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Abstract
Bi2O3/BiFeO3 composite was successfully fabricated by a conventional sol–gel method and structural properties were char-
acterized based on X-ray diffractometer, scanning electron microscope, transmission electron microscope, energy-dispersive 
X-ray analyzer, nitrogen adsorption–desorption measurement, and UV–visible diffuse reflectance spectroscopy.  Bi2O3/BiFeO3 
had a good absorption for visible light, which was benefit to photocatalytic activity. The highest degradation efficiency was 
obtained when the content of  Bi2O3 in  Bi2O3/BiFeO3 was 63.9%. Effect of experimental conditions was investigated, and the 
highest photocatalytic activity of  Bi2O3/BiFeO3 was observed at photocatalyst dosage of 0.5 g/L, initial BPA concentration 
of 10 mg/L, and solution pH of 6.3.  Bi2O3/BiFeO3 photocatalyst exhibited enhanced photocatalytic activity for BPA, and 
the reaction rate constant over  Bi2O3/BiFeO3 composite was 2.23, 3.65, and 8.71 times higher than that of  BiFeO3,  Bi2O3 
and commercial  TiO2 (P25), respectively.  Bi2O3/BiFeO3 showed high photocatalytic activity after three cycles, suggesting 
that it was a stable photocatalyst. The possible photocatalytic mechanism has been discussed on the basis of the theoretical 
calculation and the experimental results. The hydroxyl and superoxide radicals together with photogenerated holes played 
significant roles in the photocatalytic reaction.
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Introduction

Owing to its extensive usage in industry (Chen et al. 2016), 
bisphenol A (BPA) has been widely distributed in the envi-
ronment (Falconer et al. 2006; Vom Saal and Welshons. 
2014; Manfo et al. 2014). It is a kind of endocrine disrupting 

compounds (EDCs), which can cause adverse effects on 
humans and animals through the interactions with the endo-
crine system (Paulose et al. 2015; Jandegian et al. 2015; Li 
et al. 2010). BPA is stable in environment, hardly degraded 
and tends to bio-accumulate, which makes it very urgent 
and important for us to develop a sustainable, effective, and 
economical method to remove BPA in water.

Various methods have been developed to remove BPA 
from water, such as biological method (Takamiya et al. 
2008), chemical oxidation method (Keykavoos et al. 2013), 
adsorption method (Son and Takaomi 2011), and photoca-
talysis method (Chen et al. 2015). Among them, the pho-
tocatalysis method is the most promising technology for 
the degradation of BPA because of its high degradation 
and mineralization efficiency, low cost, low toxicity, and its 
operating ability under ambient conditions.  TiO2 is a typical 
photocatalyst for its good chemical stability, non-toxicity, 
low cost, and significant photocatalytic activity (Kumar and 
Rao. 2017; Lin et al. 2012; Sun et al. 2016). However, pure 
 TiO2 absorbs only ultraviolet light which accounts for only 
5% of sunlight. The rapid recombination of photogenerated 
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electron–hole pairs limits the practical application of  TiO2 
(Yap et al. 2010). Therefore, the study has been a hot topic 
for developing visible-light-driven photocatalysts. Recently, 
bismuth-based photocatalysts have attracted much interest 
because of their narrow bandgaps such as  Bi2O3 (Yan et al. 
2014a, b),  Bi2S3 (Gao et al. 2015),  Bi2WO6 (Kumar and Rao. 
2015; Liu et al. 2015), and  BiVO4 (Li et al. 2015).

