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Abstract A series of organotin(IV) complexes of type

R2SnLCl [R = Ph, Bu, Et, Me] were prepared by reaction

of diorganotindichloride(IV) with Schiff base ligands,

L1 = (1-[(6-ethoxy-benzothiazol-2-ylimino)-methyl]-naph

thalen-2-ol), L2 = (1-[(6-nitro-benzothiazol-2-ylimino)-

methyl]-naphthalen-2-ol), L3 = (1-[(6-methoxy-benzoth-

iazol-2-ylimino)-methyl]-naphthalen-2-ol) and L4 = (1-[(6

-methyl-benzothiazol-2-ylimino)-methyl]-naphthalen-2-ol)

obtained from 2-amino-6-substituted benzothiazole

derivatives with 2-hydroxy-1-naphthaldehyde in 1:1 molar

ratio. These organotin(IV) complexes were characterized

by various spectroscopic techniques (1H, 13C and 119Sn

NMR, FT-IR), and physical techniques (X-ray powder

diffraction analysis and elemental analysis). The coordi-

nation of the prepared complexes has been planned as

pentacoordinated around the central tin atom during which

ligands coordinated to tin atom in bidentate manner acted

as N, O donor system. The ligands and their complexes

were screened for antibacterial and antifungal activities

against Gram-positive bacteria Bacillus cereus (MTCC

10072), Staphylococcus aureus (NCIM 2901), Gram-neg-

ative bacteria Escherichia coli (MTCC 732), Pseudomonas

aeruginosa (MTCC 424) and fungi Aspergillus niger

(MTCC 9933) and Aspergillus flavus (ATCC 76801). The

output of QSAR analysis indicated that topological

parameters (molecular connectivity indices) were respon-

sible for controlling the antimicrobial activity of the syn-

thesized compounds.
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Introduction

The tremendous rise in non-responsiveness of microor-

ganisms due to widespread increase in resistance to

numerous antibiotics is leading to decline in the effectivity

of treatments (Hong et al. 2010; Braunstein and Morise

2000). Therefore, the sole recognition to overcome this

exigency is effective treatment and implementation of

improved drugs (Elebier et al. 2007) which boosts

researchers to produce novel drugs by small microorganism

variance. The Schiff bases play key role in the develop-

ment of coordination chemistry to create stable complexes

having biological activity, especially chemotherapeutic,

antineoplastic, antiproliferative and anti-insecticidal activ-

ities (Basu et al. 2012; Mun et al. 2012; Silva et al. 2011).

Schiff bases show remarkable research in medicinal,

industrial, agricultural and biological fields and have

proved effectiveness as catalysts, optical sensors, engi-

neering fields and magnetic materials (Kemmer et al. 2000;

Ekennia et al. 2015). The growing interest in the elaborated

studies of the coordination chemistry of the organotin

compounds of the Schiff bases has been widely explored

due to their versatile applications resultant of their physi-

cal, chemical and biological properties (Baul et al. 2008;

Yin and Chen 2006; Yenisehirli et al. 2010). The structural
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elucidations of the organotin complexes have evolved as a

subject of attention with commercial applicability in view

of their prospective activities (Beltran et al. 2007; Nath

et al. 1997; Aman and Matela 2013). Organotin complexes

with Schiff bases of benzothiazole derivatives have been

extensively studied with specific interest as a result of

various applications as antioxidants, antibiotics, herbicides

and benzothiazole derivatives also act as flavouring agents

and as bioluminescence for fire flies (Devi et al. 2012).

Furthermore, they are having broad applications as yellow

dyes, pigments and are generally used as intermediates

within the preparation of a large variety of biologically

vital compounds and as precursors of prospective anti-di-

abetic drugs (Dias et al. 2015; Nath et al. 2009). The

substitution with the heterocyclic system provides potent

pharmacological properties such as antihelmintic, anti-in-

flammatory and analgesic as compared to the standard

drugs (Gill et al. 2015, Mene and Kale 2016) and hetero-

cyclic chemistry of substituted benzothiazole derivatives

become the most prolific area of interest in drug discovery

and development due to increasing importance in phar-

maceuticals (Sharma et al. 2017).

In pursuit of all the above facts, the present study

focused on the synthesis, spectroscopic analysis, antimi-

crobial evaluation and QSAR studies of Schiff bases of

2-amino-6-substituted benzothiazole derivatives and their

respective organotin(IV) complexes.

Experimental

Materials

All the chemicals (2-hydroxy-1-naphthaldehyde, 2-amino-

6-nitrobenzothiazole, 2-amino-6-ethoxybenzothiazole,

2-amino-6-methoxybenzothiazole, 2-amino-6-methylben-

zothiazole, dimethyltindichloride, diethyltindichloride,

dibutyltindichloride and diphenyltindichloride) were pur-

chased from Sigma-Aldrich and were used without further

purification. All the solvents were of analytical grade

received from Sigma-Aldrich and used after drying with

standard procedures.

Instrumentation

The NMR spectra of the compounds were recorded on

400 MHz using Bruker Avance II 400 MHz NMR spec-

trometer. The 1H, 13C NMR and 119Sn NMR were recorded

using tetramethylsilane and tetramethyltin, respectively, as

internal standard in DMSO-d6. The IR spectra were

recorded with samples pressed with KBr pellets using a

Shimadzu IR affinity-I 8000 FT-IR spectrometer in the

range 4000–400 cm-1. Tin was gravimetrically estimated

as SnO2 after decomposition with concentrated HNO3

(Sonika et al. 1994). The melting points were recorded on

electrical heating coil apparatus and were uncorrected. The

X-ray powder diffraction analysis was recorded using

Rigaku table top X-ray diffractometer with the scan rate of

2 min in the range 20–80� and the average crystallite size

was calculated to acquire impending regarding propulsive

of the compounds. The elemental analysis of the com-

pounds was done using Perkin Elmer 2400 instrument. The

molar conductance was measured using Systronics con-

ductivity 52 bridge model-306 in DMSO.

The synthesized samples were screened for in vitro

antimicrobial activity against bacterial and fungal strains

using serial dilution method to evaluate their minimum

inhibitory concentration (Spooner and Sykes 1972). The

nutrient broth and Sabouraud dextrose broth were used as

growth media for bacteria and fungi, respectively, and test

tubes having 1 mL of nutrient medium were autoclaved for

30 min at 121 �C. The stock solutions of test compounds

having concentration 100 lg/mL were prepared in dime-

thyl sulphoxide (DMSO). The solution of test compounds

(1 mL) was transferred to test tubes having sterilized

nutrient medium diluted serially to get a set of six dilutions

of test compounds having concentrations 50, 25, 12.5, 6.25,

3.12 and 1.56 lg/mL. The 100 lL of freshly cultured strain

in normal saline was transferred into each test tube for

inoculation and incubated at 37 �C for 24 h for bacterial

strains and 7 days at 25 �C for fungal strains. Ciprofloxacin

and fluconazole were used as standard drugs for antibac-

terial and antifungal testing, respectively. Each sample was

assayed in triplicate and the concordant MIC values were

reported.

The molecular mechanics force field (MM) process of

Hyperchem 6.03 (1993) was used for the pre-optimization

of the structures of test compounds 1–20 and the resulting

geometries were further refined by means of the semiem-

pirical method PM3 (Parametric Method-3). A gradient

norm limit of 0.01 kcal/A� was used for the geometry

optimization. The lowest energy structure/configuration of

each molecule was used for the calculation of molecular/

structural parameters using TSAR 3.3 software for Win-

dows (2000). The regression analysis was done using the

SPSS software package (1999).

Synthesis of Schiff base ligands(1–4)

2-Hydroxy-1-naphthaldehyde (2 mmol), 2-amino-6-substi-

tuted benzothiazole derivatives (2 mmol) and 2–3 drops of

glacial acetic acid were refluxed together in methanol

(30 mL) for about 4–5 h. The solid obtained was dried,

purified and recrystallised from ethanol. The purity of the

compound was checked regularly with thin layer chro-

matography (TLC).
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[1] (1-[(6-Ethoxy-benzothiazol-2-ylimino)-methyl]-

naphthalen-2-ol)

Yield: 72%; yellow solid; m.p. 210–212 �C; (Mol. Wt.

