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Abstract
We herein report Mannich aminomethylation of variously structural flavonoids and their biological evaluation against human 
breast cancer cell. Mannich reaction showed that substitution at C-6 position depends on amine basicity and C-ring feature 
of flavonoids. All five flavonoid substrates reacted with strong amine bases to afford the bis(6,8-aminomethyl) derivatives, 
while with weak amines, the different products were obtained dependently on structural characteristic of flavonoid. 3-OH 
and 3-O-substituted groups on the C-ring exhibited the deactivated aminomethylation at C-6 position, whereas substitution 
at this position was independent on bond feature at C-2 and C-3 on the C-ring. Screening anti-proliferative activity showed 
six flavonoids possessed activity against breast cancer cell, MDA-MB-231. Among them, the flavonoids, luteolin (2) and 
3′,4′,5,7-tetrahydroxy-6,8-bis(pyrrolidin-1-ylmethyl)-3-rutinosylflavone (3a), displayed the highest anti-proliferative activity 
with the lowest  IC50 values.
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Introduction

Flavonoid structures are based upon a 15-carbon skel-
eton consisting of two benzene rings linked via a hetero-
cyclic pyran ring. They can be divided into a variety of 
classes which differ in the level of oxidation and pattern 

of substitution of the pyran ring (e.g., quercetin, a flavonol, 
and luteolin, a flavone, bearing different substitution groups 
at C-3 position) (Fig. 1). Individual compounds within a 
class differ in the pattern of substitution of the benzene rings 
(Kumar and Pandey 2013). Biological activities of flavo-
noids depend remarkably on their structural characteristics 
such as degree of hydroxylation and substitution. A small 
alteration in the chemical structure may lead to significant 
changes in biological activities. Hence, the flavonoids pos-
sess a wide range of bioactivities such as antioxidant (Rice-
Evans et al. 1996; Rice-Evans 2001; Pietta 2000), antifungal 
(Tempesti et al. 2012), antiviral (Ng et al. 1997; Orhana 
et al. 2010; Kaul et al. 1985), anti-proliferative (Chahar et al. 
2011; Kanadaswami et al. 2005; Ravishankar et al. 2013), 
and anti-inflammatory agent (Pan et al. 2010; Cottiglia et al. 
2005; Candiracci et al. 2012).

In recent years, numerous studies have been conducted 
on the potential antimetastasis activity of natural flavo-
noids in various tumor cell lines. For instance, querce-
tin has been shown to reduce the human prostate cancer, 
PC-3 cells (Vijayababu et al. 2006), and kaempferol, gen-
istin, and daidzein revealed to inhibit human breast can-
cer, MDA-MB-231 cells (Lee et al. 2008; Phromnoi et al. 
2009). Among of the flavonoid derivatives, aminometh-
ylated flavonoids are particularly valued due to potential 
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activity against human cancer cells (Ha et al. 2016; Nguyen 
et al. 2017; Chen et al. 2015; Tugrak et al. 2015). Although 
Mannich aminomethylation of flavonoids has been known, 
most of the reported studies used C-6-substituted flavo-
noids as substrates (Zhang et al. 2008; Babu et al. 2008; 
Yusakul et al. 2016) or cyclic imines were used as the elec-
trophilic reagents (Nguyen et al. 2011). Recently, there are 
several studies on the aminomethylation of natural flavo-
noids using in situ generated iminium ions that proceeded 
with formation of C-6 (Frasinyuk et al. 2015; Kukhareva 
et al. 2004) or C-8-monosubstituted (Buravlev et al. 2017; 
Gorbunov et al. 2016) or disubstituted flavonoids (Nguyen 
et al. 2015b; Zhurakulov et al. 2015; Nifant’ev et al. 2013). 
Helgen et al. (2015) have aminomethylated quercetin to 
afford only a 8-monoaminomethyl derivative when using 
an imine salt made from 1-methylpiperazine while only a 
6,8-diaminomethyl derivative was produced with the imine 
salts of piperidine. All cases focused on the investigation 
of bioactivity and no systematic studies were carried out 
for investigating the influence of amine and iminium ions 
reactivity and features of flavonoid skeleton driving the 
Mannich aminomethylation.