Bi2O3 is an important inorganic functional material (Yan 
et al. 2014a, b). It has got much attention due to its unique 
optical and electrical properties, which lead to its exten-
sive usage in catalysis, optical coatings, microelectronics, 
solid fuel cells, gas sensors and glass manufacturing, etc. In 
addition, it is a good photocatalyst with a narrow bandgap 
ranging from 2.0 to 2.9 eV. However, there are still some 
problems for its practical application. The rapid recombi-
nation of photogenerated electron–hole pairs leads to the 
relatively low photocatalytic activity.  BiFeO3 is also a prom-
ising photocatalyst for its high chemical stability, narrow 
bandgap (2.0–2.8 eV), and special ferroelectric and ferro-
magnetic properties (Humayun et al. 2016; Gao et al. 2016). 
However, the photocatalytic activity of pure  BiFeO3 is not 
satisfying because of its low conduction band position and 
small surface areas (Lam et al. 2017). It is expected that the 
combination of  Bi2O3 with  BiFeO3 would inhibit the recom-
bination of photogenerated electron–hole pairs and enhance 
the photocatalytic activity.

Recently, sol–gel method was used in the synthesis of 
 BiFeO3, which has great advantages on the purity of  BiFeO3 
and the nanoparticle morphology (Majid et al. 2015; Kim 
et al. 2005). In this work, the  Bi2O3/BiFeO3 composite pho-
tocatalysts were prepared by a novel sol–gel method which 
is rarely investigated in the literature. The  Bi2O3/BiFeO3 
composite was fabricated in a single step and the content 
of  Bi2O3 in the heterostructure was controlled by varying 
the initial molar ratio of Bi/Fe in the synthesis step. The 
composite photocatalyst was characterized and its photocata-
lytic activity for BPA was also investigated. Meanwhile, the 
effects of experimental conditions on the BPA degradation 
efficiency were discussed. A possible photocatalytic mecha-
nism was tentatively proposed on the basis of the theoretical 
calculation and the experimental results.

Experimental

Preparation of the photocatalyst

All chemicals were of analytical purity and were used as 
received without further purification. Ultrapure water 
was used throughout this study. In a typical approach to 
obtain the composite, 7.28 g Bi(NO3)3·5H2O and 2.02 g 
Fe(NO3)3·9H2O (molar ratio of Fe/Bi = 1:3) were dissolved 
in 36 mL ethylene glycol in a 100 mL glass beaker under 

magnetic stirring, and 5 mL glacial acetic acid was added. 
This mixture was then heated at 80 °C for 6 h in SZCL-2 
magnetic stirrer (Yuhua, China), resulting in a dark yellow 
sol. The sol was heated at 100 °C for 24 h in a watch-glass 
to get the yellow gel, and was then calcinated in a muffle 
furnace at 500 °C (ramping rate of furnace was 2 °C/min) 
for 2 h to produce  Bi2O3/BiFeO3 composite. For comparison, 
pure  Bi2O3 was obtained without adding Fe(NO3)3·9H2O, 
and pure  BiFeO3 was obtained with an initial Fe/Bi molar 
ratio of 1:1 by sol–gel method.

Characterization

The crystal phases of the sample powders were character-
ized by TTRIII X-ray diffractometer (XRD, Rigaku, Japan) 
with Cu Kα radiation in the 2θ range from 10° to 80°. The 
surface morphology was observed on FEI QUANTA200 
scanning electron microscope (SEM, USA) and JEM-2100 
transmission electron microscope (TEM, JEOL, Japan). 
The elemental composition was analyzed using an energy-
dispersive X-ray (EDAX) analyzer attached to the TEM. 
Nitrogen  (N2) adsorption–desorption measurement at 77 K 
was conducted using TriStar II 3020 (Micromeritics Inc., 
USA). The surface area of samples was obtained using the 
Brunauer–Emmett–Teller (BET) plot of  N2 adsorption iso-
therm. The ultraviolet–visible diffuse reflectance spectra 
(UV–Vis DRS) were recorded at room temperature on a UV-
240IPC (JEOL, Japan) spectrophotometer using  BaSO4 as 
a reference.

