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Abstract A comprehensive and largest (to the best of our

knowledge) database of 791 essential oil components

(EOCs) with corresponding gas chromatographic retention

properties has been built. With this data set, Quantitative

structure–retention relationship (QSRR) models for the

prediction of the Kováts retention indices (RIs) on the non-

polar DB-5 stationary phase have been built using the

DRAGON molecular descriptors and the regression meth-

ods: multiple linear regression (MLR) and artificial neural

networks (ANN). The obtained models demonstrate good

performance, evidenced by the satisfactory statistical

parameters for the best MLR (R2 = 96.75% and

Q2
ext = 98.0%) and ANN (R2 = 97.18% and

Q2
ext = 98.4%) models, respectively. In addition, the built

models provide information on the factors that influence

the retention of EOCs over the DB-5 stationary phase.

Comparisons of the statistical parameters for the QSRR

models in the present study with those reported in the lit-

erature demonstrate comparable to superior performance

for the former. The obtained models constitute valuable

tools for the prediction of RIs for new EOCs whose

experimental data are undetermined.

Keywords Gas chromatography � Retention index �
Essential oil � Quantitative structure–retention

relationships � Multiple linear regression � Artificial neural

networks

Introduction

Essential oils are composite mixtures of varying compo-

sition (20–60 components) and abundance [ranging from

traces (ng/g) to fairly high concentrations (g/100 g)] with

the major components belonging to the phenolic mono- and

sesqui-terpenoid chemical groups. Essential oils have

increasingly found applications in a diverse range of

industries including: food processing, perfumery, cosmet-

ics, pharmaceutical production, winery, etc., particularly

due to their antioxidant and antimicrobial activity, attrib-

uted to the phenyl moieties in their structures (Bajpai et al.

2009). The evaluation of the essential oils’ composition

profiles is crucial in determining the components respon-

sible for their chemical/biological activity.
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The gas chromatography (GC) technique is one of the

most powerful tools in analytical chemistry and has been

widely used (almost irreplaceably) in the analysis of

essential oils (Adams 2001; Olivero et al. 1997; Zhao et al.

2009). The GC method produces a single parameter (re-

tention index), which may be used for the identification of

virtually any compound under well-defined conditions

(Acevedo-Martı́nez et al. 2006). Chromatographic reten-

tion is a complex phenomenon in which various types of

intermolecular forces are involved and these include:

dipole–dipole (or Keesom) forces, dipole-induced dipole

forces, London dispersion forces, electron donor–acceptor

complexes, as well as hydrogen bonds. These forces col-

lectively determine the partition of the solute between the

mobile and stationary phases (Fritz et al. 1979; Ong and

Hites 1991; Peng et al. 1988; Yancey 1994). The chro-

matographic retention profile for molecules can be mea-

sured using different parameters which include: retention

time, linear-temperature programmed retention index, Lee

retention index, boiling point correlation, equivalent chain

length, Kováts retention distance, and the most popular one

the Kováts retention index (RI) (Babushok 2015; Kováts

1958; von Mühlen and Marriott 2011). The RI is a relative

retention parameter normalized with respect to n-alkane

series as a standard. It thus has an advantage of being

independent of individual chromatographic system char-

acteristics, which explains its wide application in QSRR

studies (Rohrschneider 1965).

Nowadays, gas chromatography systems hyphenated

with mass spectrometry (GC–MS) are considered as stan-

dard analytical platforms, with the latter providing com-

plementary information for structural identification.

However, GC–MS data (retention times and mass spectra)

do not always provide sufficient evidence for structural

profiling and thus prediction models may be useful for

ultimate structural verification. In addition, the identifica-

tion of compounds is often performed by matching the GC

peaks with a standard of the suspected chemical. The set-

back for this approach is that standard samples with the

required degree of purity are sometimes unavailable, and in

such cases, theoretical model for estimating the RIs may be

a useful alternative (Hodjmohammadi et al. 2004). The

identification of essential oils components is particularly

challenging as many constituent terpenes provide identical

MS, owing to the fact that they yield similar fragments

upon ionization. Moreover, compounds not registered in

the existing MS libraries are rather difficult to identify and

often lead to erroneous assignments (false positives). In

this sense, the integration of chemical information from

theoretical retention indices allows for the elucidation of

MS data, and consequently more accurate peak assignment

of essential oil components. Indeed, MS libraries are cur-

rently incorporating retention index data for all registered

compounds (Mondello 2015; NIST 2017).

The correlation between gas chromatographic retention

indices and molecular parameters provides a significant

information on the effect of the molecular structural

characteristics on the retention time and on the possible

mechanisms for absorption and elution (Körtvélyesi et al.

2001). Good correlations have been obtained between RIs

and theoretically calculated data for molecules with dif-

ferent functional groups: alkanes (Görgényi et al. 1989),

alkybenzenes and naphthalenes (Dimov et al. 1994),

dialkylhydrazones (Kiraly et al. 1996), phenol derivatives

Table 1 QSRR models for the prediction of the RIs for essential oils components using MLR and families of DRAGON MDs based on the

apolar stationary phase DB-5

MD type Models No.