In connection with our ongoing research program 
involving the effect of natural product structures on the 
synthesis (Dang et al. 2014, 2017; Nguyen et al. 2015a, 
2016; Hoang et al. 2015), we have showed that alkyla-
tion and acylation of 5-hydroxyflavonoids significantly 
depended on reagents as well as structural characteristic 
of ring C of flavonoids, and these derivatives also exhib-
ited especial bioactivities (Hoang et al. 2015). The pre-
viously reported results prompted us to investigate this 
effect on the aminomethylation of flavonoids as well as 
their bioactive evaluation. Herein, we report that the Man-
nich reaction of various flavonoid substrates with iminium 
salts generated in situ from secondary cyclic amines and 
aqueous formaldehyde can provide either 8-monosubsti-
tuted or 6,8-disubstituted derivatives depending on amine 
reagents and substrate features.

Results and discussion

Chemistry

The general synthetic routes are illustrated in Scheme 1. 
Our strategy for the synthesis of the aminomethylated 
derivatives at C-6 and C-8 of A-ring of flavonoids relied 
upon electrophilic substitution via the Mannich reaction 
carried out between flavonoids with formaldehyde and 
secondary cyclic amines at room temperature in ethanol. 
Three cyclic amines with different basicity, pyrrolidine 
(pKa  =  11.27), 1-methylpiperazine (pKa  =  9.14), and 
morpholine (pKa = 8.36) were converted in situ into the 
respective electrophilic iminium ions. To get an insight 
into influence of flavonoid structures on the substitution 
at various positions, five natural flavonoids with structural 
variations were used as the substrates.

The aminomethylation of quercetin with these bases and 
aqueous formaldehyde afforded products 1a–1c in over 
60% yields. The result showed that aminomethylation of 
flavonoids was strongly affected by basicity of amines. The 
substitution with pyrrolidine occurred at both C-6 and C-8 
positions. This is evident from 1H NMR of 1a which pro-
tons at C-6 (δ 6.20 ppm) and C-8 (δ 6.40 ppm) positions of 
quercetin disappeared. Interestingly, only C-8 monosubsti-
tuted products were obtained when flavonoids were treated 
with an excess of 1-methylpiperazine and morpholine to 
give 1b and 1c, respectively. This is attributed to the lower 
basicity of these amines. Similar results were reported by 
Lis and Marisca (1987) for the other substrates under the 
same condition.

The position of the aminomethyl groups in products 
1b and 1c was unambiguously determined by HMBC 
NMR spectroscopy. The aminomethylene protons of 1b 
and 1c (δ 3.87 and 3.82 ppm, respectively), which were 
well resolved, were coupled long-range to respective C-9 
carbons at δ 153.63 and 153.94 ppm. This allows for the 
assignment of the aminomethyl group to the C-8 position 
of the quercetin derivatives.

To determine influence of 3-OH group in flavonoids, lute-
olin (2) was used in comparison with quercetin. As expected, 
the aminomethylation of 2 with the weakest base afforded 
the bis(6,8-morpholin) product (2a) in 63% yield. In com-
parison with formation of 1c, this result reflected that 3-OH 
group obstructed to electrophilic substitution at C-6 in the 
flavonoid skeleton. Although reason of the effect has not 
been described previously, it may be because the electron 
pair of oxygen at C-3 position stabilized the non-covalent 
six-membered ring (Hoang et al. 2015) which is attributed 
to reduction of electron density at C-6 position of quercetin.

In a similar fashion, rutin (3) was treated with all bases. 
Unfortunately, conversion occurred in very poor yields and 
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no pure aminomethylation products were obtained when 
treating with either 1-methylpiperazine or morpholine 
under the same reaction conditions. However, the amino-
methylation of 3 with pyrrolidine was observed more eas-
ily to afford bis(6,8-pyrrolidine) product (3a) in 54% yield, 
indicating that 3-O-substituted group is also an important 
factor in this transformation.

