in acetonitrile solution, the fuorescence intensities of chemosensors **9** and **10** experienced tremendous uplift. The two-step binding mode of 9 with Cu^{2+} ion established the stoichiometric ratio of the chemosensor and analyte ion to be 1:1 and 1:2, which was further supported by ESI–MS results. The stability constants of **9** and **10** were obtained as 4.35×10^5 and 8.13×10^4 , respectively. Desirably, Cu²⁺ monitoring by **9** and **10** was demonstrated to be reversible.

Georgiev and his lab members reported the design and synthesis of the blue-emitting, photostable, photoinduced electron transfer (PET) 1, 8-naphthalimide-based chemosensor **11** (Georgiev and Bojinov [2012\)](#page-24-25). The group found that **11** (Fig. [8\)](#page-6-0) switched between "off" and "on" states in the pH range of 9–6. So as to observe the discriminatory ability of the chemosensor, the team examined the fuorescence property of **11** in DMF solution using an array of various metal ions. A sharp fuorescence enhancement was observed upon Cu^{2+} addition (the fluorescence enhancement was of the order of 18.6) in the presence of metal ions $(Cu^{2+}, Pb^{2+},$ Cd^{2+} , Ni²⁺, Co²⁺, Fe³⁺ and Zn²⁺) and protons. Other coexisting metal ions and proton induced no notable change on the fuorescence intensity of **11**.

Yu et al. reported the novel 'off-on' type fluorescent chemosensor **12** that anchors both naphthalimide and rhodamine B units, as an efective chemosensor capable of distinguishing Cu^{2+} ion in an assembly of other cations (Yu et al. [2011](#page-27-10)). In ethanol–water (1:9, v: v, 50 mM HEPES, pH 7.0) solution, there was an increase in the fuorescence intensity of **12** upon treatment with 10 equiv. of Cu^{2+} . The calculated detection limit was suitably low down to the level of 0.18 μM.

and **10** (down)

Fig. 8 Proposed modes of complexation of 11 and 12 towards Cu^{2+}

Study of the binding ratio of 12 and Cu^{2+} revealed a 1:1 stoichiometry mode (Fig. [8\)](#page-6-0). The compound was reversible in its sensing nature and was able to visualise Cu^{2+} in living cells in biological systems.

Xu et al. in 2010 reported the fuorescent chemosensor **13** that bears a naphthalimide unit connected to a piperazine ring. The reported compound could sensitively and selectively detect Cu^{2+} amongst other investigated cations (Fig. [9\)](#page-7-0) (Xu et al. [2010d](#page-27-11)). Free **13** displayed a dynamic excimer emission in polar solvents, which results from the naphthalimide dimer formed in the excited state. Meanwhile, complex 13-Cu²⁺ exhibited static excimer emission which arises from naphthalimide dimer in the ground state. Job's plot furnished a 1:2 complexation ratio of 13 and Cu^{2+} in $13-$ Cu2+. A dramatic increase in the fuorescence intensity of **13** towards Cu^{2+} in aqueous solutions (CH₃CN:HEPES = 1:1, v/v) was observed, but not in the case of other metal ions. The calculated dissociation constant (K_d) of 13 with Cu^{2+} was 3.4×10^{-4} M.

Xu et al. in 2010 again developed two 4, 5-disubstituted-1, 8-naphthalimide derivatives, **14** and **15**, which shows a good response for Cu^{2+} monitoring (Fig. [9](#page-7-0)) (Xu et al. [2010b](#page-27-12)). Compound **14** behaved as a fuorescent chemosensor while compound **15** acts as a colourimetric chemosensor. A signifcant enhancement in the fuorescence intensity of **14** at 478 nm in 100% aqueous solution took place upon the addition of Cu^{2+} , well distinct from that of the fluorescent emission of 1**4** centred at 534 nm. The results that proceeded from the spectroscopic investigations showed that compound **15** could sense Cu^{2+} ion through massive quenching of its fuorescence intensity and concomitant colour change from primrose yellow to pink.

Hg+ ion‑selective chemosensors

The analytical capacity of the 1, 8-naphthalimide-based compound 16 as a fluorescent chemosensor for Hg^{2+} monitoring was appraised by La's group. The group further demonstrated that the compound also possessed colourimetric sensing properties towards CN^- and F^- , acting as both cationic- and anionic-specifc multianalyte chemosensor (Fig. [10](#page-7-1)) (La et al. [2016\)](#page-25-14). Results revealed that the compound experienced an amplifcation of its fuorescence signal intensity upon the addition of Hg^{2+} while other investigated anions and cations left only rather benign changes in the fuorescence signal intensity of the chemosensor. There was linearity of response of the chemosensor in its monitoring of Hg^{2+} , with the detection limit and association constant determined to be 2.4×10^{-7} and 4.12×10^{5} M, respectively. Job's plot analysis gave a binding ratio of 1:1, which was further evidenced by ${}^{1}H$ NMR results.

Li's research group devised two naphthalimide-appended fluorescent chemosensors, 17 and 18 (Fig. [10\)](#page-7-1) for Hg^{2+} detection (Li et al. [2016a](#page-25-15)). Compounds **17** and **18** were capable of Hg^{2+} ion detection over a wide pH span of 7.0–10.0. In 10 μ M solution of 17 in phosphate buffer (pH 7.5) containing various metal ions, only Hg^{2+} could suppress the fuorescence intensity of **17** by about 90%; meanwhile, other competitive cations collectively impressed only mild efects on the fuorescence intensity of **17**. Compound **18** showed a

Fig. 9 Proposed sequential binding mode of 13 with Cu^{2+} (up) and structures of 14 and 15 (down)

Fig. 10 Structure of **16** (topleft), structures of **17** and **18** (top-right) and binding mechanism of 17 with Hg²⁺ showing its reversible nature upon the addition of EDTA (down)

similar observation as with compound **17**. The linear range of detection of Hg²⁺ by 17 was between 2 and 10 μ M, and the detection limits of **17** and **18** for Hg^{2+} tracking were 2.1 and 3.1 μM, respectively.

Vonlanthen and his team members explored the Hg^{2+} -sensing properties of the PET naphthalimide-based chemosensor **19** (Vonlanthen et al. [2014\)](#page-27-13). No fuorescence enlargement was observed at pH 5.5 or lower, but there was noticed significant fluorescence enhancement towards Hg^{2+} in 9:1 H₂O/CH₃OH. Job's plot established a 1:1 stoichiometric ratio between chemosensor **19** and Hg^{2+} ion (Fig. [11](#page-8-0)). It is only fair to note that the compound was successfully applied for Hg^{2+} imaging in living mammalian cells.

Un and co-workers brought into being a simple but efective fuorescent chemosensor that utilises the 1, 8-naphthalimide unit for a 'turn on' detection of Hg^{2+} ion (Fig. [12](#page-8-1)) (Un

et al. $2014a$). Titration of aqueous solution (THF–H₂O, 1:1, pH 7.4, 10 mM Tris–HCl) of this compound in co-existence with several other metal ions induced a notable enhancement of fluorescence towards Hg^{2+} only. The fluorescence detection was linear within the range of $1-30 \mu M$. The corresponding detection limit and association constant were estimated as 6.28×10^{-8} M and 5.4×10^{4} M⁻¹, respectively. From real-world application standpoint, the fuorescence imaging of Hg^{2+} in living cells by 20 was successfully demonstrated.

Moon and co-workers introduced a thionaphthalimidebased chemosensor **21** and its two monothio derivatives, **22** and **23** (Fig. [12\)](#page-8-1), responsive for Hg^{2+} monitoring via an 'off-on' modality (Moon et al. 2013). Upon the addition of Hg^{2+} to chemosensor 21 in 30% aqueous CH₃CN solutions, there was enlargement of the fuorescence intensity of **21** at

Fig. 11 Structure of **19** showing PET mechanism

Fig. 12 Structures of **20–23**

537 nm. Meanwhile, other investigated background metal ions left no tremendous efect on the fuorescence intensities of chemosensors **22** and **23**. The estimated detection limit of the reported 21 for the sensing of Hg^{2+} ions was 2.7 μ M.

The laboratory of Zhang et al. reported a new fuorescent molecule **24** (Fig. [13](#page-9-0)), for the recognition of Hg^{2+} among several other metal ions, including Na⁺, K⁺, Ca²⁺, Mg²⁺, Cu²⁺, Zn²⁺, Cr²⁺, Pb²⁺, Ni²⁺, Fe²⁺, Mn²⁺, Co²⁺, and Cd²⁺ (Zhang et al. $2013a$). Successive addition of Hg²⁺ in EtOH/ $H₂O$ (1/2, v/v) to solution of the chemosensor led to sharp increment in the fuorescence intensity of **24** while no obvious change was observed for other tested cations. Their fndings indicated the existence of a 1:1 binding stoichiometry between Hg^{2+} and 24 in complex 24-Hg²⁺ (from Job's plot analysis).

Li et al. made a report of the PET naphthalimide-based chemosensor **25** that anchors a hydrophilic hexanoic acid group, for the recognition of Hg^{2+} (Fig. [13](#page-9-0)) (Li et al. [2012a\)](#page-25-16). Experimental data showed that the compound was most suitable for Hg^{2+} tracking within a linear range of 2.57×10^{-7} –9.27 × 10⁻⁵ M. Job's plot deciphered a 1:1 binding mode of chemosensor 25 and Hg^{2+} with a detection limit of 4.93×10^{-8} M estimated. In Tris–HNO₃ buffer solution of pH 7.0, the chemosensor displayed great enhancement in its fluorescence intensity upon Hg^{2+} addition in coexistence with other metal ions. The response time of Hg^{2+} detection by 25 was less than 1 min. 25 was reversible in its sensing mechanism. Noteworthy is that the chemosensor was successfully applied for Hg^{2+} determination in hair samples.

Yang et al. described a new PET fuorescent chemosensor that incorporates the naphthalimide structure as fuorophore unit (Fig. [13](#page-9-0)) (Yang et al. [2012\)](#page-27-15). Compound **26** retained excellent affinity for Hg^{2+} in the presence of a family of environmentally and biologically signifcant metal ions. In methanol–water (1:9, v/v) solution, there was enlargement of the fuorescence intensity of **26** (about fourfold increment) upon the gradual addition of Hg^{2+} . The response of chemosensor **26** towards Hg^{2+} was linear within the concentration range of 0–10 μM. The detection limit and association constant were estimated as 63 nM and 1.11×10^5 M⁻¹, respectively. Of note is that the chemosensor can reversibly respond to Hg^{2+} detection.

Li and his teammates prepared the 'turn-on' fuorescent chemosensor 27 effective for Hg^{2+} tracking amidst a host of other cations (Li et al. [2012b\)](#page-25-17). The addition of 1.0 equivalent of Hg^{2+} to THF solution of 27 led to a 110-fold increment of the fuorescence intensity, in contrast to other examined metal ions that did not modulate the fuorescence intensity of 27. The compound functioned best for Hg^{2+} monitoring within the pH range of 5.0–9.0. The fuorescence titrations of 27 with Hg^{2+} were further conducted under optimised conditions (acetone/water = $1/1$, v/v, pH = 7.0), with a 100fold fuorescence enhancement observed. Further experiments established that chemosensor **27** (Fig. [14\)](#page-10-0) was outstanding for imaging HL cells by a confocal laser scanning microscopy.

Liu and co-workers developed a new chemosensor **28**, which contains both rhodamine B and naphthalimide units (Liu et al. [2012](#page-25-18)). The compound detected Hg^{2+} in a wide pH range of 5.7–11.0. Upon the addition of 1 equiv. of Hg^{2+} , weak fuorescence emission was observed at 585 nm in 2:1 (v/v) MeOH/water solution (10 mM Tris–HCl, pH 7.0). The compound (Fig. [14](#page-10-0)) worked optimally within the linear

Fig. 13 Structure of 24 (left), binding mechanism of 25 with Hg^{2+} (middle) and structure of 26 (right)

Fig. 14 Structures of **27**–**29**

range of 2–10 mM. Job's plot analysis yielded a maximum at 0.5 mol fraction, implying the formation of a 1:1 complex of 28 with Hg^{2+} .

Kumar et al. obtained the 1, 8-naphthalimide-appended fuorescent chemosensor **29** (Fig. [14](#page-10-0)) (Kumar et al. [2011\)](#page-25-19) whose binding behaviour and fuorescence response were studied towards diferent metal ions in mixed aqueous media $(THF/H₂O; 9.5:0.5)$. Results showed that the addition of the investigated cations (except for Hg^{2+}) did not give rise to any signifcant change in the fuorescence intensity of **29**. This clearly demonstrates that the compound has excellent affinity for Hg²⁺ over these ions. The detection limit of 29 for Hg²⁺ was calculated to be 2×10^{-6} mol L⁻¹. Job's plot method of continuous variation gave a stoichiometric ratio of 1:1. The binding behaviour of Hg^{2+} ion to chemosensor 29 was analytically reversible. The potential biological application of the chemosensor was assessed for Hg^{2+} monitoring ion in prostate cancer (PC3) cell lines.