All DRAGON

MDs

RI = 315.4270 (±22.8496) ? 8.9710 (±0.2768) MW - 64.7769 (±3.2362) RBN - 68.5399 (±5.0842)

X2v - 180.4735 (±10.7349) MATS2m - 178.2409 (±11.8427) GATS2m - 174.6514 (±30.2488) E3u ? 60.5358

(±6.9529) HTm - 821.4969 (±123.1227) HATS3m - 566.4689 (±62.1945) R5m ? 46.4828 (±2.2600)

nCs - 47.7686 (±3.6273) nCrs

(1)

3D RI = 175.5397 (±44.5928) ? 200.0965 (±15.8300) DP01 - 16.0241 (±2.2008) J3D ? 1.0708 (±0.1290)

H3D - 340.6341 (±41.5330) RDF020m ? 224.8065 (±19.4184) RDF020v - 177.6682 (±24.3254)

Mor27m - 36.2096 (±5.3076) Mor03v - 294.3802 (±32.6961) Mor26v ? 529.8989 (±88.3242) Du - 1779.0363

(±153.8564) Dv ? 131.4808 (±5.7147) HTm

(2)

2D RI = -536.6519 (±105.8288) - 3.1879 (±0.2117) ZM2V ? 73.0030 (±2.5197) Dz ? 1045.2636 (±158.3998)

MSD - 12.9239 (±0.9881) Rww - 319.9770 (±86.2795) piPC01 ? 354.8943 (±53.5003) piPC02 ? 7.1269

(±0.9637) PCD - 2.4443 (0.2821) TIC2 ? 56.6151 (±12.5004) IC4 - 148.1708 (±11.9387)

MATS2m - 116.3300 (±14.7029) GATS2m

(3)

0D-1D RI = 196.4010 (±17.0234) ? 13.5301 (±1.8236) Ss ? 63.2356 (±3.6204) SCBO - 75.0738 (±9.6783)

nCIC - 36.8603 (±4.0298) RBN - 54.6929 (±4.8279) nDB ? 50.2084 (±3.5599) nCs ? 8.9209 (±3.5054)

nCt - 31.3332 (±4.6627) nCrs ? 29.7728 (±3.8676) nR = Cs ? 6.3350 (±1.0142) H-046-42.8890 (±7.3439)

MLOGP

(4)
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(Kaliszan and Höltje 1982), azo compounds (Kortvelyesi

et al. 1995), primary, secondary, and tertiary amines (Os-

mialowski et al. 1985), polycyclic aromatic hydrocarbons

(Rohrbaugh and Jurs 1986), various aromatic compounds

(Gautzsch and Zinn 1996), alcohols, esters, ketones,

monoterpenes, di- and tricyclicmethyl esters, and mono-

cyclic ketones (Duvenbeck and Zinn 1993), odor-active

aliphatic compounds with oxygen-containing functional

groups (Anker et al. 1990), stimulants and narcotics (Ge-

orgakopoulos et al. 1991a), anabolic steroids (Geor-

gakopoulos et al. 1991b), etc., using several models

ranging from linear ones (e.g., multiple linear regression,

partial least squares, and principal component regression)

to non-linear ones (e.g., artificial neural network, support

vector machine, etc.) (Albaugh et al. 2009; Qin et al.

2013a, bQin et al. 2009; Skrbic and Onjia 2006).

Nonetheless, it is important to bear in mind that the

ultimate objectives of constructing QSRR models are for

their use in the prediction of properties of newly identified

compounds whose chemical profiles are not known and for

providing greater knowledge on the general mechanisms

involved in solute–solute, solute–mobile phase, and solute–

stationary phase interactions, respectively. To achieve this

goal, it is imperative that the models are constructed over

wide chemical space and have good generalizability.

Unfortunately, the majority of the QSRR studies have been

performed on small and/or congeneric data sets (Azar et al.

2011; Jalali-Heravi and Ebrahimi-Najafabadi 2011; Noor-

izadeh and Farmany 2010; Qin et al. 2009, 2013b; Yan

et al. 2015), with a few exceptions in the literature (Dossin

et al. 2016; Garkani-Nejad et al. 2004; Zhang et al. 2017).

In the particular case of essential oils, despite the vast lit-

erature on the identification and characterization of novel

constituent compounds, QSRR models have been generally

built on data sets of sizes ranging from 25 to 169 com-

pounds, with most of these belongings to a single chemical

series. Certainly, such models have reduced utility as they

do not cover an extensive structural space of known

essential oils components. It is thus important that wide

and diverse data sets for essential oils be constructed and

QSRR models be built thereof to guarantee a wider

applicability domain (AD) and thus generalization ability.

The aim of the present study is to develop a compre-

hensive data set of constituent components of essential oils

and posteriorly develop statistical and artificial intelligence

models relate the retention behavior of these components

over the apolar stationary phase DB-5 [(5% Phenyl)-

methylpolysiloxane] with DRAGON’s molecular structure

characterizing parameters.