Photocatalytic activity

Photocatalytic activity of the prepared photocatalysts was 
investigated through degradation of BPA. The photocatalysis 
was conducted in an XPA-7 photochemical reactor (Xujiang 
Electromechanical Plant, Nanjing, China). A 500 W Xe lamp 
and a filter (λ > 420 nm, Xujiang Electromechanical Plant, 
Nanjing, China) were used to get visible light. In each test, 
the photocatalyst was added into a quartz tube with 10.0 mL 
of BPA solution. Before the photocatalytic degradation 
experiment, the catalyst and BPA solution were mixed and 
stirred for 30 min in dark to reach adsorption equilibrium. 
Then, under the visible-light irradiation, the quartz tube was 
taken out at given time intervals.

BPA concentration was detected by high-performance 
liquid chromatography (HPLC, Agilent Technologies 1200 
series) at the detection wavelength of 226.16 nm. A Symme-
try C18 column (5 μm, 4.6 × 250 mm) was used as separa-
tion column. The mobile phase used for HPLC experiments 
was a mixture of acetonitrile and water (65/35, v/v). The 
flow rate was set as 1.0 mL/min, the column temperature 
was 35 °C, and the injection volume was 20 μL.
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The degradation efficiency of BPA was calculated by the 
following equation:

C0 and Ct represent the initial concentration of BPA before 
irradiation and the concentration of BPA remaining in the 
solution at irradiation time of t, respectively.

A pseudo-first-order kinetic model was used to evaluate 
the photodegradation efficiency and the degradation kinetics 
constant k was obtained as

(1)
Degradation efficiency of BPA (%) =

(

C0 − C
t

)

∕C0 × 100%.

(2)ln
(

C
t
∕C0

)

= −kt.

Results and discussion

Characterization

XRD analysis

The chemical composition and phase structure of the fab-
ricated samples were confirmed with powder X-ray diffrac-
tion (XRD). As shown in Fig. 1, all diffraction peaks of the 
samples could be unambiguously assigned to rhombohedral 
phase  BiFeO3 (JCPDS No. 71-2494) (Fan et al. 2015) and 
monoclinic  Bi2O3 (JCPDS No. 41-1449) (Cheng and Kang 
2014), respectively. The sharp diffraction peaks indicated 
that the samples were well crystallized. No impurity peaks 
were observed, indicating a high purity of the products. The 
 Bi2O3/BiFeO3 composite exhibited a co-existence of both 
 Bi2O3 and  BiFeO3 phases without significant change in the 
peak positions, indicating that the combination of the two 
materials did not change the crystal structure of  Bi2O3 and 
 BiFeO3.

SEM analysis

The morphologies and surface structures of fabricated sam-
ples were studied by SEM. Figure 2a displays the morphol-
ogy of pure  BiFeO3. Pure  BiFeO3 was composed of spherical 
nanoparticles. The particle size was relatively uniform, and 
some particles were contacted with each other. The morphol-
ogy of pure  Bi2O3 is shown in Fig. 2b. Pure  Bi2O3 displayed 
mainly nanosheet shape with a thickness in 40–65 nm. From 
Fig. 2c, it was clearly seen that  Bi2O3 nanosheets were sur-
rounded by lots of  BiFeO3 nanoparticles, indicating that the 
two materials were well integrated at the structural level.

Fig. 1  XRD pattern of single phase and composite photocatalysts

Fig. 2  SEM images of  BiFeO3 (a),  Bi2O3 (b), and  Bi2O3/BiFeO3 (c)
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TEM and EDS analysis