Cr3+‑selective chemosensors

Yu et al. generated the 1, 8-naphthalimide-based chemosensor **30** for singular and reversible detection of Cr^{3+} (Fig. [15\)](#page-11-0) (Yu et al. [2016](#page-27-16)). Fluorescence titration experimental results revealed gradual addition of Cr^{3+} to solution of the chemosensor (1.0 × 10⁻⁵ M, water/ethanol = 6:4, v/v) in the presence of the other cations amplifed the fuorescence intensity of **30**. In contrast, the addition of other cations did not modulate any signifcant change in the fuorescence intensity of **30**. Cr^{3+} sensing with compound **30** was desirably linear in the range $0-5.5 \times 10^{-5}$. The calculated detection limit was found to be as low as 0.60 ppm. Above all, the ability of the chemosensor to monitor biological samples of HeLa cells was successfully demonstrated.

Xue et al. reported the use of the colourimetric, fuorescent 1, 8-naphthalimide-based chemosensor **31** that

simultaneously bears rhodamine B and diarylethene units (Xue et al. [2015](#page-27-17)). The chemosensor upheld strict Cr^{3+} monitoring ability. Addition of various metal ions (10 equiv.) to the chemosensor in acetonitrile $(2.0 \times 10^{-5} \text{ mol L}^{-1})$ solution led to insignifcant modulation of the initially weak fuorescence intensity of **31** at 370 nm, except in the case of Cr3+. The mentioned compound **31** possessed vibrant regeneration property as evidenced by its reversibility nature in the detection of Cr^{3+} , whereby free 31 was unbound from complex **31**-Cr³⁺ (Fig. [15](#page-11-0)).

Wu and co-workers published their development of the PET fuorescent chemosensor **32** that anchors the naphthal-imide architecture (Fig. [15](#page-11-0)) (Wu et al. [2014\)](#page-27-18). The designated compound was highly sensitive and selective for Cr^{3+} tracking amidst other investigated metal ions in THF/H₂O solution (85/15, v/v) through a fuorescence 'turn on' mode. A 1:1 binding mode between 32 and Cr^{3+} was furnished by MALDI-TOF–MS analysis. The fuorescence detection response of Cr^{3+} determination by 32 was desirably linear in the 20–120 μM range. Meanwhile, the detection limit and association constant were determined to be 0.20 μM and 2.4×10^4 M⁻¹, respectively.

Fe3+ ion‑selective chemosensors

In the attempt to construct chemosensors that could detect $Fe³⁺$ effectively, Li and co-workers designed the fluorescence enhancement chemosensor **33** (Fig. [16](#page-11-1)) that bears coumarin and naphthalimide (Li et al. 2014). In THF-H₂O (v/v, 1:1) solution, the chemosensor exerted a high selectivity for $Fe³⁺$ over other investigated metal ions with a massive fluorescence intensity enlargement at 456 nm. Job's plot gave the binding ratio of compound 33 and Fe^{3+} in the $33-Fe^{3+}$ complex as 1:1 (Fig. [16\)](#page-11-1). The association constant and detection limit were calculated to be $(2.589 \pm 0.206) \times 10^3 \text{ M}^{-1}$ and 0.388 mM, respectively.

Fig. 16 Structure of 33 (up) and schematic illustration of its binding mechanism with Fe^{3+} (down)

Chereddy and co-workers introduced the PET-operated naphthalimide-based fuorescent chemosensor **34** capable of singular detection of $Fe³⁺$ in coexistence with other cations (Fig. [17\)](#page-12-0) (Chereddy et al. [2014\)](#page-23-22). While the addition of $Fe³⁺$ amplified the fluorescence intensity of 34 in Tris-HCl-CH₃CN solution (v/v, 1:1; 0.01 M Tris–HCl–CH₂CN; pH 7.4), the addition of other rival cations impacted collective insignificant effect on the fuorescence intensity of **34**. The binding constant was calculated as 1.04×10^5 M⁻¹ while the detection limit was determined to be 3.0×10^{-8} M. Ultimately, the reported compound 34 was reversible in its $Fe³⁺$ detection mechanism.

Yang and teammates showed that the fuorescent chemosensor **35** that bears three 1, 8-naphthalimide units in its structure could rapidly monitor Fe^{3+} (Yang et al. [2013\)](#page-27-19). The addition of various competitive metal ions to **35** in DMF/ $H₂O$ (v/v, 4:1 and 2:3) did not affect the fluorescence intensity of 35 much, except for Fe^{3+} that impinged an escalation on the fuorescence intensity of the compound. Based on the fuorescence titration, the calculated detection limit and binding constant were 4.69×10^{-7} M and $2.406 \times M^{-1}$,

respectively. The result obtained from Job plot indicated a 1:1 binding of 35 and Fe^{3+} in the complex 35- Fe^{3+} (Fig. [17](#page-12-0)).

Xu's research group generated the optode membrane kind of a naphthalimide derivative **36** having terminal double bond (Fig. [18](#page-12-1)) (Xu et al. [2013\)](#page-27-20). The reported compound was highly sensitive and selective for $Fe³⁺$ sensing amongst other tested cations. The incremental addition of Fe3+ to **36** in 0.05 mol/L Tris/HCl (pH 6.02) lowered the fuorescence intensity of the chemosensor rapidly. Strikingly, **36** showed excellent sensing properties as validated by its wide linear tracking range of 1.0×10^{-5} – 1.0×10^{-3} M and low detection limit of 4.5×10^{-6} M. The experimental optimum working pH range was between 5.00 and 8.00. The developed compound was reversible in its sensing mechanism and above all, it was successful in $Fe³⁺$ monitoring in pharmaceutical preparation samples.

Staneva and his peers proved that the poly(propylene amine) dendrimer **37** (Fig. [19\)](#page-13-0) that incorporates four 4-(*N*, *N*-dimethylaminoethyloxy)-1, 8-naphthalimide units, could be effective as a chemosensor for $Fe³⁺$ detection in acetonitrile solution (Staneva et al. [2012\)](#page-26-24). It was reported that the compound, upon Fe^{3+} addition, exhibited large fluorescent amplifcation (of the order of 44.95). Meanwhile, its fuorescence intensity remained unchanged upon the addition of other metal ions under similar testing condition. Furthermore, good linearity of response of $Fe³⁺$ monitoring by **37** was observed within the concentration range of 2×10^{-7} –4.10⁻⁶ mol L⁻¹. Finally, the detection limit of 37 with Fe³⁺ was estimated as 2×10^{-7} mol L⁻¹.

Zn2+ ion‑selective chemosensors

The fuorescent chemosensor **38** that operates through a dual PET-ICT mechanism (Fig. [20\)](#page-13-1) (Wei et al. [2015\)](#page-27-21) was developed by Wei and co-workers in 2015. The initially weak fuorescence of this compound, positioned at the emission wavelength of 465 nm underwent amplifcation upon the incremental addition of Zn^{2+} in neutral aqueous solution (10 mM Tris–HCl buffer, pH 7.2, containing 1% CH₂CN), while the addition of other rival ions left no signifcant change in the fuorescence of the compound. The linearity of detection of Zn^{2+} by the chemosensor was demonstrated to be in the range $0-120.0 \mu M$. The calculated detection limit and association constant were 7.2×10^{-9} M and 6.27×10^{4} M⁻¹, respectively. Consequently, the developed compound was utilised to image Zn^{2+} in living HeLa cells.

Liu and his research group members developed the fuorescent chemosensor **39**, which contains 4-amino-1,

Fig. 18 Structure of 36 showing its detection mechanism of $Fe³⁺$

Fig. 20 Structures of chemosensors **38**–**40**

8-naphthalimide as fuorophore and iminodiacetic acid as receptor (Fig. [20](#page-13-1)) (Liu et al. [2014\)](#page-25-21). The gradual addition of Zn^{2+} to solution of 39 in 20 mM HEPES buffer (pH 7.4) caused an increment in the fuorescence emission intensity of the chemosensor (in the order of a 50-fold increase). Compound 39 was successfully applied to image Zn^{2+} in living cells. However, the addition of other metal ions imposed no monumental fuorescence change. Chemosensor **39**, whose calculated dissociation constant reached the level of 2.4×10^{-5} M, was successfully applied to bioimage Zn^{2+} in living cells.

The 1, 8-naphthalimide derivative that functions as a turn-on fluorescent chemosensor 40 for Zn^{2+} detection was prepared by Zhao's research group (Zhao et al. [2013](#page-28-2)). In aqueous medium (CH₃CN/HEPES, $v/v = 6:4$, pH 7.4), the ligand interacted with Zn^{2+} with notable fluorescence increment of about 13-fold increase ensuing from the process, whereas other cations did not signifcantly alter the fuorescence of the chemosensor. The values of the detection limit and association constant of 40 towards Zn^{2+} are 1.03×10^6 M and 3.02×10^3 M⁻¹, respectively. The reported compound (Fig. [20\)](#page-13-1) was successfully applied to image Zn^{2+} in A549, BEAS-2B, CHO, HeLa, and HepG2 cells.

Hanaoka et al. fabricated the water-soluble, fuorescence 'off–on' 4-amino-1, 8-naphthalimide-based chemosensor **41** that utilises ICT mechanism in its detection mode of Zn^{2+} (Fig. [21](#page-14-0)) (Hanaoka et al. [2010\)](#page-24-26). In HEPES buffer $(100 \text{ mM}, \text{pH } 7.4)$, the compound displayed high affinity for Zn^{2+} (in co-existence with other cations) with a significant signal amplifcation of 21.7-fold. The apparent dissociation constant of 41 for Zn^{2+} detection was estimated as 1.1 nM. Desirably, the chemosensor was effective for Zn^{2+} bioimaging in cultured HeLa cells in 10 μM HBSS bufer.

Fig. 21 Structures of **41**–**44**

Xu and co-workers described the fluorescence 'off–on' PET chemosensor **42** whose structure comprises 1, 8-naphthalimide unit as fluorophore and di-2-picolylamine unit as receptor (Fig. [21\)](#page-14-0) (Xu et al. [2010](#page-27-22)a). In CH₃CN-HEPES (v/v, 1:9, HEPES 0.5 M, pH = 7.4), the chemosensor participated in fluorescence enhancement process upon contact with Zn^{2+} among other metal ions of interest. The remaining cations induced no dramatic effect on the fluorescence spectra of **42**. A 1:1 binding mode of compound 42 with Zn^{2+} was given.

Tamanini et al. showed that variant compounds of the same parental block could behave as homogeneous and heterogeneous chemosensors for Zn^{2+} detection. The reported PET compounds **43** and **44** (Fig. [21\)](#page-14-0) (Tamanini et al. [2010\)](#page-26-25) are typical examples of such compounds. Compounds **43** and **44** exhibited fluorescence enhancement towards Zn^{2+} ; the latter compound displays twofold fluorescence property than the former. In H_2O/CH_3CN (7:3) buffer solution (50 mM HEPES buffer; pH 7), large fluorescence increment in the fluorescence signal of **44** (10 μ M) was observed upon the addition of 1 equiv. of Zn^{2+} (a 12.7-fold amplification) amidst other divalent cations. The fluorescence of **44** was slightly suppressed by Cu^{2+} and Hg²⁺. The calculated dissociation constant of **44** was 10⁷ M−1. Ligands **43** and **44** were employed for the fabrication of nanostructured zinc chemosensors via the sol–gel process.

Ag+ ion‑selective chemosensors

The novel mono- and di-substituted *N*–n-butyl-1, 8-naphthalimide derivative 45, efficient as a fluorescent chemosen-sor for Ag⁺ tracking was reported by Fu et al. (Figure [22\)](#page-15-0) (Fu et al. [2016](#page-24-27)). Results showed that the addition of foreign cations to **45** in ethanol–water solution (4:1, v/v, 10 mM HEPES buffer, $pH = 7.06$) did not result in any change in the fluorescence intensity of 45 except for $Ag⁺$ that lowered the chemosensor's fuorescence intensity at the emission wavelength of 535 nm. Job's plot analysis indicated the formation of a 2:1 complex between **45** and Ag+.

The lab of Zhou and co-workers made a breakthrough in the fabrication of the 4-amino-1, 8-naphthalimide-based compound **46**, which anchors Schif base and vanillin units (Zhou et al. [2012](#page-28-3)). In its detection mode, compound **46** acted as a fluorescent chemosensor with strict singularity for $Ag⁺$ over other various cations under the same experimental condition. The fuorescence intensity of **46** was dampened upon the incremental addition of Ag^+ at 682 nm. The estimated detection limit was low, down to the level of 3.0×10^{-6} mol L⁻¹. Job's method of continuous variation gave the binding ratio of **46** and Ag^+ in $46 \text{-} Ag^+$ complex to be 2:1 (Fig. [22\)](#page-15-0).

Xu and co-workers designed two structurally similar naphthalimide derivatives **47** and **48** (Fig. [22\)](#page-15-0) as fuorescent chemosensors for Ag^+ monitoring (Xu et al. $2010e$). In aqueous solution (CH₃CN: HEPES = 50:50, v/v ; 0.5 M HEPES buffer

Fig. 22 Structures of **45**–**48**

at pH 7.4), compound 47 detects $Ag⁺$ effectively with an approximate 14-time enhancement of its fuorescence. Large association constant of 1.24×10^5 M⁻¹ was determined for **47** and low detection limit of 1.0×10^{-8} M was calculated for **48**. The reference compound **48**, devoid of carbonyl group, did not strongly bind with $Ag⁺$ owing to that the carbonyl group between 1, 8-naphthalimide and $[15]$ ane $NO₂S₂$ played an active role in the increment of the fuorescence intensity.