Experimental

Construction of the essential oils data set

An extensive literature review on theoretical and experi-

mental studies on essential oils was performed and a data

set comprised of 791 chemical structures with their corre-

sponding average RI values was built. To guarantee the

homogeneity and thus comparability of the RI values for

the constituent components, only target Kováts RI values

obtained under similar experimental conditions on standard

non-polar 5% phenyl methyl polysiloxane stationary phase

(DB-5 or HP-5) of GC–MS system were considered. This is

a critical step as it minimizes the possibility of experi-

mental outliers. The distribution of retention indices is

shown in Fig. 1, which demonstrates the diversity of the

constructed data set.

The compounds and their corresponding retention indi-

ces are given as Supplementary Information, SI1 and SI2.

For dissimilar RI values obtained under homogeneous

conditions for the same compound, the average value was

considered. In general, the measurement errors of the GC

retention indices are in the range of ±2 standard deviations

(s) of the RI values. Compounds whose RI values presented

high standard deviations were not included in during the

data set compilation. The molecular structures of data set

were sketched using ChemDraw Ultra module of the

ChemOffice software (Jaworska 2005). The sketched

structures were exported to Chem3D module to create their

3D structures. The geometry optimization was done using

semiempirical AM1 (Austin Model) Hamiltonian method

and closed shell restricted wave function available in the

MOPAC module.

Table 2 Principal statistical

parameters for the four optimal

MLR models

Model R2
R2

adj
Q2

Q2
boot Q2

ext
a (R2) a (Q2) F SDEPa SDECb

All MDs (1) 96.8 96.69 96.60 96.54 98.00 -0.008 -0.049 1616.01 54.668 53.447

3D (2) 95.8 95.73 95.63 95.55 98.23 -0.007 -0.048 1239.38 62.011 60.73

2D (3) 95.9 95.83 95.72 95.67 98.13 -0.008 -0.049 1270.35 61.313 60.016

0D-1D (4) 95.2 95.12 94.98 94.89 98.22 -0.007 -0.048 1077.56 66.399 64.927

a,b Standard deviation error of prediction and calculation, respectively
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Descriptor generation

A total of 3224 molecular descriptors (MDs) were com-

puted for the constructed data set using the DRAGON

software (Todeschini et al. 2007). Given the high dimen-

sionality of the obtained data matrix (791 9 3224), we

applied a simple variable selection procedure based on

Spearman’s correlation coefficient (R), where for each pair

of descriptors with R C 0.95, only one is retained. Con-

sequently, a lower dimensionality data matrix comprising

of 1476 MDs was obtained.

Data set splitting and statistical analysis

The earnest predictive power of any model can only be

assessed over a set of compounds not used in the model

training, also known as the test set. In this sense, the

essential oils data set is split into training and test sets,

respectively, using the cluster analysis technique imple-

mented in the STATISTICA 8.0 software (Statsoft 2001).

First, hierarchical clustering was performed using the

Euclidean distance and complete linkage, as the distance

measure and linkage rule, respectively. The output den-

drogram is comprised of a hierarchical cascade in which

the base level represents each compound as belonging to a

separate cluster, and for each level uphill, compounds (or

clusters) with minimum distances are grouped together. To

determine the optimum number of clusters, the distance

corresponding to the steepest ascent in the amalgamation

schedule is used as the cutoff. Posteriorly, k-means cluster

analysis is performed; with k representing the number of

clusters determined using hierarchical cluster analysis.

Finally, the test set (representing approximately 25% of the

data set) was selected by rank ordering the chemical

compounds in each of the clusters according to the

experimental RI values and sampled to span the entire

property space. This splitting procedure guarantees that the

structural and property spaces are broadly represented in

the test for external prediction.

Multiple linear regression

To obtain the linear QSRR models for the gas chro-

matography Kováts retention index (GC–RI) of essential

oils components, multiple linear regression coupled with

the Genetic Algorithm (MLR–GA) (Devillers 1996;

Kubinyi 1994; Leardi 1994) was used as the fitting method

for the RI and variable selection strategy, respectively. The

choice of MLR statistical technique is because of its sim-

plicity, while the key advantage of the GA as a search

strategy is that a set of optimum models are obtained with

less computational effort, in the sense that a global maxi-

mum is achieved without exploring all combinations of

variables in the data matrix space. The leave one out cross-

validation parameter (Q2
loo) was used as the objective

function. For this study, the MOBY-DIGS program

(Todeschini et al. 2004) was employed and the following

configurations for the GA were considered: population

size, 100; generations, 10 000; probability of mutation, 0.5;

number of crossover, 5000.

Model validation techniques

The obtained models were tested for their robustness using

the bootstrapping validation (Q2
boot) procedure and Y-ran-

domization [a (Q2)] was used to check for fortuitous cor-

relation. Other statistical parameters considered include:

Fisher score (F), standard deviation error of prediction

(SDEP), and standard deviation error in calculation

(SDEC). Therefore, a multi-criteria approach was used to

select the best model from the set of models obtained with

the MLR–GA method. Posteriorly, the best models were

assessed for their predictive power and using the external

validation (Q2
ext) procedure on the external set compounds.

In addition, the Y-randomization test was carried out to

check for fortuitous correlation; low intercept values [i.e., a

(R2) and a (Q2)] are indicative of stability to this

phenomenon.