348.09); Anal. Calcd for C20H16N2O2S (%): C, 68.94; H,

4.63; N, 8.04. Found: C, 68.96; H, 4.64; N, 8.06. IR (KBr

pellets, cm-1): 3319 (s, mO–H), 1621 (s, mC=N).
1H NMR

(DMSO-d6, dH): 14.04 (1H, s, O–H), 10.03 (1H, s, HC=N),

8.55 (1H, d, J = 8 Hz, Ar–H), 8.15 (1H, s, Ar–H), 8.05

(1H, d, J = 8 Hz, Ar–H), 7.86 (1H, d, J = 8 Hz, Ar–H),

7.82 (1H, t, J = 12 Hz, Ar–H), 7.65 (1H, t, J = 12 Hz,

Ar–H), 7.45 (1H, s, Ar–H), 7.22 (1H, d, J = 8 Hz, Ar–H),

7.09 (1H, d, J = 8 Hz, Ar–H), 4.12 (2H, q, OCH2), 1.43

(3H, t, CH3), ppm. 13C NMR (DMSO-d6, dC): 189.77 (C–

OH), 178.72, 170.88, 159.89 (C=N), 146.41, 136.72,

135.13, 130.76, 129.53, 126.39, 124.50, 121.34, 119.70,

115.70, 108.46, 106.58 (s, Ar–C), 65.77 (s, C-OCH2),

13.74 (s, C–CH3).

[2] (1-[(6-Nitro-benzothiazol-2-ylimino)-methyl]-

naphthalen-2-ol)

Yield: 72%; yellow solid; m.p. 202–204 �C; (Mol. Wt.

349.05); Anal. Calcd for C20H16N2O2S (%): C, 61.88; H,

3.17; N, 12.03. Found: C, 61.56; H, 3.02; N, 11.83. IR

(KBr pellets, cm-1): 3310 (s, mO–H), 1615(s, mC=N), 1550,
1350 (m, mNO2).

1H NMR (DMSO-d6, dH): 13.91 (1H, s, O–
H), 9.90 (1H, s, HC = N), 8.43 (1H, d, J = 8 Hz, Ar–H),

8.02 (1H, s, Ar–H), 7.92 (1H, d, J = 8 Hz, Ar–H), 7.86

(1H, d, J = 8 Hz, Ar–H), 7.70 (1H, t, J = 12 Hz, Ar–H),

7.52 (1H, t, J = 12 Hz, Ar–H), 7.32 (1H, s, Ar–H), 7.11

(1H, d, J = 8 Hz, Ar–H), 6.96 (1H, d, J = 8 Hz, Ar–H)

ppm. 13C NMR (DMSO-d6, dC): 188.63 (C–OH), 178.63,

170.91, 159.63 (C=N), 146.62, 136.24, 135.71, 130.85,

129.77, 126.76, 124.82, 121.65, 119.71, 115.14, 108.26,

106.70 (s, Ar–C).

[3] (1-[(6-Methoxy-benzothiazol-2-ylimino)-methyl]-

naphthalen-2-ol)

Yield: 71%; yellow solid; m.p. 104–106 �C; (Mol. Wt.

334.08); Anal. Calcd for C19H14N2O2S (%): C, 68.24; H,

4.22; N, 8.38. Found: C, 68.23; H, 4.21; N, 8.37. IR

(KBr pellets, cm-1): 3325 (s, mO–H), 1625 (s, mC=N).
1H

NMR: (DMSO-d6, dH): 13.99 (1H, s, O–H), 9.97 (1H, s,

HC=N), 8.51 (1H, d, J = 8 Hz, Ar–H), 8.10 (1H, s, Ar–

H), 8.00 (1H, d, J = 8 Hz, Ar–H), 7.80 (1H, d,

J = 8 Hz, Ar–H), 7.76 (1H, t, J = 12 Hz, Ar–H), 7.40

(1H, t, J = 12 Hz), 7.18 (1H, s, Ar–H) 7.15 (1H, d,

J = 8 Hz, Ar–H), 7.04 (1H, d, J = 8 Hz, Ar–H), 4.07

(3H, s, OCH3).
13C NMR (DMSO-d6, dC): 186.86 (C–

OH), 174.77, 163.61, 152.87 (C=N), 147.84, 140.28,

138.08, 135.54, 132.42, 129.30, 127.44, 123.33, 119.57,

115.21, 108.29, 106.71 (s, Ar–C), 64.68 (s, C–OCH3).

[4] (1-[(6-Methyl-benzothiazol-2-ylimino)-methyl]-

naphthalen-2-ol)

Yield: 71%;yellowsolid;m.p. 112–114 �C; (Mol.Wt. 318.08);

Anal. Calcd for C19H14N2OS (%): C, 71.67; H, 4.43; N, 8.80.

Found:C, 71.65;H, 4.45;N, 8.77. IR (KBr pellets, cm-1): 3405

(s, mO–H), 1621 (s, mC=N).
1HNMR: (DMSO-d6, dH): 14.07 (1H,

s, O–H), 10.06 (1H, s, C=N), 8.59 (1H, d, J = 8 Hz, Ar–H),

8.18 (1H, s, Ar–H), 8.08 (1H, d, J = 8 Hz, Ar–H), 7.91 (1H, d,

J = 8 Hz, Ar–H), 7.86 (1H, t, J = 12 Hz, Ar–H), 7.69 (1H, t,

J = 12 Hz, Ar–H), 7.49 (1H, s, Ar–H), 7.25 (1H, d, J = 8 Hz,

Ar–H), 7.12 (1H, d, J = 8 Hz, Ar–H), 1.46 (3H, s, CH3).
13C

NMR (DMSO-d6, dC): 188.07 (s, C–OH), 175.98, 164.82,

154.08 (s, C=N), 149.05, 141.49, 139.29, 136.75, 133.63,

130.52, 128.65, 126.71, 124.54, 124.25, 120.49, 119.20,

115.15, 108.23, 106.33 (s, Ar–C), 12.21 (s, C–CH3).

Synthesis of complexes (5–20)

The synthesized Schiff base ligands (HL) (1 mmol) and

sodium metal (1 mmol) were refluxed in methanol (20 mL)

for 2 h to get the sodium salt of Schiff base ligands to

which (1 mmol) dialkyl/diaryltindichloride was added and

refluxed for about 5–6 h. The reaction mixture was filtered

and evaporated over rotary evaporator under reduced

pressure. The collected solid was washed with a mixture of

chloroform and dry hexane. A similar procedure was

adopted for the synthesis of all other complexes.

[5] N-((2-(Chlorodiphenylstannyloxy)naphthalen-1-

yl)methylene)-6-ethoxybenzo[d] thiazol-2-amine

Yield: 71%; brown solid; m.p. 217–220 �C; (Mol. Wt.

656.03); Anal. Calcd for C32H25ClN2O2SSn (%): C, 58.61;

H, 3.84; Cl, 5.41; N, 4.27; Sn, 18.10. Found: C, 58.58; H,

3.82; Cl, 5.43; N, 4.26; Sn, 18.12. IR (KBr pellets, cm-1):

1601 (s, mC=N), 604 (m, mSn–N), 514 (m, mSn–C), 405 (w,

mSn–O).
1H NMR: (DMSO-d6, dH): 10.85 (1H, s, HC=N),

8.55 (1H, d, J = 8 Hz, Ar–H), 8.09 (1H, s, Ar–H), 8.06

(1H, d, J = 8 Hz, Ar–H), 7.99 (1H, d, J = 8 Hz, Ar–H),

7.61 (1H, t, J = 12 Hz, Ar–H), 7.39 (1H, t, J = 12 Hz,

Ar–H), 7.34–7.40 (10H, m, Ar–H), 7.32 (1H, s, Ar–H),

7.23 (1H, d, J = 8 Hz, Ar–H), 4.10 (2H, q, OCH2), 1.44

(3H, t CH3).
13C NMR (DMSO-d6, dC): 186.26 (C–OH),

176.86, 165.93, 156.50 (C=N), 143.34, 139.51, 138.99,

135.80, 133.92, 131.01, 132.65, 131.76, 128.91, 128.40,

127.99, 124.00, 123.86, 122.98, 120.38, 118.48, 115.10,

108.47, 106.29 (s, Ar–C), 65.18 (s, C–OCH2), 16.18 (s, C–

CH3) ppm. 119 Sn NMR (DMSO-d6, dSn): -400.00 ppm.
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[6] N-((2-(Dibutylchlorostannyloxy)naphthalen-1-

yl)methylene)-6-ethoxybenzo[d] thiazol-2-amine

Yield: 68%; brown solid; m.p. 214–216 �C; (Mol. Wt.