Pd2+‑selective chemosensors

Liu and teammates developed the novel water-soluble fluorescent chemosensor **49** (Fig. [23\)](#page-16-0) for Pd^{2+} monitoring in phosphate-buffered saline (PBS) solution (10 μ M, pH 7.4), which operated within the linear range of $0-6 \mu M$ $(R² = 0.995)$ and with the low detection limit of 25 nM or 2.7 μg/L calculated (Liu et al. [2014\)](#page-25-22). The incremental addition of 5.0 equiv. of 21 diferent metal ions to solution of compound **49** impressed a rather insignifcant efect on the fluorescence intensity of **49**. Meanwhile, only Pd^{2+} left a massive increment (sevenfold) in the fuorescence intensity of 49. The efficacy of the reported compound was

delineated by its ability for the intracellular fuorescence imaging of Pd^{2+} in Hep G2 and HL60 living cells.

Wang et al. evaluated the sensing properties of the fuorescent chemosensor **50** towards Pd^{2+} (Fig. [23\)](#page-16-0) (Wang et al. [2012\)](#page-27-24). The optimal pH range for Pd^{2+} detection as revealed by experimental analysis was between 6 and 9. In phosphate-bufered saline (PBS) (10 mM, pH 7.4) solution, the designated compound only had affinity for Pd^{2+} amongst others metal ions (i.e. Ca^{2+} , Mg^{2+} , Zn^{2+} , Cd^{2+} , Ni^{2+} , Li^{+} , Mn^{2+} , Cu^{2+} , $Na⁺, K⁺, Co²⁺, Ag⁺, Pb²⁺, and Hg²⁺)$ in coexistence under the same analytical condition. The fuorescence intensity of **50** was enlarged by Pd^{2+} in the order of 7.2-fold enlargement.

Jiang and his team members constructed the colourimetric, ratiometric fluorescent chemosensor **51** (Fig. [23\)](#page-16-0) for Pd^{2+} sensing (Jiang et al. [2011\)](#page-25-23). In 10 mM acetonitrile–water solution (CH₃CN:H₂O = 4:1, NaBH₄-PPh₃), there was a decrement in the fluorescence intensity upon treatment of compound 51 with Pd^{2+} (Fig. [23](#page-16-0)) in the presence of other tested metal ions. The detection of Pd^{2+} with 51 was linear within the concentration range of 0–1 μ M. The detection limit of 51 for Pd²⁺ monitoring was calculated to be 6.1 nM. The practical utility of

Fig. 23 Structures of **49**–**51**

the synthesised compound was realised by its effective monitoring of Pd^{2+} concentrations in real-world pool and tap water samples.

Al3+‑selective chemosensor

Wang et al. synthesised the 1, 8-naphthalimide derivative **52** as a PET fluorescent chemosensor for Al^{3+} detection (Fig. [24\)](#page-17-0) (Wang et al. [2017\)](#page-27-25). When the fuorescence sensing property of the compound was tested in HEPES (PH = 7.4)/DMF (v/v, 1:1) solution that contained several cations including Al^{3+} , only Al^{3+} induced significant fluorescence enhancement on **52**. It was portrayed by the fuorescence plot that the compound exhibited good linearity within the concentration range of 3–11 μM. The detection limit and association constant of **52** interaction with Al^{3+} were calculated to be 3.4 \times 10⁻⁸ M and 1×10^4 M⁻¹, respectively. Experimental results of Job's plot and other titration analyses indicated the formation of a 1:1 stoichiometric complex between 52 and Al^{3+} . Desirably, a reversible complexation mode was achieved between the designed compound and Al^{3+} and the compound was successfully employed for Al^{3+} tracking in real water samples.

Recently, Li's research group reported the novel naphthalimide-appended chemosensor **53** whose fuorescence behaviour was taken advantage of to selectively and sensitively detect Al^{3+} amongst several other cations present under the same standard testing conditions (Li et al. [2017](#page-25-24)). In methanol (2.0 \times 10⁻⁵ mol L⁻¹) and at 590 nm emission wavelength, 20-fold fuorescence amplifcation was observed by 53 when Al^{3+} was added. Contrastingly, this observation was not exhibited by other investigated competitive cations. High binding constant of 2.55×10^5 mol⁻¹ L of 53 (Fig. [24\)](#page-17-0) towards Al^{3+} was obtained and low detection limit of 1.75×10^{-7} mol L⁻¹ of 53 for Al³⁺ was estimated. What is more important, the reported compound enjoyed interesting application in the construction of logic circuit.

The effective 1, 8-naphthalimide-based chemosensor **54** that utilised both ICT and CHEF sensing mechanisms for Al^{3+} detection was reported by Kang and co-workers (Fig. [24\)](#page-17-0) (Kang et al. [2016\)](#page-25-25). The fuorescence titration experiment of the chemosensor for Al^{3+} monitoring in an array of other co-cations was conducted in $CH₃OH$ solvent system. No signifcant fuorescence modulation was observed for ions investigated, except for 31.4-fold fuorescence enhancement noticed in the case of Al^{3+} . The competition experiment yielded the same trend of observation, demonstrating the remarkable ability of the chemosensor for singular sensing of Al^{3+} amongst other metal ions. The linear range of response was between 8 and 13 μM, with high association constant of 7.6×10^4 M⁻¹ and low detection limit of 6.9 µM calculated. Compound **54** was reversible in its detection mechanism and was consequently applied to sequester Al^{3+} from other cations in actual environmental system of some water samples.

Au3+ ion‑selective chemosensors

Li et al. in 2016 designed two structurally similar 1, 8-naphthalimide-based derivatives, **57** and **58** (Fig. [25](#page-17-1)), bearing 4-*N*, *N*-dimethyl unit, as fuorescent chemosensors for Au^{3+} monitoring (Li et al. [2016](#page-25-26)). The reported compounds were well selective for Au^{3+} detection in H_2O –ethanol solution, displaying enhanced fuorescence responses towards Au^{3+} in the presence of 24 other metal ions tested under similar standard conditions. Compounds **57** and **58** exhibited 145-fold and 14-fold enhancements, respectively, in the magnitudes of their fuorescence intensities. The

Fig. 24 Structures of **52** and **53** (up) and structure of **54** illustrating its sensing mechanism (down)

Fig. 25 Structures of **55** and **56**

detection limit of 57 for Al^{3+} monitoring was 0.050 μ M while that of **58** was one-third of that of **57**. Results showed that chemosensor **57** exhibited better sensing properties than its counterpart, chemosensor **58**, but only **58** could be employed for Au^{3+} imaging in living cells.

Ba2+ ion‑selective chemosensors

Panchenko et al. explored Ba^{2+} -sensing characteristics of the two naphthalimide derivatives **55** (that bears an *N*-phenyl-4-amino- unit) and **56** (which anchors an *N*-phenyl-4-acetamido- unit**)**, both being appended with *N*-benzocrown ether fragment (Fig. [26\)](#page-18-0) (Panchenko et al. [2010](#page-26-26)). In acetonitrile solution, gradual addition of Ba^{2+} solution to chemosensor **55** frst led to initial fuorescence enlargement, then seconded by sudden reversal of the fuorescence intensity of 55 as the amount of Ba^{2+} was further increased. For **56**, there was significant amplification of its fluorescence intensity upon the addition of Ba^{2+} without any reversal observed as in the case of **55**.

Bi3+‑selective chemosensor

Kavitha and co-workers recently reported the novel compound 59 designed as a PET chemosensor for Bi^{3+} monitoring (Ramasamy and Thambusamy [2017\)](#page-26-27). The best working pH of 59 for tracking Bi^{3+} was within the range 5–9. There was massive upward shift in the fuorescence intensity of chemosensor 59 upon interaction with Bi^{3+} in aqueous medium (5×10^{-5} M) in the concurrent presence of other metal ions. From the analysis of Job's plot,

Fig. 26 Structures of **57** and **58**

the binding stoichiometry of **59** with Bi^{3+} (Fig. [27\)](#page-18-1) was established to be 1:1. The association constant and detection limit were obtained as 311 M^{-1} and 0.58 μg mL⁻¹, respectively.

Multi‑ion‑selective chemosensors

Liu and teammates reported the novel naphthalimide-based ratiometric, fuorescent chemosensor **60** for the selective and sensitive detection of Fe^{3+} and Hg^{2+} (Fig. [28\)](#page-19-0) (Liu and Qian [2017\)](#page-25-27). The best working pH of compound **60** was confined to the narrow range of 2.92–4.5. When each of $Fe³⁺$ and Hg^{2+} cations was added to the chemosensor in acetonitrile/ $H₂O$ (v/v, 7:3) solution, the fluorescence intensity of **60** experienced sharp increase at the expense of those of other metal ions. Job's plot analysis yielded a 2:3 binding ratio of compound 60 with each of Fe^{3+} and Hg^{2+} ions. The calculated detection limits of 60 for Fe^{3+} and Hg^{2+} sensing are 2.72×10^{-8} and 9.08×10^{-8} M, respectively, while the calculated dissociation constants of the binding of **60** with

OH Complex 59-Bi³⁺ Free chemosensor 59

Fig. 27 Proposed binding mechanism of 59 with Bi^{3+}

Fe³⁺ and Hg²⁺ are 4.95 × 10⁻⁷ M^{3/2} and 6.68 × 10⁻⁸ M^{3/2}. respectively. It was reported that compound **60** displayed excellent reversibility in its sensing of Fe^{3+} and Hg^{2+} .

Georgiev's research team reported the PET, FRET and ICT chemosensor **61** that bears 1, 8-naphthalimide fuorophore, which is sensitive and selective first for H^+ detection, and second for Cu^{2+} and Hg²⁺ monitoring in water/acetonitrile $(v/v, 4:1)$ (Fig. [28](#page-19-0)) (Georgiev et al. [2015](#page-24-28)). There was upward rise of the fuorescence intensity of **61** upon addition of Cu^{2+} to solution of the compound in coexistence with other metal ions. The fuorescence response of the chemosensor with Cu^{2+} fell within the linear range of 2–10 μ M while the limit of detection was obtained to be 0.5 μ M. The binding stoichiometry as provided by Job's plot analysis was 1:1. The fuorescence emission of the compound was grossly reduced upon gradual addition of Hg^{2+} in the presence of other metal ions in water/acetonitrile (4:1, v/v), which was accrued to the 'switching on' of the fuorescence resonance energy transfer (FRET) process. The linear range of fuorescence response of 61 to Hg^{2+} was 2–20 μ M while the detection limit was obtained to be 0.09 µM.

Janakipriya's group synthesised the fuorescence 'turnon' PET-induced naphthalimide-based chemosensor **62** for the sensing of three trivalent metal ions, specifically, $Fe³⁺$, Al^{3+} and Cr^{3+} (Fig. [28\)](#page-19-0) (Janakipriya et al. [2016\)](#page-25-28). Results of the Job's plot analysis revealed that Fe^{3+} , Al^{3+} and Cr^{3+} ions existed in a 1:1 binding ratio in complexes **62**-Fe3+, **62**- Al^{3+} and 62 -Cr³⁺, respectively. The detection limits of 62 were estimated to be 3.5×10^{-7} , 3.6×10^{-7} and 3.8×10^{-7} M, respectively, for Fe^{3+} , Al^{3+} and Cr^{3+} ions. The association constants were calculated as 3.8×10^4 , 3.5×10^4 and $2.0 \times 10^4 \text{ M}^{-1}$, respectively, for **62**-Fe³⁺, **62**-Al³⁺ and **62**-Cr³⁺ complexes. In aqueous medium of $H_2O:CH_2CN$ (9:1, v/v), addition of several other metal ions impacted no marked infuence on the fuorescence emission intensity of **62**, except for Fe³⁺, Al^{3+} and Cr^{3+} that induced significant fluorescence enhancement. The effectiveness of the compound was appraised in biological monitoring of the three metal ions, i.e. Fe^{3+} , Al^{3+} and Cr^{3+} in human keratinocyte (HaCaT) cells within the pH range of 6.0–9.2.

Zhang et al. came up with the stable 1, 8-naphthalimidethiourea conjugate **63** used frst for colourimetric detection of $Fe³⁺$ and $Pb²⁺$ and second for fluorescent recognition of Hg^{2+} (Fig. [28](#page-19-0)) (Zhang et al. [2014b\)](#page-28-4). The colourimetric detections of Fe^{3+} and Pb^{2+} by 63 were carried out in MeCN/H₂O (99:1, v/v) while the fluorescent detection of Hg^{2+} was conducted in MeCN/H₂O (v/v, 85:15). In each of the two solvent systems utilised, the chemosensor selectively and sensitively tracked Fe^{3+} , Pb^{2+} , and Hg^{2+} in cohabitation with other rival cations, yielding 'turn on' fuorescence efects in both cases. The linear ranges of colourimetric and fluorescence responses for Fe^{3+} , Pb^{2+} , and Hg^{2+} were 0–150, 0–80, and 0–90 µM, respectively. The calculated detection

Fig. 28 Structures of **60**–**63**

limits of the designed compound for Fe^{3+} , Pb^{2+} , and Hg^{2+} were 6.86 µM, 5.09 µM, and 82.1 nM, respectively, while the obtained association constants of interaction of the reported compound with Fe³⁺, Pb²⁺, and Hg²⁺ were 1.854 \times 10³, 4.961×10^3 , and 6.33×10^3 M⁻¹, respectively. The monitoring of these three ions, i.e. Fe^{3+} , Pb^{2+} , and Hg^{2+} was reversible as demonstrated by the freeing of the chemosensor upon the addition of EDTA solution to the metal complexes. Job's

plot analysis indicated a 1:1 binding ratio of **63** for the three cations. Ultimately, the chemosensor was demonstrated for its practical effectiveness for Hg^{2+} tracking in pond and tap water samples and intracellular Hg^{2+} imaging in living cells.