Model applicability domain (AD)

The AD is a theoretical region in the chemical space

defined by the model’s independent and response variables,

and thus by the nature of the chemicals in the training set as

represented by specific MDs (Gramatica 2007). A large and

diverse training set contributes to a wide AD, although it is

equally important to employ an inclusive structure

description method that characterizes (explicitly or

implicitly) all relevant structure features. If the structural

characteristics of novel compounds are represented in the

training data, and also adequately encoded by the model

descriptors, it is reasonable to expect that there will be an

Fig. 1 Distribution of retention index values for data set
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increased probability of accurate property predictions for

these compounds. In fact, only the predictions for chemi-

cals that lie within the AD for a given model can be con-

sidered as reliable (Jaworska 2005).

Several approaches have been reported in the literature

on determining the model’s AD, with the most common

being the leverage approach (Atkinson 1985). This

approach is based on some sort of ‘‘distance’’ metric (also

known as the leverage, denoted by h) with which the

separation of compounds from the model’s experimental

space (the structural centroid of the training set) is deter-

mined as a measure of the influence of chemical structures

on the model, in the sense that chemicals close to the

centroid are less influential in model building than extreme

points. Prediction should be considered unreliable for

compounds with h values greater than the critical value h*,

as these lie outside the AD of the model, i.e., are struc-

turally distant from the training chemicals (h* = 3p0/n, p0

is the number of model variables plus one, and n is the

number of the objects used to calculate the model). In

addition, the models AD should be examined for possible

outlying compounds, i.e., poorly fitted data points that

cause models to deviate from the actual line of best fit. The

criterion for flagging a compound as an outlier involves the

computation of the standardized (or studentized) residuals.

It follows that compounds with standardized residual val-

ues greater than ±3 (or ±2.5 in the case of studentized

residuals) should be analyzed for possible outlying

behavior (Alvarez 1995).

Artificial neural networks

Non-linear methods for multiple regressions such as arti-

ficial neural networks, support vector machine, and random

forest have increasingly found utility in QSRR studies

following the understanding that the relationship between

molecular parameters and corresponding properties may

not necessarily be linear. In fact, it has been demonstrated

that non-linear models are capable of providing improved

predictions of QSRR models. Therefore, to examine the

possible non-linear relationship of the RIs and the MDs

employed in the present report, artificial neural network

(ANN) models were trained using the feedforward back-

propagation algorithm. For these models, the same vari-

ables contained in the final MLR models were used as

inputs and the following parameters were optimized: initial

weights, number of nodes in the hidden layer, learning rate,

the momentum, and number of iteration cycles. The values

corresponding to the minimum prediction error were

selected as the optimal parameters. In this study, a three-

layered ANN was employed, i.e., comprised of one hidden

layer, in addition to the input and output layers, respec-

tively. The early stopping criterion was used to avoid the

over-fitting phenomenon. The training and test errors were

reported for each 500 cycles and these values used to

construct a learning curve with which the network’s

training was monitored to guard against overtraining and

subsequent loss of generalizability of the models. An

ascent in the learning curve (corresponding to an increase

in the prediction error) was used as a flagging point for

stopping the learning process.

Results and discussion

Design of the training and validation sets using

cluster analysis

Figure 2 shows the output dendrogram for hierarchical

cluster analysis. From the amalgamation schedule, 20

clusters were determined and this number (k value) pos-

teriorly used to perform the k-means cluster analysis.

The ensuing clusters were then employed to split the

data in training and validation sets. Note that 13 struc-

turally atypical compounds were identified with cluster

analysis and these were excluded, as they were indicative

of outlier behavior, and thus, 778 chemical structures were

retained. The resulting data set was split into training and

test sets, with the 650 and 128 compounds, respectively.

Construction of MLR models and determination

of optimum dimension

The MLR-based GC–RI models of size 4–15 variables

were built over the training set and the best regressions

(according to the optimization function) for each model

magnitude selected for posterior validation. Figure 3 shows

the statistical parameters for the best 4–15 variable models

Fig. 2 Dendrogram of the hierarchical analysis k-MCA
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obtained in the present study. As can be observed, the

obtained models generally possess good statistical behavior

with correlation coefficients for the internal cross-valida-

tion Q2
loo, Q2

boot superior to 87%, while the external vali-

dation coefficients Q2
ext are greater than 84% for all model

sizes. It can thus be inferred that generally, the obtained

models possess high predictive power and generalizability.

To determine the optimum model size, the statistical

parameters R2, Q2
loo, Q2

boot, and Q2
ext for the different model

sizes were compared (see Fig. 3). Although the 14-variable

model yields superior statistical parameters, the 11-variable

Fig. 3 Statistical parameters for MLR models for different sizes

Fig. 4 Experimentally predicted RIs for the MLR models. Training set in green and prediction set in blue
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model is empirically chosen as the optimal model size

considering the parsimony principal (Occam razor). The

correlation matrix of the 11 MDs contained in the selected

model as well as the corresponding Pareto diagram are

provided as Supplementary Information, SI3 and SI4,

respectively.