The morphologies of photocatalysts were further studied by 
TEM. The TEM image shown in Fig. 4a confirmed that the 
structure of individual  BiFeO3 was nanoparticles. The diam-
eter of the spherical particles was 50–100 nm. Figure 4b 
shows that the structure of individual  Bi2O3 was nanosheets. 
Figure 4c, d shows that the  Bi2O3/BiFeO3 composite was 
formed from the combination of  Bi2O3 nanosheets with 
 BiFeO3 nanoparticles. Moreover, the element composition 
of the fabricated  Bi2O3/BiFeO3 composite was determined 
by energy-dispersive X-ray spectroscopy (EDS). Figure 3e, 
f shows taken from the corresponding EDS spectrum of rec-
tangular region A from a nanosheet and region B from a 
nanoparticle in Fig. 3c, respectively. The Cu-element inter-
ference peaks shown in Fig. 3e, f were from the copper mesh 
which was used as the base. The spectrum showed charac-
teristic peaks of Bi and O in Fig. 3e, while the peaks corre-
sponded to Bi, O, and Fe elements can be detected in Fig. 3f. 
The peaks further indicated that the nanosheets were con-
sisted of  Bi2O3 and nanoparticles of  BiFeO3 and the  Bi2O3/
BiFeO3 composite indeed formed from the two materials.

BET analysis

Figure 4 shows the  N2 adsorption–desorption isotherms of 
 Bi2O3/BiFeO3,  Bi2O3, and  BiFeO3. The isotherm of  Bi2O3/
BiFeO3 was belong to type V with an H3 hysteresis loop, 
indicating that the composite exhibited a porous structure 
and the slit pores were formed by the accumulation of 
nanosheets and nanoparticles. Such porous structure was 
extremely useful in photocatalysis as it would provide com-
municable channels for the diffusion of reactant molecules 
and products. The BET-specific surface area of  Bi2O3/
BiFeO3 was observed as 4.98 m2/g, while the BET surface 
areas of  Bi2O3 and  BiFeO3 were estimated to be 2.15 and 
9.09 m2/g, respectively. The result showed that a large spe-
cific surface area was not essential for the high performance 
of composite in the present study.

UV–Vis DRS analysis

The UV–Vis diffuse reflectance spectra (DRS) of the sam-
ples were investigated with the aim to probing their optical 
properties. As shown in Fig. 5a, commercial  TiO2 (P25) 
absorbed only ultraviolet light (λ < 420 nm). Pure  Bi2O3 and 
 BiFeO3 showed absorption edges at about 455 and 570 nm, 
respectively, indicating that  Bi2O3 and  BiFeO3 could absorb 
light with wavelength from UV to visible regions.  Bi2O3 has 
stronger absorbance in UV region, while  BiFeO3 in visible 
region.  Bi2O3/BiFeO3 composite had an absorption edge at 
about 560 nm, which was between the absorption edge of 
 Bi2O3 and  BiFeO3.

The optical absorption performance of a semiconductor 
is evaluated based on band-gap energy (Eg). The band-gap 
energy (Eg) was evaluated using the following equation 
(Xiao et al. 2013):

In this equation, α, h, ν, k, and Eg represent absorption 
coefficient, Planck constant, light frequency, a constant, and 
band-gap energy, respectively. In addition, the absorbance 
(A) of the photocatalyst is proportional to its absorption 
coefficient (α). The value of n depends on the characteristic 
of the transition in a semiconductor; it is 1 for  Bi2O3 and 4 
for  BiFeO3 (Xiao et al. 2013; Tong et al. 2016). The band-
gap energy of  BiFeO3 was calculated to be 1.70 eV, and the 
band-gap energy of  Bi2O3 was 2.83 eV.

The conduction band (CB) and valence band (VB) posi-
tions of  Bi2O3 and  BiFeO3 were speculated by a theoretical 
method. The CB (ECB) and VB (EVB) positions of a semicon-
ductor can be calculated by the following equations (Feng 
et al. 2015):

where X is the absolute electronegativity of the semiconduc-
tor. Ee is the energy of free electrons on the hydrogen scale 
(about 4.5 eV). Eg is the band-gap energy of the semicon-
ductor. The results are shown in Table 1.