Finally, to understand the influence of the double bond 
of C-ring on the flavonoid aminomethylation, hesperetin (4) 
was employed in comparison with substitution of diosmetin 
(5). Similar to luteolin, the reaction of 4 with morpholine 
was converted into bis(6,8-morpholine) derivative (4a) in 
a good yield (81%). In addition, conversion of 5 with both 
pyrrolidine and morpholine gave diaminomethylated deriva-
tives 5a and 5b, respectively in over 60% yields. It showed 
that bond feature at C-2 and C-3 was independent on the 
Mannich aminomethylation at the C-6 position. All the syn-
thesized flavonoids, including new derivatives 1a, 2a, 3a, 4a, 

5a, and 5b, were determined physical properties and identi-
fied the structure by HRMS and NMR spectra.

Anti‑proliferative activity

The anti-proliferative activity of all flavonoid derivatives 
was tested in the breast cancer cell line MDA-MB-231 
(Denizot and Lang 1986). A screening program revealed 
that several flavonoids exhibited anti-proliferative activity at 
100 μM, as depicted in Table 1. Six compounds 1, 1c, 2, 2a, 
3a, and 5a showed good anti-proliferative activity (inhibition 
more than 50%) which would be further used to test  IC50 
values. It is noteworthy that the disubstituted derivatives of 
rutin (3a) and hesperetin (5c) possessed the activity greater 
than the parent flavonoids, while all derivatives of quercetin 
exhibited the lower activity than the parent compounds.

IC50 values against MDA-MB-231 cell are shown in 
Table 2. Although the  IC50 values of the flavonoids are 
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higher than that of the standard drug (paclitaxel), most of the 
compounds displayed a significant anti-proliferative activity 
against MDA-MB-231 cell. Among them, flavonoids 2 and 
3a exhibit the highest anti-proliferative activity with  IC50 of 
7.29 and 7.57 μmol/mL, respectively.

Conclusions

Our studies on Mannich aminomethylation of flavonoids 
were suggested as follows: (1) amine basicity was criti-
cal to design the aminomethylated products and iminium 
ions prepared from strong bases attracted to both C-6 and 
C-8 positions of flavonoid. (2) With weak bases, 3-OH and 
3-O-substituted flavonoids could obstruct electrophilic sub-
stitution at C-6 of flavonoid. (3) Bond feature at C-2 and 
C-3 did not almost affect the substitution at C-6 even the 
weak bases.

All the compounds were evaluated for cytotoxicity of 
breast cancer cell, MDA-MB-231. Six compounds 1, 1c, 
2, 2a, 3a, and 5a showed good anti-proliferative activity. 
Among them, the flavonoids 2 and 3a displayed the lowest 
 IC50 values.

Experimental

Chemistry

All the materials were purchased from Merck (Germany) 
or Aldrich. The other solvents were purchased from Fluka 
and used without further purification. Melting points were 
measured with an Electrothermal Model 9200 (England). 
UV–Vis spectra were measured using a Shimadzu, Model 
UV-1650PC spectrophotometer, and reported as λmax in 
nm (abs.). FTIR spectra were obtained with an Equi-
nox 55 IR—Bruker (Germany) spectrometer; absorption 
bands are recorded in wave number  (cm−1). The ESI–MS 
were performed on a VG Zab Spec (70 eV) instrument. 
1H (500 MHz) and 13C (125 MHz) NMR were recorded 
on a BRUKER AVANCE 500 NMR spectrometer using 
DMSO-d6 as solvent and tetramethylsilane (TMS) as an 
internal standard. Chemical shifts are reported in δ rela-
tive to TMS.

General procedure for aminomethylation of flavo‑
noids

To a stirred solution of flavonoid (3.31 mmol) in ethanol 
(50 mL) was slowly added amines (33.3 mmol) and a 37% 
formaldehyde solution (2.48 g, 35 mmol). The mixture 
was stirred at room temperature for 4 h, monitoring by 
TLC. The residue was filtered off, washed with 50 mL of 
ethanol, and then dried in the vacuum.