Subsequently, the selected model’s AD was examined

for possible outlying compounds. For the best model, 29

statistical outliers were identified, and when these com-

pounds were excluded from the training set, the model’s

descriptive and predictive ability significantly improved,

justifying their ultimate exclusion. The structures of these

outlying compounds are provided as Supplementary

Information SI5. Therefore, the final data set constituted

762 compounds with the training and test sets, comprised

of 609 and 153 compounds, respectively. In parallel, the

DRAGON MDs were stratified into three groups, i.e., 0–

1D, 2D, 3D, and models built for each case and their

performances compared with the model built from the

entire set of MDs. Tables 1, 2 show the equations for the

best MLR models and the corresponding statistical

parameters, respectively, for each of the MD sets (all

DRAGON MDs, 3D, 2D, and 0-1D). As can be observed,

the results obtained are satisfactory; all the correlation

coefficients, Q2
loo and Q2

boot, are greater than 94%, while the

Q2
ext values are superior to 98%. In addition, the a (Q2) and

a (R2) parameters and thus the models are not prone to

chance correlation.

Other parameters considered in the analysis of the

quality of the obtained models include: the Fisher score

(F), root-mean-squared errors calculated on the training

and test sets, denoted by SDEC and SDEP, respectively. As

can be observed from Table 2, the models’ parameters are

satisfactory. It can, therefore, be deduced that the built

models are robust and possess high predictive power.

Figure 4 shows the relationship between the experi-

mental and predicted results of the training and prediction

sets for the 4 models (see Supplementary Information SI6

for experimental and predicted values for the models). As

can be observed, there exists a close linear association

between the experimental and predicted GC–RI endpoints

for both the training and test sets, respectively.

Model applicability domain (AD)

Figure 5 shows the Williams plots for the obtained models.

As can be observed, almost all chemicals lie within the AD,

demonstrating the reliability of the models. Some chemi-

cals slightly exceed the critical HAT value (vertical line),

but these belong to the training set. Moreover, the removal

of these compounds did not significantly alter the corre-

sponding statistical parameters and thus their removal is

not justified. On the other hand, a few chemicals are

wrongly predicted ([3 s) for each model, but in all the

cases belong the models’ AD as their HAT values are

lower than the cutoffs. This erroneous prediction could

probably be attributed to wrong experimental data rather

than significant structural differences with respect to

compounds within the AD. We presume that the measured

GC–RI values are not appropriate and need additional

verification. The identities of these compounds as well as

their corresponding sources (references) are provided as

Supporting Information SI1–2, SI6.

The validation set was designed to include examples

spanning all structural moieties in the data set. Therefore,

the satisfactory prediction of the validation structures

Table 4 Statistical parameters

obtained with the MLR

(Eqs. 1–4) and ANN (Eqs. 1a–

4a) models

Model 1 (a) Model 2 (a) Model 3 (a) Model 4 (a)

MLR ANN MLR ANN MLR ANN MLR ANN

R2
t

96.8 97.18 95.8 96.17 95.9 96.21 95.2 96.29

R2
p

98.00 98.35 98.23 98.50 98.13 98.29 98.22 98.24

SDEC 53.447 53.48 60.73 59.98 60.016 63.96 64.927 63.35

SDEP 54.668 67.10 62.011 63.43 61.313 68.46 66.399 69.31

Table 3 Optimization parameters for the four ANN models

Models Intervals for the initial

weight values

Number of hidden

nodes (x)

Number of

adjustable parameters

Learning

rate

Momentum Number of optimum

iteration cycles

1a (0.3; 0.3) 8 105 0.1 0.4 24,000

2a (0.4; 0.4) 15 196 0.2 0.2 1500

3a (0.5; 0.5) 5 66 0.1 0.5 9500

4a (0.4; 0.4) 7 92 0.1 0.2 7000
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123



suggests that the obtained models could be successfully

applied in the prediction of GC–RIs of a diverse set of

compounds provided that they lie within the models’ AD

(Albaugh et al. 2009). For test set William’s plots for the

MLR models, see Supplementary Information, SI7. No

significant differences have been found between the sta-

tistical parameters of four models neither in the training nor

in the validation set, although the first model provides the

best description for the GC–RIs on the independent test set.

Nonetheless given that each model has a distinct AD, it is

desirable that the 4 models be jointly used for predicting

the GC–RI to enhance the reliability of the modeling pro-

cedure. This is known as consensus modeling or ensemble

averaging. In fact, it is observed that ensemble averaging of

the obtained models provides greater approximation to the

experimental GC–RI values. For example, the predicted

values for trans-a-Bergamotene are 1478.28, 1412.29,

1456.17, and 1462.47 i.u, according to models 1, 2, 3, and

4, respectively, yielding an average value of

1452.30 ± 28.25, while experimental the GC–RI is

Fig. 5 Williams plot for MLR models on the training set

64 Chem. Pap. (2018) 72:57–69

123



1436.33 ± 4.50 i.u., which is a good correspondence of

averages with overlapped standard deviations. The utility

of consensus modeling in enhancing the performance of

QSRR models, particularly in the identification of com-

pounds without commercially available references, has

been validated in other reports in the literature (Dossin

et al. 2016).