Effect of initial Fe/Bi molar ratio

To investigate the effect of the initial Fe/Bi molar ratio, a 
series of  Bi2O3/BiFeO3 samples with different initial Fe/Bi 
molar ratios (1:1, 1:2, 1:3, and 1:4) were fabricated. The 
XRD patterns of the samples are shown in Fig. S1. When 
the initial Fe/Bi molar ratio was 1:1, pure  BiFeO3 was fab-
ricated. In addition, when the initial Fe/Bi molar ratio was 
1:2, 1:3, and 1:4, monoclinic  Bi2O3 was produced and the 
diffraction peaks of  Bi2O3 gradually increased in intensity 
when decreasing the initial molar ratio of Fe/Bi. The mass 
fraction of  Bi2O3 in  Bi2O3/BiFeO3 composites was calcu-
lated by MDI Jade 6.0 software and the results are shown 
in Table 2.

It was shown that the theoretical content of  Bi2O3 and the 
actual content of  Bi2O3 could be regarded as the same when 
increasing the initial molar ratio of Fe/Bi to 1:2. Excess 
 Bi2O3 was obtained when the initial molar ratio of Fe/Bi 
was low. We can get the required composition according to 
the theoretical arithmetic and experimental results.

Figure S2 illustrates the time courses of BPA degradation 
efficiency over  Bi2O3/BiFeO3 composites with different ini-
tial Fe/Bi molar ratios. The degradation efficiency increased 

(3)�h� = k
(

h�−Eg

)n∕2
.

(4)EVB = X−Ee + 0.5Eg,

(5)ECB = EVB−Eg,
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from 69.8 to 86.5% after 300 min of visible-light irradiation 
when the initial molar ratio of Fe/Bi decreased from 1:1 to 
1:3. However, when further decreased the initial Fe/Bi molar 

ratio in  Bi2O3/BiFeO3 composites from 1:3 to 1:4, the deg-
radation efficiency of BPA decreased to 70.6%. The high-
est degradation efficiency was obtained when the content 

Fig. 3  TEM images of  BiFeO3 
(a),  Bi2O3 (b) and  Bi2O3/
BiFeO3 (c, d), and the cor-
responding EDS spectrum of 
 Bi2O3 (e) and  BiFeO3 (f)
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of  Bi2O3 in  Bi2O3/BiFeO3 was 63.9%. This result implied 
that a suitable content of  Bi2O3 would help to enhance the 
photocatalytic activity, and the optimal initial Fe/Bi molar 
ratio was 1:3.

Photocatalytic degradation of BPA

Effect of photocatalyst dosage

To investigate the effect of photocatalyst dosages on the 
photocatalytic degradation efficiencies of BPA, various 
photocatalyst dosages (0.2, 0.5, 0.8, and 1.0 g/L) were used 
on the degradation efficiency of BPA at the initial BPA 
concentration of 10 mg/L, irradiation time of 300 min, and 
solution pH of 6.3. The results are provided in Fig. 6. The 
photocatalytic degradation efficiency enhanced from 57.1 to 
100% in 300 min when increasing of catalyst dosage from 
0.2 to 0.5 g/L. With increasing the catalyst dosage to 0.8 g/L, 
the degradation efficiency was still 100% after 300 min of 
visible-light irradiation. Further increasing the catalyst dos-
age to 1.0 g/L, the degradation efficiency decreased weakly 
to 97.4%. It was reported that lower catalytic activity was 
observed when a smaller amount of catalyst was used, 
because that insufficient catalytic active sites were applied 
(Chang et al. 2010). However, if the photocatalyst dosage is 
too high, the light penetration decreased and light scattering 
effect occurred (Sood et al. 2015). In addition, the number 
of catalytic surface active sites would decrease, which was 
possibly caused by the agglomeration and sedimentation of 
the photocatalyst particles at too high dosage (Puangpetch 
et al. 2010). Therefore, 0.5 g/L catalyst dosage was selected 
as the optimal dosage of photocatalysts for the sequential 
experiment.