2‑(3,4‑Dihydroxyphenyl)‑3,5,7‑trihy‑
droxy‑6,8‑bis(pyrrolidin‑1‑ylmethyl)‑4H‑chromen‑4‑one 
(1a)

Yellow powder, m.p. 223–225 °C. Yield 68%. FTIR (KBr) 
ν/cm−1 3376, 2968, 1651, 1560, 1260, 1069. UV–Vis λmax 
(nm) (abs.) 238 (0.15), 246 (0.16), 287 (0.09), 321 (0.11), 
341 (0.10), 268 (0.12). 1H NMR (500 MHz, DMSO-d6, 
δ, ppm): 7.69 (1H, d, J 2.0 Hz, H-2′),7.44 (1H, dd, J 8.5, 
2.0 Hz, H-6′), 6.85 (1H, d, J 8.5 Hz, H-5′), 3.92 (2H, s, 
C-8-CH2), 3.88 (2H, s, C-6-CH2), 2.72–2.62 (8H, m, 
N(CH2CH2)2), 1.76–1.67 (8H, m, N(CH2CH2)2). 13C NMR 
(125 MHz, DMSO-d6, δ, ppm): 175.35 (C-4), 168.00 (C-7), 
156.92 (C-5), 153.52 (C-9), 147.61 (C-4′), 145.50 (C-2), 
145.14 (C-3′), 135.26 (C-3), 122.42 (C-1′), 119.67 (C-6′), 
115.56 (C-5′), 114.89 (C-2′),103.83 (C-10), 100.85 (C-6), 
100.30 (C-8), 52.82 (C-8-CH2), 52.73 (C-6-CH2), 48.68 
(N(CH2CH2)2), 46.90 (N(CH2CH2)2), 23.12 (N(CH2CH2)2), 
23.05 (N(CH2CH2)2). HRMS (m/z): 469.1965 [M+H]+; 
469.1975 calcd [M+H]+ for  C25H29N2O7.

Table 1  Percent inhibition 
of MDA-MB-231 cell by all 
flavonoids

Sub. Inhibition at 
100 μM (%)

1 78.4 ± 7.4
1a 0 ± 0.5
1b 12.9 ± 0.2
1c 59.5 ± 2.3
2 82.5 ± 10.2
2a 77.6 ± 5.7
3 6.1 ± 0.1
3a 88.6 ± 6.9
4 8.2 ± 0.2
4a 9.2 ± 0.3
5 31 ± 0.6
5a 77.4 ± 9.1
5b 11.6 ± 0.6

Table 2  IC50 value of 
selected flavonoids against 
MDA-MB-231 cell

Sub. IC50 (μmol/mL)

1 25.30 ± 0.66
1c 38.67 ± 4.52
2 7.29 ± 0.08
2a 44.74 ± 5.01
3a 7.57 ± 0.40
5a 58.61 ± 4.02
Paclitaxel 0.12 ± 0.00
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2‑(3,4‑Dihydroxyphenyl)‑3,5,7‑trihydroxy‑8‑((4‑methylpip‑
erazin‑1‑yl)methyl)‑4H‑chromen‑4‑one (1b)

Yellow powder, m.p. 233–235 °C (233–235 °C, Helgen et al. 
2015). Yield 66%. FTIR (KBr) ν/cm−1 3296, 2975, 1655, 
1555, 1201, 1043. UV–Vis λmax (nm) (abs.) 229 (0.78), 
246 (1.09), 277 (0.36), 363 (1.16). 1H NMR (500 MHz, 
DMSO-d6, δ, ppm) (Zhang et al. 2008; Helgen et al. 2015): 
12.52 (1H, brs, OH) 7.70 (1H, d, J 2.0 Hz, H-2′), 7.57 (1H, 
dd, J 8.5, 2.0 Hz, H-6′), 6.89 (1H, d, J 8.5 Hz, H-5′), 6.17 
(1H, s, H-6), 3.87 (2H, s, C-8-CH2), 2.63–2.58 (4H, m, 
 CH3-N-(CH2CH2)2), 2.38–2.36 (4H, m,  CH3-N-(CH2CH2)2), 
2.16 (3H, s, N-CH3). 13C NMR (125 MHz, DMSO-d6, δ, 
ppm): 175.90 (C-4), 164.15 (C-7), 159.54 (C-5), 153.63 
(C-9), 147.66 (C-4′), 146.45 (C-2), 145.08 (C-3′), 135.62 
(C-3), 122.17 (C-1′), 119.89 (C-6′), 115.61 (C-5′), 114.97 
(C-2′), 102.73 (C-8), 99.74 (C-10), 98.12 (C-6), 54.43 
 (CH3-N-(CH2CH2)2), 51.95  (CH3-N-(CH2CH2)2), 51.18 
(C-8-CH2), 45.45 (N-CH3). HRMS (m/z): 415.1471 
[M+H]+; 415.1505 calcd [M+H]+ for  C21H23N2O7.