Artificial neural network-based regression models

For the ANN models, the same variables (MDs) and set of

training and test compounds used to build the final MLR

models (i.e., 609 and 153 compounds, respectively) were

employed. The input layer was comprised of 11 neurons

corresponding to the models’ independent variables/MDs,

while the output layer contained a single neuron corre-

sponding to the dependent variable (RI values). Table 3

shows the optimum parameters for the four ANN models

obtained for 30,000 cycles (Eqs. 1a–4a).

With these parameters, four ANN models were trained

and posteriorly validated over the test set. Table 4 shows

the correlation parameters obtained with the ANN models.

In addition, a comparison of the results obtained ANN

regressions with the MLR models is performed to evaluate

the contribution of non-linear relationships in modeling the

GC–RI (see Table 4). As can be observed, all models yield

minor improvements in correlations with the RI values for

both the training and test sets using the ANN compared to

the MLR technique. Although these improvements may not

be considered as statistically significant, the incorporation

of the ANN in consensus modeling should contribute to

more robust and reliable predictions.

On the other hand, note that the SDEP values are higher

for the ANN than MLR models due to compound 433,

which has an extremely high relative error (see Supple-

mentary Information, SI8). It can thus be inferred that this

compound is not adequately predicted by non-linear mod-

els but rather linear ones. Nonetheless, this compound is a

member of the prediction set, and, therefore, the AD and

validity of the ANN models are not affected. Residual

analysis of the ANN models to check for possible sys-

tematic errors was performed and it was observed that the

residual points are randomly propagated over both sides of

the zero residue axes and, therefore, the regressions were

correctly computed (see Supplementary Information SI9

for residual plots).

Moreover, the sensitivity of the variables (MDs) in the

ANN model was assessed to determine their relative

importance. This parameter is measured as the difference

between SDE values when all MDs are considered as

inputs [SDE (n)] and when the ith MD is excluded [SDE

(n-1)], with both values computed over the same data set.

Greater differences are associated with higher relevance for

the excluded MD. Table 5 shows the sensitivity of the MDs

in each of the models.

As can be observed, the most relevant MDs are the

molecular weight (MW), mass weighted total autocorrela-

tion MD on leverage matrix/H total index (HTm), Pogliani

index (Dz), and Sum of Conventional Bond Orders (SCBO)

for models 1, 2, 3 and 4, respectively. The MW and HTm

indices are related with the structural bulk of chemicals,

which, in turn, possesses a close relationship with the

dispersion forces in chromatographic retention. On the

other hand, the Dz distinguishes heteroatoms in a com-

pound, while the SCBO characterizes bond types. To

understand the relevance of these MDs, an inferential

evaluation of the information codified is performed. First, it

is known that heteroatomic compounds have (permanent)

dipoles, while compounds with unsaturated bond systems

(e.g., aromatic systems) are polarizable. Therefore, when

the latter interacts with the former, the electric field from

the permanent dipole induces a reverse dipole in the

Table 5 Sensitivity analysis of the MDs for each ANN model

Model 1a

MW RBN X2v MATS2m GATS2m E3u HTm HATS3 m R5m nCs nCrs

76.909 36.102 6.285 3.021 2.721 1.277 2.783 1.425 1.826 15.281 3.915

Model 2a

DP01 J3D H3D RDF020 m RDF020v Mor27 m Mor03v Mor26v Du Dv HTm

5.156 1.368 2.943 1.452 4.035 1.324 1.757 1.691 1.299 2.013 6.043

Model 3a

ZM2 V Dz MSD Rww piPC01 piPC02 PCD TIC2 IC4 MATS2 m GATS2 m

3.080 59.853 3.476 3.579 2.133 7.101 1.185 1.584 1.307 1.957 1.458

Model 4a

Ss SCBO nCIC RBN nDB nCs nCt nCrs nR_Cs H_046 MLOGP

3.376 62.38 3.854 4.526 2.592 7.723 1.125 1.826 1.337 2.063 1.556

Chem. Pap. (2018) 72:57–69 65

123



T
a
b
le

6
C

o
m

p
ar

is
o

n
o

f
o

b
ta

in
ed

re
su

lt
s

w
it

h
th

o
se

re
p

o
rt

ed
in

th
e

li
te

ra
tu

re

N
o

M
o

d
el

T
ec

h
n

iq
u

e
N

N
tr

N
p
re

S
D

E
C

R
2

F
Q

2 lo
g

Q
2 ex

t
R

ef
er

en
ce

s

1
R

I
=

3
1

5
.4

2
7

0
(±

2
2

.8
4

9
6

)
?