616.10); Anal. Calcd for C28H33ClN2O2SSn (%): C, 54.61;

H, 5.40; Cl, 5.76; N, 4.55; Sn, 19.28. Found: C, 54.62; H,

5.42; Cl, 5.73; N, 4.57; Sn, 19.25. IR (KBr pellets, cm-1):

1609 (s, mC=N), 608 (m, mSn–N), 512 (m, mSn–C), 401 (w,

mSn–O).
1H NMR: (DMSO-d6, dH): 10.85 (1H, s, HC=N),

8.55 (1H, d, J = 8 Hz, Ar–H), 8.13 (1H, d, J = 8 Hz, Ar–

H), 8.05 (1H, s, Ar–H), 7.87 (1H, d, J = 8 Hz, Ar–H), 7.83

(1H, d, J = 8 Hz, Ar–H), 7.65 (1H, t, J = 12 Hz, Ar–H),

7.45 (1H, t, J = 12 Hz, Ar–H), 7.23 (1H, s, Ar–H), 7.10

(1H, d, J = 8 Hz, Ar–H), 4.12 (2H, q, OCH2), 4.11 (4H, m,

Bu-H), 3.98 (4H, m, Bu-H), 1.43 (3H, s, CH3), 1.37 (6H, t,

Bu-H), 0.91 (4H, m, Bu-H) ppm. 13C NMR (DMSO-d6,

dC): 189.77 (C–OH), 176.53, 165.37, 154.63 (C=N),

149.61, 142.04, 139.84, 137.30, 134.19, 131.07, 129.20,

127.26, 125.09, 124.80, 121.80, 121.04, 119.75, 115.70,

108.46, 106.58 (s, Ar–C), 64.56 (s, C-OCH2), 30.98 (s, Bu–

C), 20.96 (s, Bu–C), 14.03 (s, C–CH3), 11.85 (s, Bu–C),

9.29 (s, Bu–C) ppm. 119Sn NMR (DMSO-d6, dSn):
-322.43 ppm.

[7] N-((2-(Chlorodiethylstannyloxy)naphthalen-1-

yl)methylene)-6-ethoxybenzo[d] thiazol-2-amine

Yield: 69%; reddish brown; m.p. 217–219 �C; (Mol. Wt.

560.03); Anal. Calcd for C24H25ClN2O2SSn (%): C, 51.50;

H, 4.50; Cl, 6.33; N, 5.01; Sn, 21.21. Found: C, 51.53; H,

4.52; Cl, 6.35; N, 5.04; Sn, 21.24. IR (KBr pellets, cm-1):

1605 (s, mC=N), 615 (m, mSn–N), 517 (m, mSn–C), 405 (w,

mSn–O).
1H NMR: (DMSO-d6, dH): 10.76 (1H, s, HC=N),

8.58 (1H, d, J = 8 Hz, Ar–H), 8.13 (1H, s, Ar–H), 8.05

(1H, d, J = 8 Hz, Ar–H), 7.87 (1H, d, J = 8 Hz, Ar–H),

7.83 (1H, t, J = 12 Hz, Ar–H), 7.64 (1H, t, J = 12 Hz,

Ar–H), 7.44 (1H, s, Ar–H), 7.23 (1H, d, J = 8 Hz, Ar–H),

7.10 (1H, d, J = 8 Hz, Ar–H), 4.13 (2H, q, OCH2), 1.43

(4H, t, CH3), 1.10 (4H, t, Et-H), 0.91 (6H, m, Et-H). 13C

NMR (DMSO-d6, dC): 189.42 (s, C–OH), 177.22, 164.94,

155.83(s, C=N), 149.54, 141.54, 139.88, 137.01, 133.92,

131.66, 130.45, 129.78, 128.57, 126.99, 124.84, 119.48,

116.56, 108.45, 106.59 (s, Ar–C), 65.77 (s, C–OCH2),

19.98 (s, C–CH3), 14.03 (s, Et-C), 11.17 (s, Et-C) ppm.
119Sn NMR (DMSO-d6, dSn): -287.14 ppm.

[8] N-((2-(Chlorodimethylstannyloxy)naphthalen-1-

yl)methylene)-6-ethoxybenzo[d] thiazol-2-amine

Yield: 67%; reddish brown; m.p. 212–214 �C; (Mol. Wt.

532.00); Anal. Calcd for C22H21ClN2O2SSn (%): C, 49.70;

H, 3.98; Cl, 6.67; N, 5.27; O, Sn, 22.33. Found: C, 49.72;

H, 3.95; Cl, 6.63; N, 5.24; Sn, 22.31. IR (KBr pellets,

cm-1): 1609 (s, mC=N), 609 (mSn–N), 512 (mSn–C), 402

(mSn–O),
1H NMR: (DMSO-d6, dH): 10.75, (1H, s, HC=N),

8.54 (1H, d, J = 8 Hz, Ar–H), 8.11 (1H, s, Ar–H), 8.03

(1H, d, J = 8 Hz, Ar–H), 7.86 (1H, d, J = 8 Hz, Ar–H),

7.82 (1H, t, J = 12 Hz, Ar–H), 7.63 (1H, t, J = 12 Hz,

Ar–H), 7.43 (1H, t, J = 12 Hz, Ar–H), 7.22 (1H, d,

J = 8 Hz, Ar–H), 7.09 (1H, d, J = 8 Hz, Ar–H), 4.12 (2H,

q, OCH2), 1.42 (3H, t, CH3), 0.85 (6H, s, Me-H). 13C NMR

(DMSO-d6, dC): 187.16 (s, C–OH), 175.07, 163.91, 153.17

(s, C=N), 148.14, 140.58, 138.83, 132.72, 129.60, 127.74,

125.80, 123.34, 119.58, 114.24, 108.88, 106.71, (s, Ar–C),

63.71 (s, C-OCH2), 29.52 (s, Me-C), 10.11 (s, C–CH3)

ppm. 119Sn NMR (DMSO-d6, dSn): -260.75 ppm.

[9] N-((2-(Chlorodiphenylstannyloxy)naphthalen-1-

yl)methylene)-6-nitrobenzo[d] thiazol-2-amine

Yield: 72%, brown solid; m.p. 210–212 �C; (Mol. Wt.

656.99); Anal. Calcd for C30H20ClN3O3SSn (%): C, 54.87;

H, 3.07; Cl, 5.40; N, 6.40; Sn, 18.08. Found: C, 54.84; H,

3.05; Cl, 5.37; N, 6.43; Sn, 18.06. IR (KBr pellets, cm-1):

1611 (s, mC=N), 612 (m, mSn–N), 505 (m, mSn–C), 401 (w,

mSn–O),),
1H NMR (DMSO-d6, dH): 10.85 (1H, s, HC=N),

8.55 (1H, d, J = 8 Hz, Ar–H), 8.15 (1H, s, Ar–H), 8.06

(1H, d, J = 8 Hz, Ar–H), 7.91 (1H, d, J = 8 Hz, Ar–H),

7.85 (1H, t, J = 12 Hz, Ar–H), 7.61 (1H, t, J = 12 Hz,

Ar–H), 7.58 (1H, s, Ar–H), 7.40–7.34 (10H, m, Ar–H),

7.31 (1H, d, J = 8 Hz, Ar–H) 7.27 (1H, d, J = 8 Hz, Ar–

H), 7.22 (1H, d, J = 8 Hz, Ar–H). 13C NMR (DMSO-d6,

dC): 185.11 (s, C–OH), 175.71, 164.77, 155.35 (s, C=N),

142.19, 138.35, 137.43, 134.63, 129.85, 127.76, 127.24,

126.44, 124.45, 122.84, 122.70, 121.83, 118.70, 114.79,

107.65, 105.60 (s, Ar–C) ppm. 119Sn NMR (DMSO-d6,

dSn): -359.85 ppm.