2‑(3,4‑Dihydroxyphenyl)‑3,5,7‑trihy  ‑ 
droxy‑8‑(morpholinomethyl)‑4H‑chromen‑4‑one (1c)

Yellow powder, m.p. 253–257 °C, yield 65%. FTIR (KBr) 
ν/cm−1 3320, 2970, 1654, 1552, 1201, 1072. UV–Vis λmax 
(nm) (abs.) 229 (0.20), 246 (0.28), 276 (0.09), 363 (0.30). 
1H NMR (500 MHz, DMSO-d6, δ, ppm) (Zhang et al. 2008): 
7.73 (1H, d, J 2.0 Hz, H-2′), 7.61 (1H, dd, J 8.5, 2.0 Hz, 
H-6′), 6.91 (1H, d, J 8.5 Hz, H-5′), 6.22 (1H, s, H-6), 3.82 
(2H, C-8-CH2), 3.59 (4H, m, N-(CH2CH2)2O), 2.53 (4H, 
m, N-(CH2CH2)2O). 13C NMR (125 MHz, DMSO-d6, δ, 
ppm): 175.95 (C-4), 163.48 (C-7), 159.54 (C-5), 153.94 
(C-9), 147.68 (C-2), 146.58 (C-4′), 145.08 (C-3′), 135.64 
(C-3), 122.21 (C-1′), 119.93 (C-6′), 115.60 (C-5′), 115.05 
(C-2′), 102.87 (C-10), 100.17 (C-8), 97.94 (C-6), 66.08 
(N-(CH2CH2)2O), 52.70 (N-(CH2CH2)2O), 50.96 (C-8-CH2). 
HRMS (m/z): 402.1189 [M+H]+; 402.1189 calcd [M+H]+ 
for  C20H20NO8.

2‑(3,4‑Dihydroxyphenyl)‑5,7‑dihydroxy‑6,8‑bis(morpholino
methyl)‑4H‑chromen‑4‑one (2a)

Yellow powder, m.p. 230–233 °C, yield 63%. FTIR (KBr) 
ν/cm−1 3260, 2963, 1649, 1583, 1213, 1072. UV–Vis λmax 
(nm) (abs.) 236 (0.65), 247 (0.68), 252 (0.68), 289 (0.38). 
1H NMR (500 MHz, DMSO-d6, δ, ppm): 7.44 (1H, dd, J 
9.0, 2.0 Hz, H-6′), 7.42 (1H, d, J 2.0 Hz, H-2′), 6.91 (1H, d, 
J 9.0 Hz, H-5′), 6.68 (1H, s, H-3), 3.78 (2H, s, C-8-CH2), 
3.73 (2H, s, C-6-CH2), 3.60–3.56 (8H, m, N-(CH2CH2)2O), 
2.54–2.49 (8H, m, N-(CH2CH2)2O). 13C NMR (125 MHz, 
DMSO-d6, δ, ppm): 181.95 (C-4), 164.37 (C-7), 163.61 
(C-2), 158.16 (C-5), 154.43 (C-9), 149.75 (C-4′),145.79 

(C-3′), 121.75 (C-1′), 118.97 (C-6′), 113.43 (C-5′), 116.06 
(C-2′), 103.71 (C-10), 102.76 (C-6), 102.55 (C-3), 100.90 
(C-8), 66.15 (N-(CH2CH2)2O), 65.97 (N-(CH2CH2)2O), 
52.78 (N-(CH2CH2)2O), 52.36 (N-(CH2CH2)2O), 51.43 
(C-6-CH2), 50.36 (C-8-CH2). HRMS (m/z): 485.1920 
[M+H]+; 485.1924 calcd [M+H]+ for  C25H29N2O8.