Effect of initial BPA concentration

To investigate the effect of the initial BPA concentration on 
the photocatalytic degradation efficiencies of BPA, various 
initial BPA concentrations (10, 15, 20, and 30 mg/L) were 

Fig. 4  Nitrogen adsorption–desorption isotherm of  BiFeO3,  Bi2O3/
BiFeO3, and  Bi2O3

Fig. 5  UV–visible absorption spectra and Kubelka–Munk plot of var-
ious photocatalysts
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used on the degradation efficiency of BPA at catalyst dos-
age of 0.5 g/L, solution pH of 6.3, and irradiation time of 
300 min. Results are provided in Fig. 7. The results showed 
that the degradation efficiencies decreased with the increase 
of BPA concentration. With the initial BPA concentration 10, 
15, 20, and 30 mg/L, the photocatalytic degradation efficien-
cies at 300 min were 100, 72.0, 62.6, and 39.9%, respectively. 
Similar results had been reported by others using different 
catalysts (Chang et al. 2010). With the BPA concentration 
ranged from 10 to 30 mg/L, organic pollutant molecules 
accumulated on the surface of photocatalyst and the active 
sites were covered by high concentration of BPA, which 
resulted in the decrease of photocatalytic degradation effi-
ciencies. Another possible reason was that more degradation 
intermediates were produced at higher BPA concentration, 
which would lead to the competitive adsorption between deg-
radation intermediates and target pollutant (BPA), and finally 
caused the decrease of degradation efficiencies.

Effect of solution pH

To investigate the effect of solution pH on the degradation 
of BPA, BPA degradation experiments were performed in 
the pH range of 3.0–11.0 with catalyst dosage of 0.5 g/L, 
initial BPA concentration of 10 mg/L, and irradiation time 
of 300 min. The pH value of BPA solution in natural condi-
tion was 6.3. In addition, the other pH values were adjusted 
by NaOH (0.01 mol/L) and HCl (0.01 mol/L) solution. From 
Fig. 8, we could see that the highest degradation efficiency 
was obtained at natural condition (pH 6.3), and all BPA were 
degraded after 300 min of visible-light irradiation. The pho-
tocatalytic degradation efficiencies at solution pH of 3.0, 5.0, 
7.0, 9.0, and 11.0 were 15.2, 72.3, 84.2, 59.8, and 40.4% 
in 300 min, respectively. It could be seen that lower photo-
catalytic activities were observed with the pH value deviated 
from natural condition. As well known, hydroxyl radicals 
(·OH) were generated by oxidizing hydroxide ions and they 

could react with much organic pollutants. It was reported that 
·OH was easier to be generated by oxidizing more hydroxide 
ions available on photocatalyst surface in alkaline solutions 
(Konstantinou and Albanis 2004). Therefore, the possible 
cause induced low degradation efficiencies at strong acid con-
ditions was that less hydroxyl radicals (·OH) were generated 
because of lower  OH− concentration, which would greatly 
effect the photocatalytic activities. On the other hand, BPA 
existed in the form of anions at alkaline condition, which may 

Table 1  Absolute electronegativity, calculated CB position, calcu-
lated VB position and band-gap energy for  Bi2O3 and  BiFeO3

Semicon-
ductors

Absolute 
electronega-
tivity X (eV)

Calculated 
CB position 
ECB (eV)

Calculated 
VB position 
EVB (eV)

Band-gap 
energy Eg 
(eV)

Bi2O3 5.95 0.04 2.87 2.83
BiFeO3 5.74 0.39 2.09 1.70

Table 2  Effect of initial Fe/Bi 
molar ratio

Initial molar ratios of Fe/Bi Fe/Bi = 1:1 Fe/Bi = 1:2 Fe/Bi = 1:3 Fe/Bi = 1:4

Composition BiFeO3 Bi2O3/BiFeO3 Bi2O3/BiFeO3 Bi2O3/BiFeO3

Theoretical content of  Bi2O3 (wt %) 0 42.7 59.8 69.1
Actual content of  Bi2O3 (wt %) 0 42.7 63.9 89.2

Fig. 6  Time courses of BPA degradation efficiency with different 
 Bi2O3/BiFeO3 photocatalyst dosages

Fig. 7  Time courses of BPA degradation efficiency over  Bi2O3/
BiFeO3 composite with different initial BPA concentrations
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repel the negative charged surface of photocatalyst (Konstan-
tinou and Albanis 2004) and hydroxyl radicals (·OH). And 
then, the photodegradation efficiencies decreased. The results 
indicated that the degradation efficiency of BPA over  Bi2O3/
BiFeO3 composite was most favorable at natural condition.