[10] N-((2-(Dibutylchlorostannyloxy)naphthalen-1-

yl)methylene)-6-nitrobenzo[d] thiazol-2-amine

Yield: 62%; brown solid; m.p. 215–217 �C; (Mol. Wt.

617.06); Anal. Calcd for C26H28ClN3O3SSn (%): C, 50.63;

H, 4.58; Cl, 5.75; N, 6.81; Sn, 19.25. Found: C, 50.64; H,

4.57; Cl, 5.77; N, 6.83; Sn, 19.24. IR (KBr pellets, cm-1):

1615 (s, mC=N), 608 (m, mSn–N), 511 (m, mSn–C), 408 (w,

mSn–O).
1H NMR: (DMSO-d6, dH): 10.85 (1H, s, HC=N),

8.68 (1H, d, J = 8 Hz, Ar–H), 8.13 (1H, s, Ar–H), 8.05

(1H, d, J = 8 Hz, Ar–H), 7.87 (1H, d, J = 8 Hz, Ar–H),

7.83 (1H, d, J = 8 Hz, Ar–H), 7.65 (1H, t, J = 12 Hz, Ar–

H), 7.45 (1H, t, J = 12 Hz, Ar–H), 7.23 (1H, s, Ar–H),

7.10 (1H, d, Ar–H), 4.00 (4H, m, Bu-H), 3.61 (4H, m, Bu-

H), 1.43 (4H, m, Bu-H), 1.36 (6H, t, Bu-H). 13C NMR

(DMSO-d6, dC): 188.36 (C–OH), 176.27, 165.12, 154.37

(C=N), 149.35, 141.79, 139.59, 137.04, 133.93, 130.81,

128.94, 127.00, 124.84, 124.54, 120.78, 119.49, 115.45,
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108.71, 106.62 (s, Ar–C), 20.70, 13.77, 11.60, 9.04 (s, Bu–

C) ppm. 119Sn NMR (DMSO-d6, dSn): -320.49 ppm.

[11] N-((2-(Chlorodiethylstannyloxy)naphthalen-1-

yl)methylene)-6-nitrobenzo[d] thiazol-2-amine

Yield: 70%; brown solid; m.p. 217–219 �C; (Mol. Wt.

560.99); Anal. Calcd for C22H20ClN3O3SSn (%): C, 47.13;

H, 3.60; Cl, 6.32; N, 7.50; Sn, 21.17. Found: C, 47.15; H,

3.62; Cl, 6.35; N, 7.53; Sn, 21.19. IR (KBr pellets, cm-1):

1606 (s, mC=N), 614 (mSn–N), 505 (mSn–C), 422 (mSn–O).
1H

NMR: (DMSO-d6, dH): 10.23 (1H, s, HC=N), 8.43 (1H, d,

J = 8 Hz, Ar–H), 8.10 (1H, d, J = 8 Hz, Ar–H), 8.01 (1H,

d, J = 8 Hz, Ar–H), 7.76 (1H, d, J = 8 Hz, Ar–H), 7.72

(1H, t, J = 12 Hz, Ar–H), 7.61 (1H, t, J = 12 Hz, Ar–H),

7.39 (1H, s, Ar–H), 7.21 (1H, d, J = 8 Hz, Ar–H), 7.02

(1H, d, J = 8 Hz, Ar–H), 1.13 (4H, q, Et-H), 0.96 (6H, t,

Et-H). 13C NMR (DMSO-d6, dC): 187.46 (C–OH), 175.37,

164.21, 153.47 (C=N), 148.44, 140.88, 138.68, 133.92,

131.66, 130.45, 129.78, 128.57, 126.99, 124.84, 119.48,

116.56, 108.45, 106.59 (s, Ar–C), 19.45, 11.60 (s, Et-C)

ppm. 119Sn NMR (DMSO-d6, dSn): -291.23 ppm.

[12] N-((2-(Chlorodimethylstannyloxy)naphthalen-1-

yl)methylene)-6-nitrobenzo[d] thiazol-2-amine

Yield: 69%; brown solid; m.p. 197–199 �C; (Mol. Wt.

532.96); Anal. Calcd for C20H16ClN3O3SSn (%): C, 45.10;

H, 3.03; Cl, 6.66; N, 7.89; Sn, 22.29. Found: C, 45.13; H,

3.05; Cl, 6.64; N, 7.84; Sn, 22.27. IR (KBr pellets, cm-1):

1601 (s, mC=N), 610 (mSn–N), 508 (mSn–C), 424 (mSn–O).
1H

NMR: (DMSO-d6, dH): 10.77 (1H, s, HC=N), 8.63 (1H, d,

J = 8 Hz, Ar–H), 8.15 (1H, s, Ar–H), 7.99 (1H, d,

J = 8 Hz, Ar–H), 7.81 (1H, d, J = 8 Hz, Ar–H), 7.76 (1H,

t, J = 12 Hz, Ar–H), 7.59 (1H, t, J = 12 Hz, Ar–H), 7.38

(1H, d, J = 8 Hz, Ar–H), 7.27 (1H, d, J = 8 Hz, Ar–H),

7.15 (1H, d, J = 8 Hz, Ar–H), 0.83 (6H, s, Me-H) ppm.
13C NMR (DMSO-d6, dC): 186.86 (C–OH), 174.77,

163.61, 152.87 (C=N), 147.84, 140.28, 138.08, 135.54,

132.42, 129.30, 127.44, 125.50, 123.33, 123.04, 119.28,

113.94, 108.58, 106.48 (s, Ar–C), 9.81 (s, Me-C) ppm.
119Sn NMR (DMSO-d6, dSn): -225.24 ppm.

[13] N-((2-(Chlorodiphenylstannyloxy)naphthalen-1-

yl)methylene)-6-methoxybenzo[d] thiazol-2-amine

Yield: 69%; brown solid; m.p. 202–204 �C; (Mol. Wt.

642.02); Anal. Calcd for C31H23ClN2O2SSn(%): C, 58.02;

H, 3.61; Cl, 5.52; N, 4.37; Sn, 18.50. Found: C, 58.03; H,

3.63; Cl, 5.51; N, 4.35; Sn, 18.48. IR (KBr pellets, cm-1):

1603 (s, mC=N), 614 (m, mSn–N), 503 (m, mSn–C), 411 (w,

mSn–O).
1H NMR: (DMSO-d6, dH): 10.79 (1H, s, C=N), 8.48

(1H, d, J = 8 Hz, Ar–H), 8.10 (1H, s, Ar–H), 8.01 (1H, d,

J = 8 Hz, Ar–H), 7.91 (1H, d, J = 8 Hz, Ar–H), 7.54 (1H,

t, J = 12 Hz, Ar–H), 7.33 (1H, t, J = 12 Hz, Ar–H),

7.30–7.27 (10H, m, Ar–H), 7.25 (1H, s, Ar–H), 7.17 (1H,

d, J = 8 Hz, Ar–H), 7.01 (1H, d, J = 8 Hz, Ar–H), 4.06

(3H, s, OCH3) ppm. 13C NMR (DMSO-d6, dC): 186.68,
177.28, 166.34, 156.92 (C=N), 143.76, 139.92, 139.00,

136.21, 134.33, 131.42, 129.33, 128.81, 128.01, 124.41,

124.27, 123.40, 118.90, 115.51, 108.88, 106.71 (s, Ar–C),

65.60 (s, C–OCH3) ppm. 119Sn NMR (DMSO-d6, dSn):
-375.09 ppm.

[14] N-((2-(Dibutylchlorostannyloxy)naphthalen-1-

yl)methylene)-6-methoxybenzo[d] thiazol-2-amine

Yield: 71%, brownish red solid; m.p. 210–212 �C; (Mol.