2‑(3,4‑Dihydroxyphenyl)‑5,7‑dihy‑
droxy‑6,8‑bis(pyrrolidin‑1‑ylme‑
thyl)‑3‑(((2S,3R,4S,5S,6R)‑3,4,5‑trihydroxy‑6‑((((2R,
3R,4R,5R,6S)‑3,4,5‑trihydroxy‑6‑methyltetrahy‑
dro‑2H‑pyran‑2‑yl)oxy)methyl)tetrahydro‑2H‑pyran‑2‑yl)
oxy)‑4H‑chromen‑4‑one (3a)

Orange powder, m.p. 154–156 °C, yield 57%. FTIR (KBr) 
ν/cm−1 3479, 2983, 1754, 1629, 1503, 1218, 1073. UV–Vis 
λmax (nm) (abs.) 229 (0.56), 243 (0.64), 269 (0.31), 299 
(0.53). 1H NMR (500 MHz, DMSO-d6, δ, ppm): 7.62–7.60 
(2H, m, H-5′,6′), 6.83 (1H, d, J 9.0 Hz, H-2′), 5.30 (1H, d, 
J 7.5 Hz, H-1-glucose), 4.33 (1H, s, H-1-rhamnose), 3.94 
(2H, s, C-8-CH2), 3.84 (2H, s, C-6-CH2), 3.70 (2H, d, J 
10.5 Hz, H-6-glucose), 3.30–3.19 (5H, m, H-2,3,4,5-glu-
cose, H-5-rhamnose), 3.09–3.02 (3H, m, H-2,3,4-rhamnose), 
2.81 (2H, m, N(CH2CH2)2), 2.69 (2H, m, N(CH2CH2)2), 
1.81 (2H, m, N(CH2CH2)2), 1.74 (2H, m, N(CH2CH2)2), 
1.00 (3H, d, J 6.5 Hz, H-6-rhamnose). 13C NMR (125 MHz, 
DMSO-d6, δ, ppm): 176.64 (C-4), 162.30 (C-7), 157.50 
(C-2), 155.34 (C-9), 153.98 (C-5), 148.79 (C-3), 148.65 
(C-4′), 144.85 (C-3′), 132.75 (C-1′), 121.44 (C-6′), 116.15 
(C-5′), 115.15 (C-2′), 103.88 (C-10), 103.19 (C-6), 101.46 
(C-1-glucose), 100.94 (C-1-rhamnose), 100.73 (C-8), 
76.57 (C-3-glucose), 75.93 (C-5-glucose), 74.05 (C-2-glu-
cose), 71.90 (C-2-rhamnose), 70.52 (C-4-rhamnose), 70.25 
(C-4-glucose, C-3-rhamnose), 68.21 (C-5-rhamnose), 66.90 
(C-6-glucose), 53.25 (N(CH2CH2)2), 52.70 (N(CH2CH2)2), 
48.93 (C-8-CH2), 47.03 (C-6-CH2), 23.10 (N(CH2CH2)2), 
23.04 (N(CH2CH2)2), 17.72 (C-6-rhamnose). HRMS 
(m/z): 777.3099 [M+H]+; 777.3082 calcd [M+H]+ for 
 C37H49N2O16.