Chemosensors that exhibit simultaneous fuorescence 'turn on' response for one metal ion and fuorescence 'turn of' response for another allow for the possibility of multication detection. Compound **64** developed by Huang et al.

Fig. 30 Structures of **66–68**

(Fig. [29\)](#page-19-1) is a typical example of such chemosensors (Huang et al. [2014b](#page-25-29)). **64** displayed fluorescence enhancement towards Hg^{2+} but fluorescence quenching towards Cu^{2+} in aqueous solution (10 mM HEPES, pH 7.5) in the presence of other cations. The strength of binding between the documented compound and investigated ions was justifed by their high association constants of 6.06×10^6 and 3.51×10^6 M^{-1} , respectively. Job's plot revealed the formation of 1:1 complexes between **64** and each of the two metal ions. The binding mode was based on PET and CHEF mechanisms.

Sharma and co-workers synthesised the naphthalimide derivative 65, commendable as chemosensor for Co^{2+} and Cu^{2+} detection (Fig. [29\)](#page-19-1) (Sharma et al. [2012\)](#page-26-28). In HEPES-buffered DMF/H₂O (8:2, v/v) solution, only Co^{2+} and Cu^{2+} induced massive lowering of the fuorescence intensity of the reported compound in the presence of other cations. Job's method of continuous variation corroborated a 1:1 binding ratio of **65** with Cu^{2+} and Co^{2+} . The calculated association constant of $65\text{-}Co^{2+}$ and 65-Cu^{2+} complexes were obtained to be $1.69 \ (\pm 0.1) \times 10^2$ and 2.9 (\pm 0.1) × 10² M⁻¹, respectively. It was shown that the reported compound 65 could be efficiently employed for detecting Cu^{2+} and Co^{2+} in solutions where they are present in a 1:2 ratio. The designated compound **65** proved applicable for the detection of Cu^{2+} and Co^{2+} in Osteosarcoma cells.

The two naphthalimide derivatives **66** and **67** were developed by Mahato et al. (Fig. [30](#page-20-0)) (Mahato et al. [2012](#page-26-29)). The compounds were selective and sensitive for monitoring Hg^{2+} or Cr^{3+} in the presence of several other competing metal ions. In CH₃CN-1.0 mM aq. HEPES buffer (pH = 7.2; 1:1, v/v), only Hg^{2+} and Cr^{3+} induced marked increase in the fluorescence intensities of **66** and **67**. This phenomenon was not observed in the case of other investigated ions. Reversible binding properties of **66** and **67** were successfully demonstrated for both Hg^{2+} and Cr^{3+} . A binding stoichiometry of 1:1 was given by Job's plot for the interaction of Hg^{2+} or Cr^{3+} with **66** or **67**. The respective emission binding constants of the reported compound 66 for the detections of Hg^{2+} and Cr^{3+} ions are $(3.07 \pm 0.3) \times 10^5$ and $(1.28 \pm 0.08) \times 10^5$ M⁻¹. Meanwhile, the emission binding constants determined for Hg^{2+} and Cr^{3+} by the reported compound **67** are $(1.12 \pm 0.01) \times 10^5$ and $(1.09 \pm 0.02) \times 10^5 \text{ M}^{-1}$, respectively. Furthermore, the calculated detection limits of 66 for Hg^{2+} and Cr^{3+} were 0.35 and 0.14 ppb, respectively. Only chemosensor **67**, which worked optimally under physiological conditions, could be used for the imaging of Hg^{2+} and Cr^{3+} ions in living human epidermoid A431 cells.

Dong et al. brought to research limelight the 1, 8-naphthalimide-appended derivative that acted as an efective chemosensor for Hg^{2+} and Au^{3+} tracking in HEPES buffer (0.01 M; pH 7.4; 0.05% DMSO, v/v) (Fig. [30](#page-20-0)) (Dong et al. [2010\)](#page-23-23). The fuorescence emission intensity of **68** plummeted upon the addition of Hg^{2+} to solution of compound 68. Contrastingly, the addition of other coexisting ions impinged no great infuence on the fuorescence intensity of compound **68**, which lend weight to the great selectivity of 68 for Hg^{2+} . The detection limit of 68 for Hg^{2+} sensing was determined to be 0.05 μ M (10 ppb). The reported compound was successfully envisaged as an excellent chemosensor for Au^{3+} monitoring amongst several other metal ions tested.

Although there is no room for detailed discussion, additional published works to the use of 1, 8-naphthalimide for the constructions of fuorescent and colourimetric chemosensors are cited (Saini et al. [2014](#page-26-30); Zhang et al. [2017;](#page-28-5) Un et al. [2014b](#page-26-31); Aderinto et al. [2016](#page-23-24); Wu et al. [2013](#page-27-26); Hou et al. [2011](#page-24-29); Chen et al. [2012;](#page-23-25) Liu et al. [2012b;](#page-25-30) Duan et al. [2008](#page-24-20); Zhang et al. [2010](#page-27-27); Chinapang et al. [2015](#page-23-26); Zhang et al. [2012](#page-27-28); Chen et al. [2013](#page-23-27)a; Hu et al. [2014;](#page-24-30) Zhang et al. [2011](#page-27-29)a; Yu et al. [2012](#page-27-30); Yu and Zhang [2014](#page-27-31); Choi et al. [2013\)](#page-23-28).

Conclusions

The successfulness of the robust fuorophore, 1, 8-naphthalimide, which exists often as 4-amino-1, 8-naphthalimide for the constructions of diverse fuorescent chemosensors of interesting applications in environmental- and biological systems, is intriguing. In this review, various representative

Table 1 A few key parameters of the fuorescent and colourimetric chemosensors covered in this review

Chemosensor number	Analyte (s) detected	Detection limit (mol L^{-1})	Environmental and/or biological application	References
1	$Cu2+$	2.40×10^{-6}	$N.R.^a$	Fu et al. (2017b)
$\boldsymbol{2}$	$Cu2+$	1.30×10^{-8}	Aqueous solution and HeLa cells	Gao et al. (2016)
3	Cu^{2+}	3.26×10^{-8}	Living HeLa cells	Chen et al. (2016)
4	$Cu2+$	2.30×10^{-7}	N.R.	Xu et al. (2017)
5	$Cu2+$	6.40×10^{-8}	MCF-7 cells	He et al. (2015)
6	$Cu2+$	5.20×10^{-8}	Water samples	Hu et al. (2015)
7	$Cu2+$	2.50×10^{-8}	Water samples	Yu and Zhang (2014)
8	$Cu2+$	1.50×10^{-8}	N.R.	Chen et al. $(2013b)$
9	$Cu2+$	4.80×10^{-8}	N.R.	Lan et al. (2012)
10	$Cu2+$	N.R.	N.R.	Lan et al. (2012)
11	$Cu2+$	N.R.	N.R.	Georgiev and Bojinov (2012)
12	$Cu2+$	1.80×10^{-7}	Living cells	Yu et al. (2011)
13	$Cu2+$	N.R.	N.R.	Xu et al. (2010d)
14	Cu^{2+}	1.00×10^{-8}	N.R.	Xu et al. (2010b)
15	$Cu2+$	1.00×10^{-8}	N.R.	Xu et al. (2010b)
16	$\rm Hg^{2+}$	2.40×10^{-7}	N.R.	La et al. (2016)
17	Hg^{2+}	2.10×10^{-6}	N.R.	Li et al. (2012a)
18	Hg^{2+}	3.10×10^{-6}	N.R.	Li et al. (2012b)
19	Hg^{2+}	N.R.	Living mammalian cells	Vonlanthen et al. (2014)
20	Hg^{2+}	6.28×10^{-8}	Living HeLa cells	Un et al. (2014a)
21	Hg^{2+}	2.70×10^{-6}	N.R.	Moon et al. (2013)
22	Hg^{2+}	N.R.	N.R.	Moon et al. (2013)
23	Hg^{2+}	N.R.	N.R.	Moon et al. (2013)
24	$\rm Hg^{2+}$	1.27×10^{-6}	N.R.	Zhang et al. $(2013a)$
25	Hg^{2+}	4.93×10^{-8}	Hair samples	Li et al. $(2012a)$
26	Hg^{2+}	6.30×10^{-8}	N.R.	Yang et al. (2012)
27	Hg^{2+}	N.R.	Living HeLa cells	Li et al. $(2012b)$
28	Hg^{2+}	3.00×10^{-8}	N.R.	Liu et al. $(2012a)$
29	Hg^{2+}	2.00×10^{-6}	Prostate cancer cell lines	Kumar et al. (2011)
30	Cr^{3+}	6.00×10^{-7}	Live HeLa cells	Yu et al. (2016)
31	Cr^{3+}	N.R.	N.R.	Xue et al. (2015)
32	Cr^{3+}	2.00×10^{-7}	N.R.	Wu et al. (2014)
33	$Fe3+$	3.88×10^{-7}	N.R.	Li et al. (2014)
34	$Fe3+$	3.00×10^{-8}	W138 human lung fibroblast cells	Chereddy et al. (2014)
35	$Fe3+$	4.69×10^{-7}	N.R.	Yang et al. (2013)
36	$Fe3+$	4.50×10^{-6}	Pharmaceutical preparation samples	Xu et al. (2013)
37	$Fe3+$	2.00×10^{-7}	N.R.	Staneva et al. (2012)
38	Zn^{2+}	7.20×10^{-9}	Living HeLa cells	Wei et al. (2015)
39	Zn^{2+}	N.R.	Living cells	Liu et al. (2014)
40	Zn^{2+}	1.03×10^{6}	A549, BEAS-2B CHO, HeLa, and HepG2cells	Zhao et al. (2013)
41	Zn^{2+}	1.10×10^{-9}	HeLa cells	Hanaoka et al. (2010)
42	Zn^{2+}	N.R.	N.R.	Xu et al. (2010a)
43	Zn^{2+}	N.R.	N.R.	Tamanini et al. (2010)
44	Zn^{2+}	N.R.	N.R.	Tamanini et al. (2010)
45	$Ag+$	N.R.	N.R.	Fu et al. (2016)
46	$Ag+$	3.00×10^{-6}	N.R.	Zhou et al. (2012)
47	$Ag+$	N.R.	N.R.	Xu et al. (2010e)

Table 1 (continued)

^aWhere "N.R." means the parameter in question was "Not Reported"

1, 8-naphthalimide-based fluorescent chemosensors for selected cations (i.e. Cu^{2+} , Hg^{2+} , Cr^{3+} , Fe^{3+} , Zn^{2+} , Ag^{+} , Pd^{2+} , Al^{3+} , Ba^{2+} , Au^{3+} , and Bi^{2+}), and/or a combination of these metal ions, have been summarised. All reported chemosensors contained three essential parts: fuorophore, spacer, and receptor. Diferent mechanisms such as Photoinduced Electron Transfer (PET), Internal Charge Transfer (ICT), and Fluorescence Resonance Energy Transfer (FRET) were employed in the constructions of these naphthalimide derivatives, although details about these mechanisms have not

been elucidated. For a summary of a few key parameters about chemosensors **1**–**68**, readers are referred to Table [1](#page-21-0).

While a significant great success has been achieved in the developments of fuorescent and colourimetric 1, 8-naphthalimide-based chemosensors of interesting sensing parameters and great environmental- and biological application signifcances, much work still remains to be done. If researchers in this field continue to exert more efforts, it is foreseeable that chemosensors of improved sensing properties and practical application values that would meet future

demands of metal ion tracking would be generated, thereby revolutionising the feld of sensing science.

Acknowledgements The work reported in this review would not have been a possibility without the scholarship supports beneftted from the China Scholarship Council (CSC Nos. 2014BSZ528 and 2017BSZ012726) which are not taken lightly.