Wt. 602.08); Anal. Calcd for C27H31ClN2O2SSn (%): C,

53.89; H, 5.19; Cl, 5.89; N, 4.66; Sn, 19.73. Found: C,

53.87; H, 5.21; Cl, 5.87; N, 4.64; Sn, 19.76. IR (KBr pel-

lets, cm-1): 1612 (s, mC=N), 601 (m, mSn–N), 508 (m, mSn–C),
404 (w, mSn–O),

1H NMR: (DMSO-d6, dH): 10.84 (1H, s,

HC=N), 8.59 (1H, d, J = 8 Hz), 8.11 (1H, s, Ar–H), 8.05

(1H, d, J = 8 Hz, Ar–H), 7.86 (1H, d, J = 8 Hz, Ar–H),

7.82 (1H, t, J = 12 Hz, Ar–H), 7.64 (1H, t, J = 12 Hz,

Ar–H), 7.44 (1H, s, Ar–H), 7.22 (1H, d, J = 8 Hz, Ar–H),

7.09 (1H, d, J = 8 Hz, Ar–H), 4.13 (3H, s, OCH3), 3.99

(4H, m, Bu-H), 3.58 (4H, m, Bu-H), 1.42 (4H, m, Bu-H),

1.35 (6H, t, Bu-H) ppm. 13C NMR (DMSO-d6, dC): 188.73
(C–OH), 176.65, 165.49, 154.75 (C=N), 149.72, 142.16,

139.96, 137.41, 134.30, 131.18, 129.31, 127.38, 125.21,

124.91, 121.16, 119.86, 115.82, 108.26, 106.99 (s, Ar–C),

64.68 (s, OCH3), 21.08, 14.14, 11.97, 9.41 (s, Bu–C) ppm.
119Sn NMR (DMSO-d6, dSn): -302.18 ppm.

[15] N-((2-(Chlorodiethylstannyloxy)naphthalen-1-

yl)methylene)-6-methoxybenzo[d] thiazol-2-amine

Yield: 68%; brown solid; m.p. 204–206 �C; (Mol. Wt.

546.02); Anal. Calcd for C23H23ClN2O2SSn (%): C, 50.63;

H, 4.25; Cl, 6.50; N, 5.13; Sn, 21.75. Found: C, 50.65; H,

4.27; Cl, 6.53; N, 5.15; Sn, 21.78. IR (KBr pellets, cm-1):

1609 (s, mC=N), 615 (m, mSn–N), 513 (m, mSn–C), 407 (w,

mSn–O).
1H NMR: (DMSO-d6, dH): 10.79 (1H, s, HC=N),

8.61 (1H, d, J = 8 Hz, Ar–H), 8.19 (1H, s, Ar–H), 8.09

(1H, d, J = 8 Hz, Ar–H), 7.92 (1H, d, J = 8 Hz, Ar–H),

7.85 (1H, t, J = 12 Hz, Ar–H), 7.69 (1H, t, J = 12 Hz,

Ar–H), 7.49 (1H, s, Ar–H), 7.25 (1H, d, J = 8 Hz, Ar–H),

7.14 (1H, d, J = 8 Hz, Ar–H), 4.07 (3H, s, OCH3), 1.16

(4H, q, Et-H), 0.93 (6H, t, Et-H) ppm. 13C NMR (DMSO-

d6, dC): 186.17, 174.08, 162.93, 152.18 (C=N), 147.16,

139.60, 137.40, 134.85, 131.74, 128.62, 126.75, 124.81,

122.65, 122.35, 118.59, 115.31, 106.97 (s, Ar–C), 62.11 (s,

C–OCH3) 28.53, 9.12 (s, Et-C). 119Sn NMR (DMSO-d6,

dSn): -279.12 ppm.
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[16] N-((2-(Chlorodimethylstannyloxy)naphthalen-1-

yl)methylene)-6-methoxybenzo[d] thiazol-2-amine

Yield: 67%; brown solid; m.p. 208–210 �C; (Mol. Wt.

517.99); Anal. Calcd for C21H19ClN2O2SSn (%): C, 48.73;

H, 3.70; Cl, 6.85; N, 5.41; Sn, 22.93. Found: C, 48.72; H,

3.74; Cl, 6.83; N, 5.43; Sn, 22.95. IR (KBr pellets, cm-1):

1605 (s, mC=N), 602 (m, mSn–N), 507 (m, mSn–C), 402 (w,

mSn–O).
1H NMR: (DMSO-d6, dH): 10.75 (1H, s, HC=N),

8.58 (1H, d, J = 8 Hz, Ar–H), 8.11 (1H, s, Ar–H), 8.05

(1H, d, J = 8 Hz, Ar–H), 7.86 (1H, d, J = 8 Hz, Ar–H),

7.84 (1H, t, J = 12 Hz, Ar–H), 7.63 (1H, t, J = 12 Hz),

7.43 (1H, s, Ar–H), 7.22 (1H, d, Ar–H), 7.09 (1H, d, Ar–

H), 4.11 (3H, s, OCH3), 0.87 (6H, s, Me-H) ppm. 13C NMR

(DMSO-d6, dC): 185.99 (C–OH), 173.50, 162.34, 151.60

(C=N), 146.57, 139.01, 136.81, 134.26, 131.15, 128.03,

126.17, 124.23, 122.06, 121.77, 118.01, 112.67, 107.31,

105.14 (s, Ar–C), 61.53 (s, C–OCH3), 8.54 (s, Me-C) ppm.
119Sn NMR (DMSO-d6, dSn): -256.67 ppm.

[17] N-((2-(Chlorodiphenylstannyloxy)naphthalen-1-

yl)methylene)-6-methylbenzo[d] thiazol-2-amine

Yield: 73%; brown solid; m.p. 214–216 �C; (Mol. Wt.

626.02); Anal. Calcd for C31H23ClN2OSSn (%): C, 59.50;

H, 3.70; Cl, 5.67; N, 4.48; Sn, 18.97. Found: C, 59.51; H,

3.72; Cl, 5.63; N, 4.46; Sn, 18.95. IR (KBr pellets, cm-1):

1608 (s, mC=N), 606 (m, mSn–N), 517 (m, mSn–C), 425 (w,

mSn–O).
1H NMR: (DMSO-d6, dH): 10.82 (1H, s, HC=N),

8.51 (1H, d, J = 8 Hz, Ar–H), 8.12 (1H, s, J = Ar–H),

8.03 (1H, d, J = 8 Hz, Ar–H), 7.90 (1H, d, J = 8 Hz, Ar–

H), 7.81 (1H, t, J = 12 Hz, Ar–H), 7.59 (1H, t, J = 12 Hz,

Ar–H), 7.36 (1H, s, Ar–H), 7.28–7.33 (10H, m, Ar–H),

7.23 (1H, d, J = 8 Hz, Ar–H), 7.18 (1H, d, J = 8 Hz, Ar–

H), 1.34 (3H, s, CH3) ppm. 13C NMR (DMSO-d6, dC)
184.79 (C–OH), 175.39, 164.46, 155.03 (C=N), 141.87,

138.04, 137.12, 134.33, 129.54, 127.44, 126.93, 126.12,

124.13, 122.53, 122.39, 121.51, 118.38, 114.48, 107.33,

105.29 (s, Ar–C), 14.76 (s, C–CH3).
119Sn NMR (DMSO-

d6, dSn): -366.34 ppm.

[18] N-((2-(Dibutylchlorostannyloxy)naphthalen-1-

yl)methylene)-6-methylbenzo[d] thiazol-2-amine

Yield: 69%; brown solid; m.p. 178-180 �C; (Mol. Wt.

586.09); Anal. Calcd for C27H31ClN2OSSn (%): C, 55.36;

H, 5.33; Cl, 6.05; N, 4.78; Sn, 20.27. Found: C, 55.37; H,

5.35; Cl, 6.04; N, 4.76; Sn, 20.25. IR (KBr pellets, cm-1):

1605 (s, mC=N), 609 (m, mSn–N), 518 (m, mSn–C), 414 (w,

mSn–O),
1H NMR: (DMSO-d6, dH): 10.89 (1H, s, HC=N),

8.61 (1H, d, J = 8 Hz, Ar–H), 8.16 (1H, s, Ar–H), 8.07

(1H, d, J = 8 Hz, Ar–H), 7.91 (1H, d, J = 8 Hz, Ar–H),

7.87 (1H, t, J = 12 Hz, Ar–H), 7.69 (1H, t, J = 12 Hz,

Ar–H), 7.49 (1H, s, Ar–H), 7.27 (1H, d, J = 8 Hz, Ar–H),

7.14 (1H, d, Ar–H), 4.04 (4H, m, Bu-H), 3.65 (4H, m, Bu-

H), 1.48 (4H, m, Bu-H), 1.42 (6H, t, Bu-H), 1.29 (3H, s,

CH3).
13C NMR (DMSO-d6, dC): 188.07, 175.98, 164.82,

154.08 (C=N), 149.05, 141.49, 139.29, 136.75, 133.63,

130.52, 128.65, 126.71, 124.54, 124.25, 120.49, 119.20,

115.15, 108.42, 106.33 (s, Ar–C), 20.21 (s, Bu–C), 13.48

(s, C–CH3), 11.30, 9.41, 8.74 (s, Bu-H) ppm. 119Sn NMR

(DMSO-d6, dSn): -322.24 ppm.