5,7‑Dihydroxy‑2‑(3‑hydroxy‑4‑methoxyphenyl)‑6,8‑bis(mor
pholinomethyl)‑4H‑chromen‑4‑one (4a)

Pale yellow powder, m.p. 278–280 °C, yield 81%. FTIR 
(KBr) ν/cm−1 3420, 2961, 1649, 1513, 1217, 1069. 
UV–Vis λmax (nm) (abs.) 250 (0.29), 262 (0.34), 294 
(0.18), 343 (0.31). 1H NMR (500 MHz, DMSO-d6, δ, ppm): 
7.57 (1H, dd, J 8.5, 2.5 Hz, H-6′), 7.47 (1H, d, J 2.5 Hz, 
H-2′), 7.12 (1H, d, J 8.5 Hz, H-5′), 6.76 (1H, s, H-3), 3.87 
(3H, s,  OCH3), 3.79 (2H, s, C-6-CH2), 3.75 (2H, s, C-8-
CH2), 3.62–3.57 (8H, m, N-(CH2CH2)2O), 2.54–2.50 (8H, 
m, N-(CH2CH2)2O). 13C NMR (125 MHz, DMSO-d6, δ, 
ppm): 181.97 (C-4), 164.45 (C-7), 163.21 (C-2), 158.12 
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(C-5), 154.46 (C-9), 151.17 (C-4′), 146.84 (C-3′), 123.22 
(C-1′), 118.64 (C-6′), 112.99 (C-2′), 112.22 (C-5′),103.68 
(C-6), 103.19 (C-10), 102.80 (C-3), 100.99 (C-8), 66.14 
(N-(CH2CH2)2O), 65.94 (N-(CH2CH2)2O), 55.77  (OCH3), 
52.81 (N-(CH2CH2)2O), 52.33 (N-(CH2CH2)2O), 51.47 
(C-8-CH2), 50.33 (C-8-CH2). HRMS (m/z): 499.2077 
[M+H]+; 499.2080 calcd [M+H]+ for  C26H31N2O8.

5,7‑Dihydroxy‑2‑(3‑hydroxy‑4‑methoxyphenyl)‑6,8‑bis(pyrr
olidin‑1‑ylmethyl)chroman‑4‑one (5a)

Pale yellow powder, m.p. 178–180 °C, yield 64%. FTIR 
(KBr) ν/cm−1 3418, 2958, 1643, 1537, 1257, 1060. 
UV–Vis λmax (nm) (abs.) 239 (0.20), 248 (0.21), 259 
(0.19), 283 (0.27). 1H NMR (500 MHz, DMSO-d6, δ, 
ppm): 6.97 (1H, d, J 2.0 Hz, H-2′), 6.89 (1H, dd, J 8.0, 
2.0 Hz, H-6′), 6.94 (1H, d, J 8.0 Hz, H-5′), 5.38 (1H, dd, 
J 12.0, 3.0 Hz, H-2), 4.01 (2H, s, C-8-CH2), 3.98 (2H, 
s, C-6-CH2), 3.77 (3H, s,  OCH3), 3.17–3.12 (8H, m, 
N-(CH2CH2)2), 3.01 (2H, dd, J 17.0, 12.0  Hz, H-3a), 
2.65 (1H, dd, J 17.0, 3.0 Hz, H-3b), 1.90–1.87 (8H, m, 
N-(CH2CH2)2). 13C NMR (125 MHz, DMSO-d6, δ, ppm): 
191.65 (C-4), 177.57 (C-7), 163.11 (C-5), 160.91 (C-9), 
147.68 (C-4′), 146.54 (C-3′), 131.85 (C-1′), 117.20 
(C-6′), 113.88 (C-2′), 112.03 (C-5′), 98.88 (C-6), 98.64 
(C-8), 96.03 (C-10), 77.64 (C-2), 55.67  (OCH3), 52.50 
(N-(CH2CH2)2), 52.31 (N-(CH2CH2)2), 47.83 (C-8-CH2), 
47.69 (C-6-CH2), 41.37 (C-3), 22.68 (N-(CH2CH2)2). 
HRMS (m/z): 469.2345 [M+H]+; 469.2339 calcd [M+H]+ 
for  C26H33N2O6.