8
.9

7
1

0
(±

0
.2

7
6

8
)
M

W
-

6
4

.7
7

6
9

(±
3

.2
3

6
2

)
R

B
N

-
6

8
.5

3
9

9
(±

5
.0

8
4

2
)X

2
v

-
1

8
0

.4
7

3
5

(±
1

0
.7

3
4

9
)

M
A

T
S

2
m

-
1

7
8

.2
4

0
9

(±
1

1
.8

4
2

7
)

G
A

T
S

2
m

-
1

7
4

.6
5

1
4

(±
3

0
.2

4
8

8
)E

3
u

?
6

0
.5

3
5

8
(±

6
.9

5
2

9
)H

T
m

-
8

2
1

.4
9

6
9

(±
1

2
3

.1
2

2
7

)H
A

T
S

3
m

-
5

6
6

.4
6

8
9

(±
6

2
.1

9
4

5
)R

5
m

?
4

6
.4

8
2

8
(±

2
.2

6
0

0
)n

C
s

-
4

7
.7

6
8

6
(±

3
.6

2
7

3
)

n
C

rs

M
L

R
-G

A
7

6
2

6
0

9
1

5
3

5
3

.9
8

9
6

.7
5

1
6

1
6

9
6

.5
4

9
8

P
re

se
n

t
st

u
d

y

A
N

N
ar

ch
it

ec
tu

re
1

1
-8

-1
A

N
N

7
6

2
6

0
9

1
5

3
5

3
.4

8
9

7
.1

8
9

8
.3

5
P

re
se

n
t

st
u

d
y

2
R

I
=

3
0

0
.0

0
?

3
.8

3
(±

1
.4

1
)
?

2
1

.7
(±

1
.5

8
)n

1
9
?

1
8

.2
6

(±
0

.9
3

)n
2
8

?
1

8
.8

9
(±

0
.8

4
)n

3
7
?

1
5

.2
8

(±
0

.8
4

)n
4
6
?

5
.7

8
(±

1
.0

2
)n

o
r
-

0
.9

3
(±

1
.0

1
)n

m
e
?

0
.4

3
(±

1
.7

2
)n

p
a

M
L

R
4

3
3

0
1

3
0

.8
6

0
.9

9
7

4
1

0
7

3
.3

–
–

S
ch

ad
e

an
d

A
n

d
er

ss
o

n

(2
0

0
6
)

3
R

I
=

1
5

6
3

.9
?

1
6

1
.4

G
1
?

1
8

8
.6

G
2
?

1
8

1
.5

G

3
?

1
9

5
.3

G
4
?

3
7

2
.4

G
5
?

3
1

0
.4

G
6
?

3
4

9
.7

G
7
?

3
3

7
.3

G
8
?

4
0

1
.7

G

9
?

3
8

6
.3

G
1
0
?

5
5

8
.2

G
1
1
?

5
1

9
.7

G
1
2
?

5
1

5
.3

G
1
3

?
5

9
2

.0
G

1
4
?

7
5

3
.3

G
1
5
?

9
0

.8
G

1
6
-

1
.1

G
1
7

M
L

R
-

S
te

p
w

is
e

1
3

5
5

7
5

8
6

.1
0

.9
9

9
5

L
ia

n
g

et
al

.

(2
0

0
0
)

4
R

I
=

1
5

.3
6

n
1
,9
?

1
6

.1
6

n
2
,8
?

1
6

.1
7

n
3
,7
?

1
4

.7
7

n
4
,6

?
0

.9
6

n
o
rt

h
o
-

3
.1

6
n

m
e
ta
-

0
.9

1
n

p
a
ra
?

2
.7

3

M
L

R
2

5
1

8
7

0
.9

9
9

3
S

ie
le

x
an

d

A
n

d
er

ss
o

n

(2
0

0
0
)

5
A

N
N

ar
ch

it
ec

tu
re

:
4

-6
-1

In
p

u
ts

:
B

p
,
M

W
,
v,

S
F

A
N

N
9

6
3

2 (1
6

*
)

3
0

0
.8

8
0

0
S

k
rb

ic
an

d
O

n
ji

a

(2
0

0
6
)

1
8

0
.7

9
9

1

6
R

I
=

3
.6

3
7

*
1

0
3
?

8
.3

9
2

R
ev

D
if

1 x
-

7
9

.7
9

9
M

ax
D

P

-
1

.5
7

1
*

1
0

3
R

el
n

H
-

1
.3

1
0

*
1

0
3

M
ax

Q
O

-
2

.2
0

4
*

1
0

3
R

ev
1 x

M
L

R
-

S
te

p
w

is
e

3
7

3
7

1
8

.8
0

.9
8

8
2

5
3

.8
9

0
.9

6
3

H
o

d
jm

o
h

am
m

ad
i

et
al

.
(2

0
0

4
)

7
R

I
=

2
2

0
5

.9
9

4
1
?

4
8

.3
5

8
1

(±
3

.3
3

2
5

)
O

E
I

-
1

1
1

.7
5

3
0

(±
1

1
.3

7
1

3
)

S
X

1
C

H
-

5
7

.4
3

9
(±

2
2

.4
3

2
4

)N
2
/3
-

1
5

5
.4

1
3

0

(±
9

.5
6

3
6

)
X

e
q
P

E
I
-

5
0

4
.5

2
7

0
(±

1
3

1
.4

9
7

4
)X

e
q
?

4
.9

4
5

3
(±

0
.8

3
2

4
)

M
P

E
I m

IM
P

E
I m

M
L

R
1

0
6

8
6

2
0

1
5

.3
1

0
.9

9
0

1
6

5
3

0
.9

8
7

9
0

.9
9

2
L

iu
et

al
.