Photocatalytic activity evaluation

To evaluate the photocatalytic activity towards BPA of pre-
pared  Bi2O3/BiFeO3 composite, a series of experiments were 
carried out at photocatalyst dosage of 0.5 g/L, initial BPA 
concentration of 10 mg/L, irradiation time of 300 min, and 
solution pH of 6.3. The visible-light-driven photocatalytic 
properties of fabricated  Bi2O3/BiFeO3 composite,  Bi2O3, 
 BiFeO3, and P25 are shown in Fig. 9a. Under visible-light 
irradiation, the self-degradation of BPA could be negligible. 
 Bi2O3/BiFeO3 composite showed an enhanced photocata-
lytic activity compared to  Bi2O3 and  BiFeO3. For instance, 
the degradation efficiency of the  Bi2O3/BiFeO3 composite 
could reach nearly 100% within 300 min, while 49.2, 69.9, 
and 22.3% of degradation efficiencies were obtained for 
pure  Bi2O3, pure  BiFeO3. and P25, respectively. The result 
indicated that the combination of  Bi2O3 and  BiFeO3 could 
inhibit the recombination of photogenerated electron–hole 
pairs and enhance the photocatalytic activity efficiently.

To further investigate the photocatalysis, the degradation 
kinetics of BPA using fabricated  Bi2O3/BiFeO3 composite, 
 Bi2O3,  BiFeO3, and P25 were investigated by fitting the experi-
mental data to the pseudo-first-order kinetic model. The results 
shown in Fig. 9b illustrated that the reaction kinetics of all 
samples can be very well fitted by the pseudo-first-order rate 
model. The k value of BPA self-degradation was 0.0000673 /
min, which could be neglected. In addition, the calculated k 
values for fabricated  Bi2O3/BiFeO3 composite,  Bi2O3,  BiFeO3, 

and P25 were 0.00871, 0.00238, 0.00389, and 0.001 /min, 
respectively. Namely, the reaction rate constant over fabricated 
 Bi2O3/BiFeO3 composite is 2.23, 3.65, and 8.71 times higher 
than that of  BiFeO3,  Bi2O3, and P25, respectively, proving that 
 Bi2O3/BiFeO3 composite was a promising photocatalyst.

Recyclability

To investigate the recyclability of  Bi2O3/BiFeO3 photo-
catalyst, the recycled experiments were carried out. After 
each photocatalytic reaction, the  Bi2O3/BiFeO3 photocata-
lyst was centrifugated and washed by anhydrous alcohol 
for reuse, and then, the next cycle was started with the 
photocatalyst dosage of 0.5 g/L, initial BPA concentration 
of 10 mg/L, solution pH of 6.3, and irradiation time of 
300 min. From Fig. 10, the removal rate decreased from 
96.9 to 71.4% after three cycles, but it is clearly shown 

Fig. 8  Time courses of BPA degradation efficiency over  Bi2O3/
BiFeO3 composite with different solution pHs

Fig. 9  Time courses of BPA degradation efficiency over  Bi2O3/
BiFeO3 composite,  Bi2O3,  BiFeO3 and P25 (a) and the correspond-
ing fitted plots of pseudo-first-order kinetics (b) (experimental condi-
tions: photocatalyst dosages of 0.5 g/L, initial BPA concentration of 
10 mg/L, solution pH of 6.3, and irradiation time of 300 min)
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that the photocatalytic activity of  Bi2O3/BiFeO3 was 
still higher than  Bi2O3 or  BiFeO3, suggesting that  Bi2O3/
BiFeO3 was a stable and efficient photocatalyst.