5,7‑Dihydroxy‑2‑(3‑hydroxy‑4‑methoxyphenyl)‑6,8‑bis(mor
pholinomethyl)chroman‑4‑one (5b)

Pale yellow powder, m.p. 175–180 °C, yield 62%. FTIR 
(KBr) ν/cm−1 3450, 2948, 1622, 1535, 1259, 1027. UV–Vis 
λmax (nm) (abs.) 244 (0.21), 279 (0.86). 1H NMR (500 MHz, 
DMSO-d6, δ, ppm): 13.26 (1H, br.s, OH), 9.15 (1H, br.s, 
OH), 6.96 (1H, m, H-2′), 6.94 (1H, m, H-5′), 6.91 (1H, dd, 
J 8.0, 2.0 Hz, H-6′), 5.46 (1H, dd, J 12.0, 3.0 Hz, H-2), 
4.04 (2H, s, C-8-CH2), 4.00 (2H, s, C-6-CH2), 3.78 (3H, s, 
 OCH3), 3.78 (8H, m, N-(CH2CH2)2O), 3.14 (8H, dd, J 17.0, 
12.0 Hz, H-3a), 3.07 (8H, m, N-(CH2CH2)2O), 2.75 (1H, 
dd, J 17.0, 3.5 Hz, H-3b). 13C NMR (125 MHz, DMSO-d6, 
δ, ppm): 193.91 (C-4), 162.76 (C-5), 161.08 (C-9), 147.79 
(C-4′), 146.53 (C-3′), 131.28 (C-1′), 117.37 (C-6′), 113.95 
(C-2′), 112.04 (C-5′), 98.21 (C-6), 97.47 (C-8), 89.16 
(C-10), 78.05 (C-2), 63.81–63.13 (N-(CH2CH2)2O), 55.64 
 (OCH3), 50.96–50.85 (N-(CH2CH2)2O), 50.62 (C-8-CH2), 
50.16 (C-6-CH2), 41.37 (C-3). HRMS (m/z): 501.2234 
[M+H]+; 501.2237 calcd [M+H]+ for  C26H33N2O8.

Cell Culture

Human breast adenocarcinoma (MDA-MB-231) cell line 
(ATCC ® HTB-26™) was provided by School of Medicine, 
Sungkyunkwan University, Korea. MDA-MB-231 cells were 
cultured in DMEM (Gibco, USA), containing 10% FCS 
(Gibco, USA), 2 mM l-glutamine, 100 IU/mL penicillin, 
and 100 µg/mL streptomycin (Gibco, USA) in a humidified 
atmosphere of 5%  CO2 at 37 °C to attain confluency.

Anti‑proliferative activity assay

The samples were dissolved in DMSO at 10 mM and then 
diluted with culture medium to get tested concentrations. 
Paclitaxel  (Anzatax®, Mayne Pharma, New Zealand) was 
used as the reference compound. DMSO at different con-
centrations was used as a blank control. The cells were 
then trypsinized, harvested, and counted using trypan blue 
(Sigma-Aldrich, USA), and seeded in 96-well plates at  104 
cells/well. After 24 h incubation at 37 °C, 5%  CO2, cells 
were treated with culture medium containing tested com-
pounds at 100 µM for 72 h. After 72 h treatment, cell viabil-
ity was evaluated as mitochondrial succinate dehydrogenase 
(SDH) activity, a marker of viable cells using MTT test as 
described by Denizot and Lang (1986).

Briefly, SDH activity was detected after 3 h incubation 
in culture medium without serum containing 3-(4,5-dimeth-
ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 
which was converted into formazan crystals dissolved in 
acidified isopropanol. The produced purple solution was 
spectrophotometrically measured at 570 nm on Multikan™ 
microplate reader. Each tested concentration was performed 
in triplicate. The percentage of proliferation inhibition was 
calculated as follows:

The compounds with significant potential against MDA-
MB-231 cells (percent of proliferation inhibition at 100 μM 
more than 50%) were then tested for their toxicity at five 
different concentrations (2–100 μM). Concentrations induc-
ing a 50% inhibition of cell growth  (IC50) were deduced by 
exponential regression of the inhibitory percentage − tested 
concentration. Values were mean ± SD from three independ-
ent experiments.
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