(2
0

0
7

)

8
R

I
=

1
4

1
.0

6
8

(5
2

.8
7

1
)
-

2
3

8
.3

1
1

(1
0

9
.9

6
9

)
R

B
F
?

1
5

0
.0

2
8

(5
4

.5
8

7
)

IC
1
-

2
.9

0
1

(0
.4

8
7

)
R

D
F

0
4

5
e
?

4
1

.3
7

3
(4

.6
9

9
)
l
-

2
7

.0
2

5
(1

2
.4

3
0

)

L
U

M
O

G
A

-M
L

R
1

0
1

8
0

2
1

8
6

.7
4

0
.9

3
5

0
.9

3
6

0
.8

6
0

N
o

o
ri

(2
0

1
2
)

G
A

-P
L

S
1

0
1

8
0

2
1

8
2

.5
1

0
.9

4
2

0
.9

4
2

0
.8

7
1

N
o

o
ri

(2
0

1
2
)

G
A

-K
P

L
S

1
0

1
8

0
2

1
6

8
.5

9
0

.9
6

7
0

.9
6

8
0

.9
1

9
N

o
o

ri
(2

0
1

2
)

*
V

al
id

at
io

n
se

t.
D

at
a

se
ts

:
7

-e
ss

en
ti

al
o

il
s

co
m

p
o

n
en

ts
;

1
-A

lk
y

la
te

d
d

ib
en

zo
th

io
p

h
en

o
ls

;

2
-P

o
ly

ch
lo

ri
n

at
ed

d
ib

en
zo

fu
ra

n
s;

3
-

P
o

ly
ch

lo
ri

n
at

ed
d

ib
en

zo
th

io
p

h
en

o
ls

;
4

-

P
o

ly
cy

cl
ic

ar
o

m
at

ic
h

y
d

ro
ca

rb
o

n
s;

5
-

P
h

en
y

to
in

,
b

en
zo

d
ia

ze
p

in
es

,
b

ar
b

it
u

ra
te

s;
6

-

O
x

y
g

en
at

ed
o

rg
an

ic
co

m
p

o
u

n
d

s
(e

st
er

s,
k

et
o

n
es

,

al
d

eh
y

d
es

,
an

d
al

co
h

o
ls

)

66 Chem. Pap. (2018) 72:57–69

123



polarizable system yielding dipole-induced dipole interac-

tions. It can, therefore, be concluded that the Dz and SCBO

are related with chromatographic induction forces.

Comparison with other approaches reported

in the literature

Finally, a quantitative comparison of the performance of

the models obtained in the present study with those

reported in the literature is performed with the aim of

assessing the practical contribution of the obtained models

in the prediction of the GC–RI of essential oils (see

Table 6). As can be observed, the studies reported in the

literature are based on much smaller sized data sets relative

to the data set in the present study and in most cases

congeneric in nature. Even then, similar results are

obtained.

It can, therefore, be inferred that for the first time, QSRR

models for predicting the RI of essential oil components

with a wide AD, good statistical quality, robustness, and

high predictive power are obtained. In addition, these

models provide knowledge on the factors that influence the

chromatographic retention of essential oils components

over the DB-5 stationary phase.

Conclusions

Retention indices have gained an increasingly relevant role

in analytical chemistry given their utility in reducing false-

positive (or negative) compound identification rates.

Indeed, MS database repositories, e.g., NIST, Wiley, and

FFNC currently include associated RIs to ensure more

accurate identification of confounding molecular struc-

tures. In this report, QSRR models were built for Kováts

retention indices based on a large and structurally diverse

database of 791 essential oils components for the non-polar

GC DB-5 column. These models were vigorously validated

using both internal and external validation techniques on

the training and test sets, respectively, and the corre-

sponding statistical parameters were satisfactory, showing

predictive ability of these models. The descriptors included

in the prediction models provide information on the dif-

ferent molecular properties and/or interaction forces that

influence the chromatographic retention/elution of essential

oils components on the DB-5 stationary phase. All toge-

ther, the obtained models provide valuable tools for the

prediction of RIs for new essential oils components within

the models’ ADs and whose experimental data are

undetermined.
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Kováts ES (1958) Gas chromatographic characterization of organic

compounds. I. Retention indexes of aliphatic halides, alcohols,

aldehydes, and ketones. Helv Chim Acta 41:1915–1932

Kubinyi H (1994) Variable selection in QSAR studies. I. An

evolutionary algorithm. Quant Struct Act Rel 13:285–294.

doi:10.1002/qsar.19940130306

Leardi R (1994) Application of a genetic algorithm to feature

selection under full validation conditions and to outlier detec-

tion. J Chemom 8:65–79. doi:10.1002/cem.1180080107

Liang X, Wang W, Schramm W, Zhang Q, Oxynos K, Henkelmann

B, Kettrup A (2000) A new method of predicting of gas

chromatographic retention indices for polychlorinated dibenzo-

furans (PCDFs). Chemosphere 41:1889–1895. doi:10.1016/

S0045-6535(00)00052-7

Liu F, Liang Y, Cao C, Zhou N (2007) Theoretical prediction of the
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