References

- Aderinto SO, Xu Y, Peng H, Wang F, Wu H, Fan X (2016) A highly selective fluorescent sensor for monitoring Cu^{2+} ion: synthesis, characterization and photophysical properties. J Fluoresc 27:79– 87.<https://doi.org/10.1007/s10895-016-1936-7>
- Anikin VF, Fedko NF (2006) Synthesis of ion-active naphthalimide derivatives. Russ J Org Chem 42:73–76. [https://doi.org/10.1134/](https://doi.org/10.1134/S107042800601012X) [S107042800601012X](https://doi.org/10.1134/S107042800601012X)
- Bicker KL, Wiskur SL, Lavigne JJ (2011) Chemosensors: principles, strategies, and applications, 1st edn. Wiley, New York, pp 275–295
- Bojinov V, Grabchev I (2003) Synthesis of new polymerizable 1,8-naphthalimide dyes containing a 2-hydroxyphenylbenzotriazole fragment. Dyes Pigm 59:277–283. [https://doi.org/10.1016/](https://doi.org/10.1016/S0143-7208(03)00113-X) [S0143-7208\(03\)00113-X](https://doi.org/10.1016/S0143-7208(03)00113-X)
- Bojinov VB, Panova IP (2009) Novel 4-(2, 2, 6, 6-tetramethylpiperidin-4-ylamino)-1, 8- naphthalimide based yellow-green emitting fuorescence sensors for transition metal ions and protons. Dyes Pigm 80:61–66.<https://doi.org/10.1016/j.dyepig.2008.05.007>
- Bojinov VB, Panova IP, Chovelon J-M (2008) Novel blue emitting tetra-and pentamethylpiperidin-4-yloxy-1, 8-naphthalimides as photoinduced electron transfer based sensors for transition metal ions and protons. Sens Actuators B: Chem 135:172–180. [https://](https://doi.org/10.1016/j.snb.2008.08.016) doi.org/10.1016/j.snb.2008.08.016
- Bojinov VB, Georgiev NI, Bosch P (2009) Design and synthesis of highly photostable yellow-green emitting 1, 8-naphthalimides as fuorescent sensors for metal cations and protons. J Fluoresc 19:127–139. <https://doi.org/10.1007/s10895-008-0394-2>
- Bricks JL, Kovalchuk A, Triefinger C, Nofz M, Büschel M, Tolmachev AI, Daub J, Rurack K (2005) On the development of sensor molecules that display Fe^{III}-amplified fluorescence. J Am Chem Soc 127:13522–13529.<https://doi.org/10.1021/ja050652t>
- Bryan AJ, de Silva AP, de Silva SA, Rupasinghe RADD, Sandanayake KRAS (1989) Photo-induced electron transfer as a general design logic for fuorescent molecular sensors for cations. Biosensors 4:169–179. [https://doi.org/10.1016/0265-928X\(89\)80018-5](https://doi.org/10.1016/0265-928X(89)80018-5)
- Burdette SC, Walkup GK, Spingler B, Tsien RY, Lippard SJJ (2001) Fluorescent sensors for Zn^{2+} based on a fluorescein platform: synthesis, properties and intracellular distribution. J Am Chem Soc 123:7831–7841
- Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114(8):4564– 4601. <https://doi.org/10.1021/cr400546e>
- Chen Z, Wang L, Zou G, Teng M, Yu J (2012) Highly selective fuorescence turn-on chemosensor based on naphthalimide derivatives for detection of trivalent chromium ions. Chin J Chem 30:2844– 2848. <https://doi.org/10.1002/cjoc.201201070>
- Chen S, Hou P, Foley JW, Song X (2013a) A colorimetric and ratiometric fluorescent probe for Cu^{2+} with a large red shift and its imaging in living cells. RSC Advances 3:5591–5596. [https://doi.](https://doi.org/10.1039/C3RA23057K) [org/10.1039/C3RA23057K](https://doi.org/10.1039/C3RA23057K)
- Chen Z, Wang L, Zou G, Tang J, Cai X, Teng M, Chen L (2013b) Highly selective fuorescence turn-on chemosensor based on naphthalimide derivatives for detection of copper(II) ions.

Spectrochim Acta Mol Biomol Spectrosc 105:57–61. [https://](https://doi.org/10.1016/j.saa.2012.12.005) doi.org/10.1016/j.saa.2012.12.005

- Chen J, Su W, Wang E, Liu Y (2016) 1,8-Naphthalimide-based turnon fluorescent chemosensor for Cu^{2+} and its application in bioimaging. J Lumin 180:301–305. [https://doi.org/10.1016/j.jlumi](https://doi.org/10.1016/j.jlumin.2016.08.040) [n.2016.08.040](https://doi.org/10.1016/j.jlumin.2016.08.040)
- Chereddy NR, Raju MVN, Nagaraju P, Krishnaswamy VR, Korrapati PS, Bangal PR, Rao VJ (2014) A naphthalimide based PET probe with $Fe³⁺$ selective detection ability: theoretical and experimental study. Analyst 139:6352–6356. [https://doi.org/10.1039/C4AN0](https://doi.org/10.1039/C4AN01528B) [1528B](https://doi.org/10.1039/C4AN01528B)
- Chinapang P, Ruangpornvisuti V, Sukwattanasinitt M, Rashatasakhon P (2015) Ferro derivative of 1, 8-naphthalimide as a new turn-on fluorescent sensor for Au(III) ion. Dyes Pigm 112:236-238. [https](https://doi.org/10.1016/j.dyepig.2014.07.013) [://doi.org/10.1016/j.dyepig.2014.07.013](https://doi.org/10.1016/j.dyepig.2014.07.013)
- Choi JY, Kim G-H, Guo Z, Lee HY, Swamy KMK, Pai J, Shin S, Shin I, Yoon J (2013) Highly selective ratiometric fuorescent probe for Au^{3+} and its application to bioimaging. Biosens Bioelectron 49:438–441. <https://doi.org/10.1016/j.bios.2013.05.033>
- Chovelon J-M, Grabchev I (2007) A novel fuorescent sensor for metal cations and protons based of bis-1,8-naphthalimide. Spectrochimica Acta A 67:87–91. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.saa.2006.06.037) [saa.2006.06.037](https://doi.org/10.1016/j.saa.2006.06.037)
- Cosnard F, Wintgens V (1998) A new fluoroionophore derived from 4-amino-N-methyl-1, 8-naphthalimide. Tetrahedron Lett 39:2751–2754. [https://doi.org/10.1016/S00404039\(98\)00302-5](https://doi.org/10.1016/S00404039(98)00302-5)
- de Silva AP, Gunaratne HON, Lynch PLM (1995a) Luminescence and charge transfer. Part 4. 'On–of' fuorescent PET (photoinduced electron transfer) sensors with pyridine receptors: 1, 3-diaryl-5-pyridyl-4,5-dihydropyrazoles. J Chem Soc Perkin Trans 2:685– 690. <https://doi.org/10.1039/P29950000685>
- de Silva AP, Gunaratne HQN, Habib-Jiwan J-L, McCoy CP, Rice TE, Soumillion J-P (1995b) New fuorescent model compounds for the study of photoinduced electron transfer: the infuence of a molecular electric feld in the excited state. Angew Chem Int Edit Engl 34:1728–1731. [https://doi.org/10.1002/anie.19951](https://doi.org/10.1002/anie.199517281) [7281](https://doi.org/10.1002/anie.199517281)
- de Silva AP, Gunaratne HQN, Gunnlaugsson T, Lynch PLM (1996) Molecular photoionic switches with an internal reference channel for fuorescent pH sensing applications. New J Chem 20:871–880
- de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997a) Novel 4-(2,2,6,6-tetramethylpiperidin-4-ylamino)-1,8-naphthalimide based yellow-green emitting fuorescence sensors for transition metal ions and protons. Chem Rev 97:1515–1566. [https://doi.org/10.1016/j.dyepi](https://doi.org/10.1016/j.dyepig.2008.05.007) [g.2008.05.007](https://doi.org/10.1016/j.dyepig.2008.05.007)
- de Silva AP, Gunaratne HQN, McCoy CP (1997b) Molecular photoionic AND logic gates with bright fluorescence and "off − on" digital action. J Am Chem Soc 119:7891–7892. [https://doi.](https://doi.org/10.1021/ja9712229) [org/10.1021/ja9712229](https://doi.org/10.1021/ja9712229)
- de Souza MM, Correa R, Filho VC, Grabchev I, Bojinov V (2002) 4-Nitro-1,8-naphthalimides exhibit antinociceptive properties. Pharmazie 57:430–431
- Deng M, Gong D, Han SC, Zhu X, Iqbal A, Liu W, Qin W, Guo H (2017) BODIPY based phenylthiourea derivatives as highly selective MeHg⁺ and Hg²⁺ ions fluorescent chemodosimeter and its application to bioimaging. Sens Actuators B: Chem 243:195– 202. <https://doi.org/10.1016/j.snb.2016.11.13>
- Dey S, Sarkar S, Maity D, Roy P (2017) Rhodamine based chemosensor for trivalent cations: synthesis, spectral properties, secondary complex as sensor for arsenate and molecular logic gates. Sens Actuators B: Chem 246:518–534. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.snb.2017.02.094) [snb.2017.02.094](https://doi.org/10.1016/j.snb.2017.02.094)
- Dong M, Wang Y-W, Peng Y (2010) Highly selective ratiometric fluorescent sensing for Hg^{2+} and Au^{3+} , respectively, in aqueous

media. Org Lett 12:5310–5313. [https://doi.org/10.1021/ol102](https://doi.org/10.1021/ol1024585) [4585](https://doi.org/10.1021/ol1024585)