[19] N-((2-(Chlorodiethylstannyloxy)naphthalen-1-

yl)methylene)-6-methylbenzo[d] thiazol-2-amine

Yield: 69%, reddish brown solid; m.p. 183–185 �C; (Mol.

Wt. 530.02); Anal. Calcd for C23H23ClN2OSSn (%): C,

52.15; H, 4.38; Cl, 6.69; N, 5.29; Sn, 22.41. Found: C,

52.17; H, 4.41; Cl, 6.71; N, 5.31; Sn, 22.45. IR (KBr pel-

lets, cm-1): 1610 (s, mC=N), 615 (m, mSn–N), 513 (m, mSn–C),
413 (w, mSn–O).

1H NMR (DMSO-d6, dH): 10.89 (1H, s,

HC=N), 8.56 (1H, d, J = 8 Hz, Ar–H), 8.19 (1H, s, Ar–H),

7.93 (1H, d, J = 8 Hz, Ar–H), 7.86 (1H, d, J = 8 Hz, Ar–

H), 7.68 (1H, t, J = 12 Hz, Ar–H), 7.47 (1H, t, J = 12 Hz,

Ar–H), 7.26 (1H, s, Ar–H), 7.15 (1H, d, J = 8 Hz, Ar–H),

7.01 (1H, d, J = 8 Hz, Ar–H), 1.42 (3H, s, CH3), 1.13 (4H,

q, Et-H), 0.92 (6H, t, Et-H) ppm. 13C NMR (DMSO-d6,

dC): 185.59 (C–OH), 173.50, 162.34, 151.60 (C=N),

146.57, 139.01, 136.81, 134.26, 131.15, 128.03, 126.17,

124.23, 122.06, 121.77, 118.01, 114.73, 107.45, 106.39

(Ar–C), 27.95 (s, C–CH3), 17.26, 8.54 (s, Et-C) ppm. 119Sn

NMR (DMSO-d6, dSn): -280.67 ppm.

[20] N-((2-(Chlorodimethylstannyloxy)naphthalen-1-

yl)methylene)-6-methylbenzo[d] thiazol-2-amine

Yield: 66%, reddish brown solid; m.p. 191–193 �C; (Mol.

Wt. 501.99); Anal. Calcd for C21H19ClN2OSSn (%): C,

50.28; H, 3.82; Cl, 7.07; N, 5.58; Sn, 23.67. Found: C,

50.30; H, 3.85; Cl, 7.06; N, 5.59; Sn, 23.65. IR (KBr

pellets, cm-1): 1605 (s, mC=N), 610 (m, mSn–N), 509 (m,

mSn–C), 410 (w, mSn–O).
1H NMR (DMSO-d6, dH): 10.75

(1H, s, HC=N), 8.53 (1H, d, J = 8 Hz, Ar–H), 8.11 (1H,

s, Ar–H), 8.05 (1H, d, J = 8 Hz, Ar–H), 8.02 (1H, d,

J = 8 Hz, Ar–H), 7.86 (1H, t, J = 12 Hz, Ar–H), 7.65

(1H, t, J = 12 Hz, Ar–H), 7.43 (1H, s, Ar–H), 7.22 (1H,

d, J = 8 Hz, Ar–H), 7.09 (1H, d, J = 8 Hz, Ar–H), 1.38

(3H, s, CH3), 0.87 (6H, s, Me-H) ppm. 13C NMR (DMSO-

d6, dC): 186.50, 174.41, 163.25, 152.15 (C=N), 147.48,

139.92, 137.72, 135.17, 132.06, 128.94, 127.08, 125.14,

122.97, 122.68, 118.92, 113.58, 108.22, 106.05 (s, Ar–H),

20.07 (s, C–CH3), 9.45 (s, Me-C) ppm. 119Sn NMR

(DMSO-d6, dSn): -266.72 ppm.
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Results and discussion

Synthetic aspects

The reaction of 2-hydroxy-1-naphthaldehyde with

2-amino-6-substituted benzothiazole (where R = –OC2H5,

–NO2, –OCH3, –CH3) led to the formation of (1-[(6-sub-

stituted-benzothiazol-2-ylimino)-methyl]-naphthalen-2-ol).

The sodium salt of the ligand was prepared using sodium

metal which was then treated with R2SnCl2, yielding the

complexes (5–20) as shown in Scheme 1. These were

isolated as air-stable coloured powders, with solubility in

DMSO and low solubility in chloroform. The purity was

checked by thin layer chromatography (TLC). The molar

conductance of the complexes with 10-3 M solutions has

very low value (8.0–17.0 O-1cm2 mol-1) which clearly

indicates the nonelectrolytic nature of the complexes.

IR spectra

The IR spectra of the prepared compounds were assigned

after comparing with the ligands and the corresponding

organotin(IV) complexes. The explicit feature seen in the

IR spectra of complexes was the disappearance of broad

absorption band of OH from the range 3405–3310 cm-1

which was due to the deprotonation of phenolic group from

subsequent ligands (Mohammadi and Zahedi 2012). The

strong-to-medium absorption bands in the IR spectra for

the azomethine group of ligands were observed the range

1625–1615 cm-1 with a shift of 10–24 cm-1 towards

lower frequencies with medium absorption bands on the

formation of complexes. The Sn–O, Sn–C and Sn–N

vibrations were found in the ranges 615–601, 518–503 and

425–401 cm-1, respectively, showed coordination of

nitrogen of azomethine, carbon of alkyl group and oxygen

of phenolic group to the central tin atom (Nidhi and Mal-

hotra 2011, Asija et al. 2012, Singh et al. 2010).

NMR spectroscopy

1H NMR

The 1H, 13C, 119Sn NMR spectra of the ligands and the

complexes were recorded in DMSO. The 1H NMR spectra

of the compounds are based on integration values, cou-

pling constants and chemical shifts. The monobasic

bidentate Schiff base ligands revealed phenolic proton

(OH) signal at d 14.07–13.91 ppm. All the organotin(IV)

complexes showed the absence of such a signal suggest-

ing the deprotonation of the phenolic OH of the Schiff

base and coordination to the tin atom on the formation of

complexes. The characteristic chemical shifts in the 1H

NMR spectra of compounds with a signal at d
10.06–9.90 ppm revealed the presence of azomethine

Scheme 1 Scheme for the synthesis of Schiff base ligands and organotin(IV) complexes
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proton confirming the condensation of benzothiazole

derivatives with 2-hydroxy-1-naphthaldehyde and the

proton signals of azomethine group were shifted by d
0.2–0.8 ppm which may be due to the coordination of

nitrogen atom of azomethine group to the tin atom leading

to significant deshielding effect (Gonzalez et al. 2009).

The signals at d 8.59–6.96 ppm were assigned to aryl

protons of the ligands and the complexes. The 1H NMR

spectra of the dimethyltin complexes show the signal of

Sn–CH3 at 0.91–0.83 ppm. The coupling constant 2J(Sn–

CH3) for the dimethyltin complexes was observed at

about 76 Hz, as a consequence the major structural fea-

tures of the solid state is retained in solution which sup-

ported the pentacoordinated environment around the tin

atom (Yin and Chen 2006, Yin et al. 2005).

13C NMR

The 13C NMR spectra of the ligands showed the signal

for C–OH at d 189.77–188.56 ppm which get shifted due

to coordination of oxygen to the central tin atom indi-

cating formation of complexes. The carbons attached to

thiazole group appeared in the range d
178.72–163.61 ppm which shifted because of deshield-

ing effect due to the presence of nearby azomethine

nitrogen. The azomethine carbon appeared in the range d
159.89–152.87 ppm which shifted downfield on com-

plexation indicating involvement of nitrogen in coordi-

nation bonding to form complexes (Nidhi and Malhotra

2011, Asija et al. 2012). The aromatic carbons appeared

in the aromatic range d 149.05–105.29 ppm in ligands

and complexes with slight alteration. The aliphatic car-

bons appeared in the aliphatic range d 63.77–8.74 ppm

in ligands and complexes.