Photocatalytic mechanism

On the basis of experimental results, a possible photocatalytic 
mechanism was proposed for the photodegradation of BPA 
over  Bi2O3/BiFeO3 composite (Fig. 11).

When  Bi2O3/BiFeO3 photocatalyst was subjected to the 
visible-light irradiation, both  Bi2O3 and  BiFeO3 were excited 

with photogenerated electrons and holes produced. The pho-
togenerated electrons in the CB of  Bi2O3 would transfer to CB 
of  BiFeO3, and the holes in the VB of  Bi2O3 would transfer to 
VB of  BiFeO3. This could help to reduce the recombination 
of electron–hole pairs, and thus, the photocatalytic activity of 
 Bi2O3/BiFeO3 composite could be enhanced. It was known 
that the standard redox potentials of  O2/·O2

− and ·OH/H2O 
were + 0.13 and + 2.68 eV at pH 7, respectively (Chen et al. 
2015). In this system, the CB edge of  Bi2O3 was more nega-
tive than + 0.13 eV, indicating that ·O2

− radicals could be 
produced. In addition, the VB edge of  Bi2O3 was more positive 
than + 2.68 eV, indicating that the photogenerated holes in the 
VB of  Bi2O3 had enough ability to oxidize  H2O to give ·OH 
radicals. According to the above results, ·OH and ·O2

− radi-
cals were produced in the process and then participated in the 
photocatalytic reaction. Besides, organic pollutants would be 
oxidized via the excess of holes in the valence band of  Bi2O3 
and  BiFeO3. In a word, ·OH radicals, ·O2

− radicals, and holes 
simultaneously participated in the degradation mechanism.

The possible reactions in the photodegradation process of 
BPA were as follows:

Bi2O3 → Bi2O3(e
−) + Bi2O3

(

h+
)

(h�)

BiFeO3 → BiFeO3(e
−) + BiFeO3

(

h+
)

(h�)

Bi2O3

(

h+
)

+ H2O → ⋅OH

Bi2O3(e
−) + O2 → ⋅O−

2

⋅ O−
2
+ BPA → Degradation products

⋅ OH + BPA → Degradation products

Bi2O3

(

h+
)

+ BPA → Degradation products

BiFeO3

(

h+
)

+ BPA → Degradation products.

Fig. 10  Recycled photodegradation of BPA over  Bi2O3/BiFeO3, 
 Bi2O3, and  BiFeO3 (experimental conditions: photocatalyst dosages 
of 0.5 g/L, initial BPA concentration of 10 mg/L, solution pH of 6.3, 
and irradiation time of 300 min)

Fig. 11  Charge carrier dynam-
ics and pollutant degradation 
mechanism in  Bi2O3/BiFeO3 
composite under visible light
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Conclusions

In this paper,  Bi2O3/BiFeO3 composite photocatalyst was 
successfully fabricated by a one-step sol–gel method using 
Bi(NO3)3·5H2O as bismuth source and Fe(NO3)3·9H2O as 
iron source. Effect of various reaction parameters on the 
BPA degradation under visible light was investigated in 
detail and concluded that the catalyst dosage of 0.5 g/L, 
initial BPA concentration of 10 mg/L, solution pH 6.3, and 
63.9% of  Bi2O3 in the composite was favorable to achieve 
maximum efficiency. The reaction rate constant over opti-
mized  Bi2O3/BiFeO3 composite is 2.23, 3.65, and 8.71 times 
higher than that of  BiFeO3,  Bi2O3, and P25, respectively. 
 Bi2O3/BiFeO3 showed high photocatalytic activity after 
three cycles, suggesting that it was a stable photocatalyst. 
According to the theoretical calculation and the experimen-
tal results, ·OH radicals, ·O2

− radicals, and valence band 
holes played significant roles in the photocatalytic reaction.
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