- Du J, Hu M, Fan J, Peng X (2012) Fluorescent chemodosimeters using "mild" chemical events for the detection of small anions and cations in biological and environmental media. Chem Soc Rev 41:4511–4535.<https://doi.org/10.1039/C2CS00004K>
- Duan L, Xu Y, Qian X (2008) Highly sensitive and selective Pd^{2+} sensor of naphthalimide derivative based on complexation with alkynes and thio-heterocycle. Chem Commun 0:6339–6341. <https://doi.org/10.1039/B815298E>
- Duke RM, Veale EB, Pfefer FM, Kruger PE, Gunnlaugsson T (2010) Colorimetric and fuorescent anion sensors: an overview of recent developments in the use of 1,8- naphthalimide-based chemosensors. Chem Soc Rev 39:3936–3953. [https://doi.](https://doi.org/10.1039/B910560N) [org/10.1039/B910560N](https://doi.org/10.1039/B910560N)
- Erdemir S, Kocyigit O (2017) A novel dye based on phenolphthaleinfuorescein as a fuorescent probe for the dual-channel detection of Hg^{2+} and Zn^{2+} . Dyes Pigm 145:72–79. [https://doi.](https://doi.org/10.1016/j.dyepig.2017.05.053) [org/10.1016/j.dyepig.2017.05.053](https://doi.org/10.1016/j.dyepig.2017.05.053)
- Fan J, Peng X, Wu Y, Lu E, Hou J, Zhang H, Zhang R, Fu X (2005) A new PET fluorescent sensor for Zn^{2+} . J Lumin 114:125–130. <https://doi.org/10.1016/j.jlumin.2004.12.008>
- Fu Y, Li P, Kang J-X, Liu X-Y, Li G-Y, Ye F (2016) A novel 1, 8-naphthalimide derivative as an efficient silver (I) fluorescent sensor. J Lumin 178:156–162. [https://doi.org/10.1016/j.jlumi](https://doi.org/10.1016/j.jlumin.2016.05.023) [n.2016.05.023](https://doi.org/10.1016/j.jlumin.2016.05.023)
- Fu ZH, Han X, Shao Y, Fang J, Zhang Z, Wang Y-W, Peng Y (2017a) Fluorescein-based chromogenic and ratiometric fuorescence probe for highly selective detection of cysteine and its application in bioimaging. Anal Chem 89:1937–1944. [https://doi.](https://doi.org/10.1021/acs.analchem.6b04431) [org/10.1021/acs.analchem.6b04431](https://doi.org/10.1021/acs.analchem.6b04431)
- Fu Y, Fan C, Liu G, Pu S (2017b) A colorimetric and fuorescent sensor for Cu^{2+} and F[−] based on a diarylethene with a 1, 8-naphthalimide Schiff base unit. Sens Actuators B: Chem 239:295-303.<https://doi.org/10.1016/j.snb.2016.08.020>
- Gao Y-G, Tang Q, Shi Y-D, Zhang Y, Lu Z-L (2016) 1, 8-Naphthalimide modified $[12]$ ane N_3 compounds as selective and sensitive probes for Cu^{2+} ions and ATP in aqueous solution and living cells. Talanta 152:438–446. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.talanta.2016.02.040) [talanta.2016.02.040](https://doi.org/10.1016/j.talanta.2016.02.040)
- Georgiev NI, Bojinov VB (2012) Design, synthesis and sensor activity of a highly photostable blue emitting 1, 8-naphthalimide. J Lumin 132:2235–2241. [https://doi.org/10.1016/j.jlumi](https://doi.org/10.1016/j.jlumin.2012.04.023) [n.2012.04.023](https://doi.org/10.1016/j.jlumin.2012.04.023)
- Georgiev NI, Bojinov VB, Nikolov PS (2011) The design, synthesis and photophysical properties of two novel 1, 8-naphthalimide fuorescent pH sensors based on PET and ICT. Dyes Pigm 88:350–357.<https://doi.org/10.1016/j.dyepig.2010.08.004>
- Georgiev NI, Dimitrova MD, Asiri AM, Alamry KA, Bojinov VB (2015) Synthesis, sensor activity and logic behaviour of a novel bichromophoric system based on rhodamine 6G and 1,8-naphthalimide. Dyes Pigm 115:172–180. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.dyepig.2015.01.001) [dyepig.2015.01.001](https://doi.org/10.1016/j.dyepig.2015.01.001)
- Goncalves AC, Capelo JL, Lodeiro C, Santos AAD (2017) A selenopyrene selective probe for Hg^{2+} detection in either aqueous or aprotic systems. Sens Actuators B: Chem 239:311–318. [https](https://doi.org/10.1016/j.snb.2016.08.014) [://doi.org/10.1016/j.snb.2016.08.014](https://doi.org/10.1016/j.snb.2016.08.014)
- Gonçalves AC, Martinez JLC, Lodeiro C, Santos AAD (2017) A selective emissive chromogenic and fuorogenic seleno-coumarin probe for Cu^{2+} detection in aprotic media. Photochem Photobiol Sci 16:1174–1181. [https://doi.org/10.1039/C7PP0](https://doi.org/10.1039/C7PP00036G) [0036G](https://doi.org/10.1039/C7PP00036G)
- Grabchev I, Chovelon JM (2003) Synthesis and functional properties of green fuorescent poly (methylmethacrylate) for use in liquid crystal systems. Polym Adv Technol 14:601–608. [https://doi.](https://doi.org/10.1002/pat.376) [org/10.1002/pat.376](https://doi.org/10.1002/pat.376)
- Grabchev I, Chovelon J-M (2008) New blue fuorescent sensors for metal cations and protons based on 1, 8-naphthalimide. Dyes Pigm 77:1–6.<https://doi.org/10.1016/j.dyepig.2007.02.012>
- Grabchev I, Meallier P, Konstantinova T, Popova M (1995) Synthesis of some unsaturated 1, 8-naphthalimide dyes. Dyes Pigm 28:41–46. [https://doi.org/10.1016/0143-7208\(94\)00078-G](https://doi.org/10.1016/0143-7208(94)00078-G)
- Grabchev I, Chovelon J-M, Qian X (2003) A copolymer of 4-N, N-dimethylaminoethylene-N-allyl-1,8-naphthalimide with methylmethacrylate as a selective fuorescent chemosensor in homogeneous systems for metal cations. J Photochem Photobiol A Chem 158:37–43. [https://doi.org/10.1016/S1010](https://doi.org/10.1016/S1010-6030(03)00100-X) [-6030\(03\)00100-X](https://doi.org/10.1016/S1010-6030(03)00100-X)
- Grabchev I, Soumillion JP, Muls B, vanova G (2004) Poly (amidoamine) dendrimer peripherally modifed with 4-N, N-dimethylaminoethyleneamino-1, 8-naphthalimide as a sensor of metal cations and protons. Photochem Photobiol Sci 3:1032–1037. <https://doi.org/10.1039/B412384K>
- Gruzinskii VV, Kukhto AV, Shakkah GKh (1998) Spectra of lasing efficiency in lasers with solutions of complex organic compounds. J Appl Spectrosc 65:463–465
- Gunnlaugsson T, Lee TC, Parkesh R (2003) A highly selective and sensitive fuorescent PET (photoinducedelectron transfer) chemosensor for Zn(II). Org Biomol Chem 1:3265–3267. [https://](https://doi.org/10.1039/B309569J) doi.org/10.1039/B309569J
- Gunnlaugsson T, Glynn M, Tocci GM, Kruger PE, Pfefer FM (2006) Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord Chem Rev 250:3094–3117. <https://doi.org/10.1016/j.ccr.2006.08.017>
- Gupta RC, Razi SS, Ali R, Diwivedi SK, Srivastava P, Singh P, Koch B, Mishra H, Misra A (2017) An efficient Hg^{2+} ensemble based on a triazole bridged anthracene and quinoline system for selective detection of cyanide through fuorescence turnoff-on response in solution and live cell. Sens Actuators B: Chem 251:729–738.<https://doi.org/10.1016/j.snb.2017.04.096>
- Hanaoka K, Muramatsu Y, Urano Y, Terai T, Nagano T (2010) Design and synthesis of a highly sensitive off–on fluorescent chemosensor for zinc ions utilizing internal charge transfer. Chemistry 16:568–572. [https://doi.org/10.1002/chem.20090](https://doi.org/10.1002/chem.200901591) [1591](https://doi.org/10.1002/chem.200901591)
- He H, Mortellaro MA, Leiner MJP, Fraatz RJ, Tusa JK (2003) A fuorescent sensor with high selectivity and sensitivity for potassium in water. J Am Chem Soc 125:1468–1469. [https://doi.](https://doi.org/10.1021/ja0284761) [org/10.1021/ja0284761](https://doi.org/10.1021/ja0284761)
- He G, Meng Q, Zhao X, He C, Zhou P, Duan C (2015) A new copper (II) selective fuorescence probe based on naphthalimide: synthesis, mechanism and application in living cells. Inorg Chem Commun 65:28–31.<https://doi.org/10.1016/j.inoche.2015.10.022>
- Hou C, Urbanec AM, Cao H (2011) A rapid Hg^{2+} sensor based on aza-15-crown-5 ether functionalized 1, 8-naphthalimide. Tetrahedron Lett 52:4903–4905.<https://doi.org/10.1016/j.tetlet.2011.07.056>
- Hou L, Feng J, Wang Y, Dong C, Shuang S, Wang Y (2017) Single fuorescein-based probe for selective colorimetric and fuorometric dual sensing of Al^{3+} and Cu^{2+} . Sens Actuators B: Chem 247:451–460.<https://doi.org/10.1016/j.snb.2017.03.027>
- Hu F, Zheng B, Wang D, Liu M, Du J, Xiao D (2014) A novel dualswitch fuorescent probe for Cr(III) ion based on PET–FRET processes. Analyst 139:3607–3613. [https://doi.org/10.1039/](https://doi.org/10.1039/C4AN00303A) [C4AN00303A](https://doi.org/10.1039/C4AN00303A)
- Hu X-X, Zheng X-L, Fan X-X, Su Y-T, Zhan X-Q, Zheng H (2015) Semicarbazide-based naphthalimide as a highly selective and sensitive colorimetric and "turn-on" fuorescent chemodosimeter for Cu²⁺. Sens Actuators B: Chem 227:191-197. [https://doi.](https://doi.org/10.1016/j.snb.2015.12.037) [org/10.1016/j.snb.2015.12.037](https://doi.org/10.1016/j.snb.2015.12.037)
- Huang C, Jia T, Tang M, Yin Q, Zhu W, Zhang C, Yang Y, Jia N, Xu Y, Qian X (2014a) Selective and ratiometric fuorescent trapping and quantifcation of protein vicinal dithiols and in situ dynamic

tracing in living cells. J Am Chem Soc 136:14237–14244. [https](https://doi.org/10.1021/ja5079656) [://doi.org/10.1021/ja5079656](https://doi.org/10.1021/ja5079656)

- Huang C-B, Li H-R, Luo Y, Xu L (2014b) A naphthalimide-based bifunctional fuorescent probe for the diferential detection of Hg^{2+} and Cu²⁺ in aqueous solution. Dalton Trans 43:8102–8108. <https://doi.org/10.1039/C4DT00014E>
- Huang K, Jiao X, Liu C, Wang Q, Qiu X, Zheng D, He S, Zhao L, Zeng X (2017) Highly selective and sensitive fuorescent probe for mercury ions based on a novel rhodol-coumarin hybrid dye. Dyes Pigm 142:437–446.<https://doi.org/10.1016/j.dyepig.2017.04.005>
- Janakipriya S, Chereddy NR, Korrapati P, Thennarasu S, Mandal AB (2016) Selective interactions of trivalent cations Fe^{3+} , Al^{3+} and $Cr³⁺$ turn on fluorescence in a naphthalimide based single molecular probe. Spectrochima Acta Mol Biomol Spectrosc. [https://](https://doi.org/10.1016/j.saa.2015.08.044) doi.org/10.1016/j.saa.2015.08.044
- Jiang J, Jiang H, Liu W, Tang X, Zhou X, Liu W, Liu R (2011) A colorimetric and ratiometric fuorescent probe for palladium. Org Lett 13:4922–4925.<https://doi.org/10.1021/ol202003j>
- Jiang C, Wang M, Wang Y, Tang X, Zhang Y, Zhang H, Ma L, Wang J (2017) Synthesis and evaluation of two novel rhodaminebased fluorescence probes for specific recognition of Fe^{c+} ion. Tetrahedron Lett 58:2560–2565. [https://doi.org/10.1016/j.tetle](https://doi.org/10.1016/j.tetlet.2017.05.052) [t.2017.05.052](https://doi.org/10.1016/j.tetlet.2017.05.052)
- Kang L, Xing Z-Y, Ma X-Y, Liu Y-T, Zhang Y (2016) A highly selective colorimetric and fluorescent turn-on chemosensor for Al^{3+} based on naphthalimide derivative. Spectrochima Acta Mol Biomol Spectrosc 167:59–65. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.saa.2016.05.030) [saa.2016.05.030](https://doi.org/10.1016/j.saa.2016.05.030)
- Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J (2008) A new trend in rhodamine-based chemosensors: application of spirolactam ringopening to sensing ions. Chem Soc Rev 37:1465–1472. [https://](https://doi.org/10.1039/b802497a) doi.org/10.1039/b802497a
- Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41:3210–3244. [https://doi.org/10.1039/C1CS1](https://doi.org/10.1039/C1CS15245A) [5245A](https://doi.org/10.1039/C1CS15245A)
- Kim KT, Yoon SA, Ahn J, Choi Y, Lee MH, Jung JH, Park J (2017) Synthesis of fluorescent naphthalimide-functionalized $Fe₃O₄$ nanoparticles and their application for the selective detection of Zn^{2+} present in contaminated soil. Sens Actuators B: Chem 243:1034–1041. <https://doi.org/10.1016/j.snb.2016.11.131>
- Kumar M, Kumar N, Bhalla V, Singh H, Sharma PR, Kaur T (2011) Naphthalimide appended rhodamine derivative: through bond energy transfer for sensing of Hg²⁺ ions. Org Lett 13:1422-1425. <https://doi.org/10.1021/ol2001073>
- La YK, Hong JA, Jeong YJ, Lee J (2016) A 1,8-naphthalimide-based chemosensor for dual-mode sensing: colorimetric and fuorometric detection of multiple analytes. RSC Advances 6:84098– 84105.<https://doi.org/10.1039/c6ra20100h>
- Lakowicz JR (2006) Principles of fuorescent spectroscopy, 3rd edn. Springer, New york
- Lan H, Liu B, Lv G, Li Z, Yu X, Liu K, Cao X, Yang H, Yang S, Yi T (2012) Dual-channel fuorescence "turn on" probe for Cu2+. Sens Actuators B: Chem 173:811–816. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.snb.2012.07.102) [snb.2012.07.102](https://doi.org/10.1016/j.snb.2012.07.102)
- Law KY (1993) Organic photoconductive materials: recent trends and developments. Chem Rev 93:449–486. [https://doi.org/10.1021/](https://doi.org/10.1021/cr00017a020) [cr00017a020](https://doi.org/10.1021/cr00017a020)
- Lee MH, Yoon B, Kim JS, Sessler JL (2013) Naphthalimide trifuoroacetyl acetonate: a hydrazine-selective chemodosimetric sensor. Chem Sci 4:4121–4126. <https://doi.org/10.1039/C3SC51813B>
- Lee MH, Jeon HM, Han JH, Park N, Kang C, Sesser JL, Kim JS (2014) Toward a chemical marker for infammatory disease: a fuorescent probe for membrane-localized thioredoxin. J Am Chem Soc 136(23):8430–8437.<https://doi.org/10.1021/ja503356q>
- Lee MH, Kim JS, Sessler JL (2015) Small molecule-based ratiometric fuorescence probes for cations, anions, and biomolecules. Chem Soc Rev 44:4185–4191.<https://doi.org/10.1039/C4CS00280F>
- Li CY, Zhang XB, Qiao L, Zhao Y, He CM, Huan SY, Lu LM, Jian LX, Shen GL, Yu RQ (2009) Naphthalimide-porphyrin hybrid based ratiometric bioimaging probe for Hg^{2+} : well-resolved emission spectra and unique specificity. Anal Chem 81:9993-10001. [https](https://doi.org/10.1021/ac9018445) [://doi.org/10.1021/ac9018445](https://doi.org/10.1021/ac9018445)
- Li C-Y, Xu F, Li Y-F, Zhou K, Zhou Y (2012a) A fuorescent chemosensor for Hg^{2+} based on naphthalimide derivative by fluorescence enhancement in aqueous solution. Anal Chim Acta 717:122–126.<https://doi.org/10.1016/j.aca.2011.12.018>
- Li Q, Peng M, Li H, Zhong C, Zhang L, Cheng X, Peng X, Wang Q, Qin J, Li Z (2012b) A new, "Turn-on" naphthalenedimide-based chemosensor for mercury ions with high selectivity: successful utilization of the mechanism of twisted intramolecular charge transfer, near-ir fuorescence, and cell images. Org Lett 14:2094– 2097.<https://doi.org/10.1021/ol300607m>
- Li Z, Zhou Y, Yin K, Yu Z, Li Y, Ren J (2014) A new fuorescence "turn-on" type chemosensor for $Fe³⁺$ based on naphthalimide and coumarin. Dyes Pigm 105:7–11. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.dyepig.2013.12.032) [dyepig.2013.12.032](https://doi.org/10.1016/j.dyepig.2013.12.032)
- Li G, Gao G, Cheng J, Chen X, Zhao Y, Ye Y (2016a) Two new reversible naphthalimide-based fluorescent chemosensors for Hg^{2+} . Luminescence 31:992–996. <https://doi.org/10.1002/bio.3063>
- Li Y, Qiu Y, Zhang J, Zhu X, Zhu B, Liu X, Zhang X, Zhang H (2016b) Naphthalimide derived fuorescent probes with turn-on response for Au^{3+} and the application for biological visualization. Biosens Bioelectron 83:334–338. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.bios.2016.04.034) [bios.2016.04.034](https://doi.org/10.1016/j.bios.2016.04.034)
- Li L, Li H, Liu G, Pu S (2017) A novel fluorescent sensor for Al^{3+} based on a new diarylethene with a naphthalimide unit. J Photochem Photobiol A 338:192–200. [https://doi.org/10.1016/j.jphot](https://doi.org/10.1016/j.jphotochem.2017.02.011) [ochem.2017.02.011](https://doi.org/10.1016/j.jphotochem.2017.02.011)
- Lippert AR, New EJ, Chang CJ (2011) Reaction-based fuorescent probes for selective imaging of hydrogen sulfde in living cells. J Am Chem Soc 133:10078–10080. [https://doi.org/10.1021/ja203](https://doi.org/10.1021/ja203661j) [661j](https://doi.org/10.1021/ja203661j)
- Liu J, Qian Y (2017) A novel pyridylvinyl naphthalimide-rhodamine dye: synthesis, naked-eye visible and ratiometric chemodosimeter for Hg^{2+}/Fe^{3+} . J Lumin 187:33–39. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.jlumin.2017.02.058) [jlumin.2017.02.058](https://doi.org/10.1016/j.jlumin.2017.02.058)
- Liu B, Tian H (2005) A selective fuorescent ratiometric chemodosimeter for mercury ion. Chem Commun 0:3156–3158. [https://doi.](https://doi.org/10.1039/B501913C) [org/10.1039/B501913C](https://doi.org/10.1039/B501913C)
- Liu J, Tu G, Zhou Q, Cheng Y, Geng Y, Wang L, Ma D, Jing X, Wang F (2006) Highly efficient green light emitting polyfluorene incorporated with 4-diphenylamino-1, 8-naphthalimide as green dopant. J Mater Chem 16:1431–1438. <https://doi.org/10.1039/b514359d>
- Liu Y, Lv X, Zhao Y, Chen M, Liu J, Wang P, Guo W (2012a) A naphthalimide–rhodamine ratiometric fluorescent probe for Hg^{2+} based on fuorescence resonance energy transfer. Dyes Pigm 92:909–915. <https://doi.org/10.1016/j.dyepig.2011.07.020>
- Liu Z, Zhang C, Wang X, He W, Guo Z (2012b) Design and synthesis of a ratiometric fuorescent chemosensor for Cu(II) with a fuorophore hybridization approach. Org Lett 14:4378–4381. [https](https://doi.org/10.1021/ol301849z) [://doi.org/10.1021/ol301849z](https://doi.org/10.1021/ol301849z)
- Liu D-Y, Qi J, Liu X-Y, He H-R, Chen J-T, Yang G-M (2014) 4-Amino-1,8- naphthalimide-based fuorescent sensor with high selectivity and sensitivity for Zn^{2+} imaging in living cells. Inorg Chem Commun 43:173–178. [https://doi.org/10.1016/j.inoch](https://doi.org/10.1016/j.inoche.2014.02.035) [e.2014.02.035](https://doi.org/10.1016/j.inoche.2014.02.035)
- Liu W, Jiang J, Chen C, Tang X, Shi J, Zhang P, Zhang K, Li Z, Dou W, Yang L, Liu W (2014) Water-soluble colorimetric and ratiometric fuorescent probe for selective imaging of palladium