119Sn NMR

A sharp singlet was appeared in the 119Sn spectra of the

compounds in the range d -400.00 to -359.85 ppm, d
-322.43 to -302.18 ppm, d -291.23 to -279.12 ppm and

d 266.72 to -225.24 ppm for phenyl, butyl, ethyl and

methyl complexes, respectively. These chemical shifts

revealed the formation of pentacoordinated tin centres in

the complexes in which the most electronegative atoms

occupy the axial position and the nitrogen atom occupied

the equatorial position (Devi et al. 2012). The chemical

shift of 119Sn spectra was affected by the nature of alkyl

group which is attached to the tin atom directly. The

phenyltin complexes showed high-field chemical shifts as

an outcome of anisotropic shielding effects as well as the pi

interactions (Sedaghat and Shokohi-pour 2009).

X-ray powder diffraction analysis

X-ray diffraction analyses of compounds exhibit the crys-

talline peak in the complexes. Powder XRD of all the other

compounds exhibited their crystalline nature. The average

crystallite size dXRD of the compounds was calculated by

Debye–Scherrer formula and was found approximately

26 nm. The XRD pattern of organotin(IV) complex 5 is

presented in Fig. 1 (in supplementary data).

dXRD ¼ 0:94k

b 1
2
cosh

where k is wavelength, h is diffraction angle, and b is full

width at half maxima. The XRD powder diffraction anal-

ysis of the compounds revealed that the compounds were

crystalline in nature.

In vitro antimicrobial activity

The in vitro biological activities (antibacterial and anti-

fungal activities) of all the Schiff base ligands and their

organotin(IV) complexes were evaluated against Gram-

positive bacteria B. cereus, S. aureus, Gram-negative

bacteria E. coli, P. aeruginosa and fungi A. niger and A.

flavus. Ciprofloxacin and fluconazole were used as standard

drugs for antibacterial and antifungal activities, respec-

tively. The serial dilution method was used for the evalu-

ation of antimicrobial activity. The results of antimicrobial

activity in terms of MIC (minimum inhibitory concentra-

tion lM/mL) are presented in Table 1.

The results of antibacterial activity testing against

E. coli indicated that compounds 5, 9 and 17 were highly

active with pMIC values of 2.021, 2.022 and 2.001 lM/

mL, respectively. These compounds (5, 9 and 17) have got

ethoxy, nitro and methyl groups as substituent on phenyl

ring of benzothiazole, respectively. In addition, two phenyl

groups were attached to the tin metal in the structure of

these compounds. The compounds 1 and 20 were found to

be least active with pMIC values of 1.45 and 1.603 lM/

mL, respectively.

In case of antimicrobial activity of synthesized com-

pounds against B. cereus, S. aureus, P. aeruginosa, A.

niger and A. flavus, compounds 5, 9 and 13 had emerged as

the most active ones and these compounds have ethoxy,

nitro and methoxy groups, respectively, as substituents on

phenyl ring of the benzothiazole ring in their structure.

Compounds 3 and 4 were least active against B. cereus, S.

aureus, A. flavus and P. aeruginosa and compounds 4 and

14 were least active against A. niger.

In general, it was observed that the metal complexes

were more active than their respective Schiff bases and

overall compounds 5 and 9 were found to be active against

all the tested microbial strains and their activity was almost
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equivalent to the activity of standard drugs in case of S.

aureus and A. niger. From the observed results, it was seen

that there was a remarkable boost in the activity of com-

plexes than the ligands. The increase in the antimicrobial

activity of synthesized complexes can be attributed to the

outcome of the chelation theory which coveys that due to

chelation, complexes become very influencing, effective,

intoxicating as chelation tends to formulate ligands to

operate as more influential and better antimicrobial agents,

hence tackling the microorganisms in a better way than the

ligand. In addition, the p-electron delocalization partially

shared with the donor atom of the coordinated ligand over

the metal positive charge may increase the lipophilic

character of the synthesized compounds due to which they

permeate through lipid microbial membrane and the

activity pattern followed was NO2[OCH3[OC2H5

because the capability of electron-withdrawing group

increases the antimicrobial activity (Sharma et al. 2004,

Judge et al. 2012a, b). The bond strength, solubility, con-

ductivity between metal and ligand may also be the reason

for enhancement in the activity. The hydrogen bond for-

mation between oxygen atom and the azomethine nitrogen

with the active centres of the cell constituent may influence

the mode of action with the cell processes. The imperme-

ability and the difference in the number of the ribosomes of

cells of the microorganisms may also be responsible for the

efficacy of the compounds (Kashar 2014, Sallam and Orabi

2002, Sharma et al. 2015).

QSAR analysis

Quantitative structure–activity relationship (QSAR) analy-

sis for the in vitro antimicrobial activity and structural

descriptors coding for various molecular properties of the

twenty compounds (four ligands and sixteen organotin(IV)

complexes of Schiff bases derived from 2-amino-6-substi-

tuted benzothiazole derivatives and 2-hydroxy-1-naph-

thaldehyde) were carried out to find out the mathematical

relationship between alteration in structure and antimicro-

bial activity using the linear free energy relationship model

(LFER) described by Hansch and Fujita (1964). The

dependent variable pMIC (i.e. -log MIC) used as in QSAR

studywas obtained by taking negative logarithm of observed

antimicrobial activities (i.e. MIC). The structural descriptors

like log of octanol–water partition coefficient (log P), molar

refractivity (MR),Kier’s zero-, first-, second- and third-order

molecular connectivity (0v, 0vv, 1v, 1vv, 2v, 2vv, 3v, 3vv) and
kappa shape (j1, j2, j3, ja1, ja2, ja3) topological indices,
Randic topological index (R),Wiener topological index (W),

Balaban topological index (J), total energy (Te), energies of

highest occupied molecular orbital (HOMO) and lowest

unoccupied molecular orbital (LUMO), dipole moment (l),
nuclear repulsion energy (Nu.E) and electronic energy

(Ele.E), calculated for organotin(IV) complexes of Schiff

bases derived from 2-amino-6-substituted benzothiazole

derivatives and 2-hydroxy-1-naphthaldehyde are presented

in Table 2 (Hansch et al. 1973, Kier and Hall 1976, Randic

et al. 1975, Balaban 1982, Wiener 1947, Randic 1993).

The antimicrobial activities and molecular descriptors

for 20 compounds (Schiff base ligands 1–4 and their cor-

responding organotin(IV) complexes 5–20) were subjected

to linear free energy regression analysis for QSAR model

development. The correlation between molecular descrip-

tors and antimicrobial activities was analysed on the basis

of regression analysis and correlation matrix constructed

for antifungal activity against Aspergillus flavus is pre-

sented in Table 3 (in supplementary materials). The sta-

tistical relationships of different molecular descriptors with

antimicrobial activities are presented in Table 4 (in sup-

plementary materials). On the whole, high colinearity

(r[ 0.8) was observed between different parameters, i.e.

molecular descriptors. The high interrelationship was

observed between first-order kappa shape index, j1 and

electronic energy, Ele.E (r = 0.998), Ele.E and zero-order

molecular connectivity index, 0v (r = 0.998), 0v and j1
(r = 0.994) and low interrelationship was observed

between second-order kappa shape index, j2 and Balaban

index, J (r = 0.000) and j1 and J (r = 0.032). The cor-

relation matrix indicated that the antimicrobial activity of

Table 1 Antimicrobial activity of synthesized compounds (lM/mL)

Comp. pMICec pMICpa pMICbc pMICsa pMICan pMICaf

1 1.445 1.746 1.445 1.746 2.048 1.746

2 1.747 1.747 1.446 1.747 2.049 1.747

3 1.728 1.728 1.427 1.728 2.030 1.728

4 1.707 1.707 1.406 1.707 2.009 1.707

5 2.021 2.323 2.323 2.624 2.624 2.323

6 1.994 2.295 2.295 2.278 2.596 2.295

7 1.651 2.254 1.952 1.952 2.254 2.254

8 1.930 2.231 1.930 1.930 2.231 2.231

9 2.022 2.323 2.323 2.624 2.624 2.323

10 1.693 2.296 2.296 2.597 2.597 2.296

11 1.953 2.255 1.953 2.237 2.255 2.255

12 1.931 2.232 1.931 2.215 2.232 2.232

13 1.710 2.313 2.313 2.614 2.614 2.313

14 1.984 2.285 2.285 2.268 1.984 2.285

15 1.941 1.941 1.941 1.941 2.544 2.243

16 1.617 1.918 1.918 1.918 2.521 2.220

17 2.001 2.302 2.302 2.603 2.603 2.302

18 1.972 2.274 2.274 2.256 2.575 2.274

19 1.627 2.230 1.928 1.928 2.230 2.230

20 1.603 2.206 1.904 1.904 2.206 2.206

Std. 2.61* 2.61* 2.61* 2.61* 2.64# 2.64#

* Ciprofloxacin (antibacterial drug); # fluconazole (antifungal drug)
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synthesized complexes is controlled mainly by topological

parameter, i.e. molecular connectivity indices.