species in living cells. Inorg Chem 53:12590–12594. [https://](https://doi.org/10.1021/ic502223n) doi.org/10.1021/ic502223n

- Liu F, Tang P, Ding R, Liao L, Wang L, Wang M, Wang J (2017a) A glycosylation strategy to develop a low toxic naphthalimide fluorescent probe for the detection of $Fe³⁺$ in aqueous medium. Dalton Trans 46:7515–7522. [https://doi.org/10.1039/c7dt0](https://doi.org/10.1039/c7dt01099k) [1099k](https://doi.org/10.1039/c7dt01099k)
- Liu X, Niu LY, Chen YZ, Yang Y, Yang QZ (2017b) A multi-emissive fuorescent probe for the discrimination of glutathione and cysteine. Biosens Bioelectron 90:403–409. [https://doi.](https://doi.org/10.1016/j.bios.2016.06.076) [org/10.1016/j.bios.2016.06.076](https://doi.org/10.1016/j.bios.2016.06.076)
- Lodeiro C, Pina F (2009) Luminescent and chromogenic molecular probes based on polyamines and related compounds. Coord Chem Rev 253:1353–1383. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.ccr.2008.09.008) [ccr.2008.09.008](https://doi.org/10.1016/j.ccr.2008.09.008)
- Lu C, Xu Z, Cui J, Zhang R, Qian X (2007) Ratiometric and highly selective fuorescent sensor for cadmium under physiological pH range: a new strategy to discriminate cadmium from zinc. J Org Chem 72:3554–3557.<https://doi.org/10.1021/jo070033y>
- Mahato P, Saha S, Suresh E, Liddo RD, Parnigotto PP, Conconi MT, Kesharwani MK, Ganguly B, Das A (2012) Ratiometric detection of Cr^{3+} and Hg²⁺ by a naphthalimide-rhodamine based fuorescent probe. Inorg Chem 51:1769–1777. [https://](https://doi.org/10.1021/ic202073q) doi.org/10.1021/ic202073q
- Marinova NV, Georgiev NI, Bojinov VB (2011) Design, synthesis and pH sensing properties of novel 1,8-naphtalimide-based bichromophoric system. J Photochem Photobiol A 222:132– 140.<https://doi.org/10.1016/j.jphotochem.2011.05.012>
- Mason WT (1999) Fluorescent and luminescent chemosensors for biological activity, 2nd edn. Academic Press, Cambridge
- Mironenko AY, Tutov MV, Sergeev AA, Voznesenskiy, Bratskaya SY (2017) On/off rhodamine based fluorescent probe for detection of Au and Pd in aqueous solutions. Sens Actuators B: Chem 246:389–394. <https://doi.org/10.1016/j.snb.2017.02.092>
- Moon JO, Choi MG, Sun T, Choe J-I, Chang S-K (2013) Synthesis of thionaphthalimides and their dual Hg^{2+} -selective signaling by desulfurization of thioimides. Dyes Pigm 96:170–175. [https](https://doi.org/10.1016/j.dyepig.2012.08.007) [://doi.org/10.1016/j.dyepig.2012.08.007](https://doi.org/10.1016/j.dyepig.2012.08.007)
- Mu H, Gong R, Ma Q, Sun Y, Fu E (2007) A novel colorimetric and fuorescent chemosensor: synthesis and selective detection for Cu^{2+} and Hg²⁺. Tetrahedron Lett 48:5525–5529. [https://doi.](https://doi.org/10.1016/j.tetlet.2007.05.155) [org/10.1016/j.tetlet.2007.05.155](https://doi.org/10.1016/j.tetlet.2007.05.155)
- Nandhikonda P, Begaye MP, Heagy MD (2009) Highly watersoluble, OFF–ON, dual fuorescent probes for sodium and potassium ions. Tetrahedron Lett 50:2459–2461. [https://doi.](https://doi.org/10.1016/j.tetlet.2009.02.197) [org/10.1016/j.tetlet.2009.02.197](https://doi.org/10.1016/j.tetlet.2009.02.197)
- Ott I, Xu Y, Liu J, Kokoschka M, Harlos M, Sheldrick W, Qian X (2008) Sulfur-substituted naphthalimides as photoactivatable anticancer agents: DNA interaction, fuorescence imaging, and phototoxic efects in cultured tumor cells. Bioorg Med Chem 16:7107–7116. <https://doi.org/10.1016/j.bmc.2008.06.052>
- Panchenko PA, Fedorov YV, Perevalov VP, Jonusauskas G, Fedorova OA (2010) Cation-dependent fuorescent properties of naphthalimide derivatives with N-benzocrown ether fragment. J Phys Chem A 114:4118–4122. [https://doi.org/10.1021/jp910](https://doi.org/10.1021/jp9103728) [3728](https://doi.org/10.1021/jp9103728)
- Papalia T, Barattucci A, Barreca D, Bellocco E, Bonaccorsi P, Minuti L, Nicolo MS, Temperini A, Foti C (2017) Sequestering ability to Cu^{2+} of a new bodipy-based dye and its behavior as in vitro fluorescent sensor. J Inorg Biochem 167:116–123. [https://doi.](https://doi.org/10.1016/j.jinorgbio.2016.11.030) [org/10.1016/j.jinorgbio.2016.11.030](https://doi.org/10.1016/j.jinorgbio.2016.11.030)
- Parkesh R, Lee TC, Gunnlaugsson T (2007) Highly selective 4-amino-1, 8-naphthalimide based fuorescent photoinduced electron transfer (PET) chemosensors for Zn(II) under physiological pH conditions. Org Biomol Chem 5:310–317. [https://doi.](https://doi.org/10.1039/B614529A) [org/10.1039/B614529A](https://doi.org/10.1039/B614529A)
- Parkesh R, Veale EB, Gunnlaugsson T (2011) Fluorescent Detection Principles and Strategies. In: Wang B, Anslyn EV (eds) Chemosensors principles, strategies, and applications, Chap 12. Wiley, Hoboken, New Jersey, pp 229–252
- Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549.<https://doi.org/10.1021/cr078203u>
- Ramasamy K, Thambusamy S (2017) Dual emission and pH based naphthalimide derivative fuorescent sensor for the detection of Bi³⁺. Sens Actuators B: Chem 247:632-640. [https://doi.](https://doi.org/10.1016/j.snb.2017.03.043) [org/10.1016/j.snb.2017.03.043](https://doi.org/10.1016/j.snb.2017.03.043)
- Rurack K, Resch-Genger U, Bricks JL, Spieles M (2000) Cation-triggered 'switching on' of the red/near infra-red (NIR) fuorescence of rigid fuorophore–spacer–receptor ionophores. Chem Commun 0:2103–2104. <https://doi.org/10.1039/B006430K>
- Saini A, Singh J, Kaur R, Singh N, Kaur N (2014) Naphthalimidebased organic nanoparticles for aluminium recognition in acidic soil and aqueous media. New J Chem 38:4580–4586. [https://doi.](https://doi.org/10.1039/C4NJ00473F) [org/10.1039/C4NJ00473F](https://doi.org/10.1039/C4NJ00473F)
- Saura AV, Burguete MI, Galindo F, Luis SV (2017) Novel fuorescent anthracene–bodipy dyads displaying sensitivity to pH and turnon behaviour towards Cu(II) ions. Org Biomol Chem 15:3013– 3024.<https://doi.org/10.1039/C7OB00274B>
- Shaki H, Gharanjiga K, Rouhani S, Khosravi A (2010) Synthesis and photophysical properties of some novel fuorescent dyes based on naphthalimide derivatives. J Photochem Photobiol, A 216:44–50. <https://doi.org/10.1016/j.jphotochem.2010.09.004>
- Shao X, Kang R, Zhang Y, Huang Z, Peng F, Zhang J, Wang Y, Pan F, Zhang W, Zhao W (2015) Highly selective and sensitive 1-amino BODIPY-based red fuorescent probe for thiophenols with high off-to-on contrast ratio. Anal Chem 87:399-405. [https://doi.](https://doi.org/10.1021/ac5028947) [org/10.1021/ac5028947](https://doi.org/10.1021/ac5028947)
- Sharma H, Kaur N, Singh N (2012) Imine linked 1, 8-naphthalimide: chromogenic recognition of metal ions, density function theory and cytotoxic activity. Inorg Chimica Acta 391:83–87. [https://](https://doi.org/10.1016/j.ica.2012.05.003) doi.org/10.1016/j.ica.2012.05.003
- Staneva D, Grabchev I, Soumillion J-P, Bojinov V (2007) Pteridinebased fuorescent pH sensors designed for physiological applications. J Photochem Photobiol A: Chem 189:192–197. [https://doi.](https://doi.org/10.1016/j.jphotochem.2012.08.002) [org/10.1016/j.jphotochem.2012.08.002](https://doi.org/10.1016/j.jphotochem.2012.08.002)
- Staneva D, Bosch P, Grabchev I (2012) Ultrasonic synthesis and spectral characterization of a new blue fuorescent dendrimer as highly selective chemosensor for Fe³⁺ cations. J Mol Struct 1015:1–5.<https://doi.org/10.1016/j.molstruc.2012.02.010>
- Stewart WW (1981) Synthesis of 3, 6-disulfonated 4-aminonaphthalimides. J Am Chem Soc 103:7615–7620. [https://doi.org/10.1021/](https://doi.org/10.1021/ja00415a033) [ja00415a033](https://doi.org/10.1021/ja00415a033)
- Sun S, Hu W, Gao H, Qi H, Ding L (2017) Luminescence of ferrocenemodified pyrene derivatives for turn-on sensing of Cu^{2+} and anions. Spectrochima Acta Mol Biomol Spectrosc 184:30–37. [https](https://doi.org/10.1016/j.saa.2017.04.073) [://doi.org/10.1016/j.saa.2017.04.073](https://doi.org/10.1016/j.saa.2017.04.073)
- Tamanini E, Katewa A, Sedger LM, Todd MH, Watkinson M (2009) A synthetically simple, click-generated cyclam-based zinc (II) sensor. Inorg Chem 48:319–324.<https://doi.org/10.1021/ic8017634>
- Tamanini E, Flavin K, Motevalli M, Piperno S, Gheber LA, Todd MH, Watkinson M (2010) Cyclam-based "clickates": homogeneous and heterogeneous fuorescent sensors for Zn(II). Inorg Chem 49:3789–3800.<https://doi.org/10.1021/ic901939x>
- Un H-I, Huang C-B, Huang C, Jia T, Zhao X-L, Wang C-H, Xu L, Yang H-B (2014a) A versatile fuorescent dye based on naphthalimide: highly selective detection of Hg^{2+} in aqueous solution and living cells and its aggregation-induced emission. Org Chemistry Frontiers 1:1083–1090.<https://doi.org/10.1039/C4QO00185K>
- Un HI, Huang CB, Huang J, Huang C, Jia T, Xu L (2014b) A Naphthalimide-based fuorescence "Turn-On" probe for the detection of