The antifungal activity of synthesized derivatives

against A. flavus is governed by the valence first-order

molecular connectivity index, 1vv (Eq. 1).

QSAR model for antifungal activity against A. flavus

pMICan ¼ 0:0421vv þ 1:377

n ¼ 20 r ¼ 0:991 r2 ¼ 0:981 q2 ¼ 0:978

s ¼ 0:031 F ¼ 939:521

ð1Þ

Here and thereafter, n is the number of data points,

r correlation coefficient, r2 squared correlation coeffi-

cient, q2 cross-validated r2 obtained by leave one out

method, s standard error of the estimate and F Fischer

statistics.

The QSAR model represented by Eq. (1) for antifungal

activity against A. flavus depicted the importance of

valence first-order molecular connectivity index, 1vv in

controlling the antifungal activity of the synthesized

derivatives. The topological indices are numerical quanti-

fiers of molecular topology and are sensitive to bonding

pattern, symmetry, content of heteroatom as well as degree

of complexity of atomic neighbourhoods. The valence first-

order molecular connectivity topological index (1vv) rep-

resents the molecules with branched structure (Lather and

Madan 2005). The regression model represented by Eq. (1)

demonstrated the positive correlation between valence

first-order molecular connectivity index, 1vv for the syn-

thesized derivatives and antifungal activity against A. fla-

vus which indicated that compounds 5, 9 and 13 having

high 1vv values (21.539, 20.928 and 20.951, respectively;

Table 2) will have high antifungal potential and the results

presented in Table 1 are in concordance with the model

expressed by Eq. (1).

The linear regression model expressed by Eq. (1) was

subjected to cross validation procedure and high q2 values

(q2 = 0.898) were obtained with leave one out (LOO)

method. The foremost requirement for qualifying a statis-

tical model to be a valid one is that it should have q2 value

higher than 0.5, thus supporting the fact that model

expressed by Eq. (1) is a valid one (Golbraikh and Tropsha

2002). The comparison of observed and predicted anti-

fungal activities is presented in Table 5, in supplementary

materials. The observed and predicted antifungal activities

obtained by Eq. 1 lie close to each other as depicted by

their low residual values (Table 5), which again supported

the validity of model expressed by Eq. (1). The statistical

validity of QSAR model was also cross checked by plotting

the graphs of observed, predicted and residual pMIC

activity values. The plot of predicted pMICaf against

observed pMICaf (Fig. 2, in supplementary materials) also

supported the validity of model expressed by Eq. (1). The

propagation of error was observed on both sides of zero

while plotting the observed pMICaf vs residual pMICaf

(Fig. 3, in supplementary materials), which depicted that

there was no systemic error in model development (Kumar

et al. 2007; Judge et al. 2012a).

QSAR models represented by Eqs. (2–5) were obtained

by linear regression of the antibacterial and antifungal

activity of synthesized derivatives against B. cereus, S.

aureus, P. aeruginosa and A. niger with structural

descriptors.

QSAR model for antibacterial activity against B.

cereus

pMICbc ¼ 0:0770vv þ 0:339

n ¼ 20 r ¼ 0:987 r2 ¼ 0:974 q2 ¼ 0:970

s ¼ 0:054 F ¼ 676:517

ð2Þ

QSAR model for antibacterial activity against S.

aureus

pMICsa ¼ 0:1522v þ 0:057

n ¼ 20 r ¼ 0:958 r2 ¼ 0:917 q2 ¼ 0:902

s ¼ 0:099 F ¼ 199:955

ð3Þ

QSAR model for antibacterial activity against P.

aeruginosa

pMICpa ¼ 0:0510vv þ 1:056

n ¼ 20 r ¼ 0:918 r2 ¼ 0:842 q2 ¼ 0:822

s ¼ 0:095 F ¼ 96:183

ð4Þ

QSAR model for antifungal activity against A. niger

pMICan ¼ 0:0922v þ 1:079

n ¼ 20 r ¼ 0:791 r2 ¼ 0:626 q2 ¼ 0:575

s ¼ 0:154 F ¼ 30:114

ð5Þ

The QSAR model for antibacterial activity of synthe-

sized derivatives against B. cereus indicated that the

antibacterial activity is influenced by the valence zero-

order molecular connectivity topological index (0vv, Eq. 2).
The molecular descriptor (0vv) which governs the

antibacterial activity against B. cereus pointed towards the

unbranched structure of the molecule. The coefficient of
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valence zero-order molecular connectivity topological

index (0vv) is positive; therefore, the antibacterial activity

against B. cereus will increase with increase in 0vv values,
which can be checked from the results presented in

Tables 1 and 2.

The computational model regarding antibacterial activ-

ity of the synthesized compounds against S. aureus (Eq. 3)

indicated that second-order molecular connectivity index

(2v) was governing the antibacterial activity of synthesized

derivatives. The positive coefficient of second-order

molecular connectivity index (2v) in Eq. (3) revealed that

the antibacterial potential of the synthesized derivatives

will increase with increase in value of second-order

molecular connectivity index (2v) which is supported by

the results presented in Tables 1 and 2.

The QSAR model for antibacterial activity against P.

aeruginosa represented by Eq. (4) depicted the role of

valence zero-order molecular connectivity indexes (0vv) in
altering the antibacterial activity of the synthesized

derivatives. The mathematical model represented by

Eq. (5) demonstrated the importance of second-order

molecular connectivity index (2v) in expression of the

antifungal activity of synthesized derivatives against A.

niger. The positive correlation of these molecular

descriptors with their respective antibacterial and antifun-

gal activity revealed that increase in the values of structural

parameters will lead to an increase in the activity against

the respective microorganism. Statistically valid models

were not obtained for correlation of antibacterial activity of

synthesized derivatives against E. coli.

The QSAR models represented by Eqs. (2–5) have got

high r, r2, q2 and F values and low s values which indicated

that the models are valid. The low residual values obtained

while predicting the antimicrobial activity using these

models (Table 5, in supplementary materials) confirmed

the fact that models expressed by Eqs. (2–5) were also

valid ones.

Conclusion

The diorganotin(IV) complexes were prepared by reacting

sodium salts of 2-amino-6-substituted benzothiazole-

derived Schiff bases with dialkyltindichloride(IV). The

synthesized complexes have been characterized by differ-

ent spectroscopic techniques (1H, 13C, 119Sn NMR and IR

spectroscopy). The Schiff base ligands were found to be

coordinated with tin metal in a bidentate manner (N, O)

producing complexes with distorted trigonal bipyramidal

geometry and pentacoordinated. The compounds were

further evaluated for their in vitro antimicrobial activity

against different pathogenic bacteria and fungi. The results

of antimicrobial activity indicated that these compounds

were highly active against the tested microorganisms and

some compounds were equipotent to the standard drugs

particularly against S. aureus and A. niger. The computa-

tional analysis revealed that the antimicrobial activity of

the synthesized compounds is governed by the molecular

connectivity indices including 0vv (valence zero-order

molecular connectivity index), 1vv (valence first-order

molecular connectivity index), 2v (second-order molecular

connectivity index) and a detailed view of QSAR analysis

indicated that molecules were more potent than the other

synthesized compounds and it can be assumed that similar

structures having branching around the central metal atom

will be highly active.
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