Pb2 + in aqueous solution and living cells. Chemistry 9:3397– 3402. <https://doi.org/10.1002/asia.201402946>

- Valeur B, Leray I (2001) PCT (Photoinduced Charge Transfer) fuorescent molecular sensors for cation recognition. In: Valeur B, Brochon JC (eds) New Trends in Fluorescence Spectroscopy, vol 1. Springer, Berlin, pp 187–207
- Vonlanthen M, Connelly CM, Deiters A, Linden A, Finney NS (2014) Thiourea-based fuorescent chemosensors for aqueous metal ion detection and cellular imaging. J Org Chem 79:6054–6060. <https://doi.org/10.1021/jo500710g>
- Wang J, Xiao Y, Zhang Z, Qian X, Yang Y, Xu Q (2005) A pHresistant Zn (II) sensor derived from 4-aminonaphthalimide: design, synthesis and intracellular applications. J Mater Chem 15:2836–2839.<https://doi.org/10.1039/B500766F>
- Wang C, Zheng X, Huang R, Yan S, Xie X, Tian T, Huang S, Weng X, Zhou X (2012) A 4-Amino-1, 8-naphthalimide derivative for selective fuorescent detection of palladium (ii) ions. Asian J Org Chem 1:259–263. [https://doi.org/10.1002/ajoc.20120](https://doi.org/10.1002/ajoc.201200061) [0061](https://doi.org/10.1002/ajoc.201200061)
- Wang F, Xu Y, Aderinto SO, Peng H, Zhang H, Wu H (2017) A new highly effective fluorescent probe for Al^{3+} ions and its application in practical samples. J Photochem Photobiol A 332:273– 282.<https://doi.org/10.1016/j.jphotochem.2016.09.004>
- Wasielewski MR (1992) Photoinduced electron transfer in supramolecular systems for artifcial photosynthesis. Chem Rev 92(3):435–461. <https://doi.org/10.1021/cr00011a005>
- Wei T, Wang J, Chen Y, Han Y (2015) Combining the PeT and ICT mechanisms into one chemosensor for the highly sensitive and selective detection of zinc. RSC Adv 5:57141–57146. [https://](https://doi.org/10.1039/C5RA11194C) doi.org/10.1039/C5RA11194C
- Wu X-F, Ma Q-J, Wei X-J, Hou Y-M, Zhu X (2013) A selective fuorescent sensor for Hg^{2+} based on covalently immobilized naphthalimide derivative. Sens Actuators B: Chem 183:565–573. <https://doi.org/10.1016/j.snb.2013.04.024>
- Wu S, Zhang K, Wang Y, Mao D, Liu X, Yu J, Wang L (2014) A novel Cr^{3+} turn-on probebased on naphthalimide and BINOL framework. Tetrahedron Lett 55:351–353. [https://doi.](https://doi.org/10.1016/j.tetlet.2013.11.024) [org/10.1016/j.tetlet.2013.11.024](https://doi.org/10.1016/j.tetlet.2013.11.024)
- Xiao Y, Rowe AA, Plaxco KW (2007) Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J Am Chem Soc 129:262–263. [https://doi.org/10.1021/](https://doi.org/10.1021/ja067278x) [ja067278x](https://doi.org/10.1021/ja067278x)
- Xu Z, Qian X, Cui J (2005) Colorimetric and ratiometric fuorescent chemosensor with a large red-shift in emission: Cu(II)-only sensing by deprotonation of secondary amines as receptor conjugated to naphthalimide fuorophore. Org Lett 7:3029–3032. <https://doi.org/10.1021/ol051131d>
- Xu Z, Qian X, Cui J, Zhang R (2006) Exploiting the deprotonation mechanism for the design of ratiometric and colorimetric Zn^{2+} fluorescent chemosensor with a large red-shift in emission. Tetrahedron 62:10117–10122. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.tet.2006.08.050) [tet.2006.08.050](https://doi.org/10.1016/j.tet.2006.08.050)
- Xu Z, Han SJ, Lee C, Yoon J, Spring DR (2010a) Development of of–on fuorescent probes for heavy and transition metal ions. Chem Commun 46:1679–1681. [https://doi.org/10.1039/](https://doi.org/10.1039/B924503K) [B924503K](https://doi.org/10.1039/B924503K)
- Xu Z, Pan J, Spring DR, Cui J, Yoon J (2010b) Ratiometric fuorescent and colorimetric sensors for Cu^{2+} based on 4,5-disubstituted-1,8-naphthalimide and sensing cyanide via Cu^{2+} displacement approach. Tetrahedron 66:1678–1683. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.tet.2010.01.008) [tet.2010.01.008](https://doi.org/10.1016/j.tet.2010.01.008)
- Xu Z, Yoon J, Spring DR (2010c) Fluorescent chemosensors for Zn^{2+} . Chem Soc Rev 39:1996–2006. [https://doi.org/10.1039/B9162](https://doi.org/10.1039/B916287A) [87A](https://doi.org/10.1039/B916287A)
- Xu Z, Yoon J, Spring DR (2010d) A selective and ratiometric Cu^{2+} fuorescent probe based on naphthalimide excimer–monomer

switching. Chem Commun 46:2563–2565. [https://doi.](https://doi.org/10.1039/C000441C) [org/10.1039/C000441C](https://doi.org/10.1039/C000441C)

- Xu Z, Zheng S, Yoon J, Spring DR (2010e) Discovery of a highly selective turn-on fluorescent probe for Ag⁺. Analyst 135:2554– 2559.<https://doi.org/10.1039/C0AN00405G>
- Xu J-H, Hou Y-M, Ma Q-J, Wu X-F, Wei X-J (2013) A highly selective fluorescent sensor for $Fe³⁺$ based on covalently immobilized derivative of naphthalimide. Spectrochima Acta Mol Biomol Spectrosc 112:116–124. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.saa.2013.04.044) [saa.2013.04.044](https://doi.org/10.1016/j.saa.2013.04.044)
- Xu Y, Aderinto SO, Wu H, Peng H, Zhang H, Zhang J, Fan X (2017) A highly selective fuorescent chemosensor based on naphthalimide and schiff base units for Cu^{2+} detection in aqueous medium. Z Naturforsch B Chemical Science 72:35–43. [https://](https://doi.org/10.1515/znb-2016-0138) doi.org/10.1515/znb-2016-0138
- Xue D, Zheng C, Fan C, Liu G, Pu S (2015) A colorimetric fuorescent sensor for Cr^{3+} based on a novel diarylethene with a naphthalimide-rhodamine B group. J Photochem Photobiol A Chem 303–304:59–66. [https://doi.org/10.1016/j.jphotochem](https://doi.org/10.1016/j.jphotochem.2015.02.006) [.2015.02.006](https://doi.org/10.1016/j.jphotochem.2015.02.006)
- Yang R, Guo X, Wang W, Zhang Y, Jia L (2012) Highly selective and sensitive chemosensor for Hg^{2+} based on the naphthalimide fuorophore. J Fluoresc 22:1065–1071. [https://doi.org/10.1007/](https://doi.org/10.1007/s10895-012-1044-2) [s10895-012-1044-2](https://doi.org/10.1007/s10895-012-1044-2)
- Yang L, Yang W, Xu D, Zhang Z, Liu A (2013) A highly selective and sensitive $Fe³⁺$ fluorescent sensor by assembling three 1, 8-naphthalimide fuorophores with a tris (aminoethylamine) ligand. Dyes Pigm 97:168–174. [https://doi.org/10.1016/j.dyepi](https://doi.org/10.1016/j.dyepig.2012.12.016) [g.2012.12.016](https://doi.org/10.1016/j.dyepig.2012.12.016)
- Yu C, Zhang J (2014) Copper (II)-Responsive "Off-On" chemosensor based on a naphthalimide derivative. Asian J Org Chem 3:1312– 1316.<https://doi.org/10.1002/ajoc.201402160>
- Yu C, Chen L, Zhang J, Li J, Liu P, Wang W, Yan B (2011) "Of-On" based fluorescent chemosensor for Cu^{2+} in aqueous media and living cells. Talanta 85:1627–1633. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.talanta.2011.06.057) [talanta.2011.06.057](https://doi.org/10.1016/j.talanta.2011.06.057)
- Yu C, Zhang J, Ding M, Chen L (2012) Silver (I) ion detection in aqueous media based on "off-on" fluorescent probe. Anal Methods 4:342–344. <https://doi.org/10.1039/C2AY05714J>
- Yu C, Wen Y, Qin X, Zhang J (2014) A fluorescent ratiometric Cu^{2+} probe based on FRET by naphthalimide-appended rhodamine derivatives. Anal Methods 6:9825–9830. [https://doi.org/10.1039/](https://doi.org/10.1039/C4AY01863J) [C4AY01863J](https://doi.org/10.1039/C4AY01863J)
- Yu M, Du W, Zhou W, Liu C, Wei L, Zhang H (2016) A 1,8-naphthalimide-based chemosensor with an off-on fluorescence and lifetime imaging response for intracellular Cr^{3+} and further for S2−. Dyes Pigm 126:279–285. [https://doi.org/10.1016/j.dyepi](https://doi.org/10.1016/j.dyepig.2015.12.001) [g.2015.12.001](https://doi.org/10.1016/j.dyepig.2015.12.001)
- Zhang JF, Zhou Y, Yoon J, Kim Y, Kim SJ, Kim JS (2010) Naphthalimide modifed rhodamine derivative: ratiometric and selective fluorescent sensor for Cu^{2+} based on two different approaches. Org Lett 12:3852–3855. <https://doi.org/10.1021/ol101535s>
- Zhang JF, Kim S, Han JH, Lee S-J, Pradhan T, Cao QY, Lee SJ, Kang C, Kim SJ (2011a) Pyrophosphate-selective fuorescent chemosensor based on 1, 8-naphthalimide–DPA–Zn(II) complex and its application for cell imaging. Org Lett 13:5294–5297. [https://](https://doi.org/10.1021/ol202159x) doi.org/10.1021/ol202159x
- Zhang JF, Zhou Y, Yoon J, Kim JS (2011b) Recent progress in fuorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem Soc Rev 40:3416–3429.<https://doi.org/10.1039/C1CS15028F>
- Zhang J, Yu C, Lu G, Fu Q, Li N, Ji Y (2012) A Ag⁺-selective "offon" probe based on a naphthalimide derivative. New J Chem 36:819–822. <https://doi.org/10.1039/C2NJ20974H>
- Zhang C, Liu Z, Li Y, He W, Gao X, Guo Z (2013a) In vitro and in vivo imaging application of a 1, 8-naphthalimide-derived Zn^{2+}

fuorescent sensor with nuclear envelope penetrability. Chem Commun 49:11430–11432.<https://doi.org/10.1039/c3cc46862c>

- Zhang Z, Chen Y, Xu D, Yang L, Liu A (2013b) A new 1, 8-naphthalimide-based colorimetric and "turn-on" fluorescent Hg^{2+} sensor. Spectrochima Acta Mol Biomol Spectrosc 105:8–13. [https://doi.](https://doi.org/10.1016/j.saa.2012.11.113) [org/10.1016/j.saa.2012.11.113](https://doi.org/10.1016/j.saa.2012.11.113)
- Zhang X, Yin J, Yoon J (2014a) Recent advances in development of chiral fluorescent and colorimetric sensors. Chem Rev 114(9):4918–4959. <https://doi.org/10.1021/cr400568b>
- Zhang Z, Lu S, Sha C, Xu D (2014b) A single thiourea-appended 1,8-naphthalimide chemosensor for three heavy metal ions: $Fe³⁺$, Pb^{2+} , and Hg²⁺. Sens Actuators B: Chem 208:258–266. [https://](https://doi.org/10.1016/j.snb.2014.10.136) doi.org/10.1016/j.snb.2014.10.136
- Zhang Y-M, Zhong K-P, Su J-X, Chen X-P, Yao H, Wei T-B, Lin Q (2017) A novel histidine-functionalized 1, 8-naphthalimidebased fuorescent chemosensor for the selective and sensitive

detection of Hg^{2+} in water. New J Chem 41:3303-3307. [https://](https://doi.org/10.1039/C6NJ03930H) doi.org/10.1039/C6NJ03930H

- Zhao LY, Mi QL, Wang GK, Chen JH, Zhang JF, Zhao QH, Zhou Y (2013) 1, 8-Naphthalimide-based 'turn-on'fuorescent sensor for the detection of zinc ion in aqueous media and its applications for bioimaging. Tetrahedron Lett 54:3353–3358. [https://](https://doi.org/10.1016/j.tetlet.2013.04.045) doi.org/10.1016/j.tetlet.2013.04.045
- Zhou Y, Zhou H, Ma T, Zhang J, Niu J (2012) A new Schif base based on vanillin and naphthalimide as a fuorescent probe for Ag⁺ in aqueous solution. Spectrochima Acta Mol Biomol Spectrosc 88:56–59.<https://doi.org/10.1016/j.saa.2011.11.054>
- Zhu W, Hu M, Yao R, Tian H (2003) A novel family of twisted molecular luminescent materials containing carbazole unit for single-layer organic electroluminescent devices. J Photochem Photobiol A Chem 154:169–177. [https://doi.org/10.1016/S1010](https://doi.org/10.1016/S1010-6030(02)00325-8) [-6030\(02\)00325-8](https://doi.org/10.1016/S1010-6030(02)00325-8)