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Abstract
Purpose Neuromodulation, such as vagal nerve stimulation and intestinal electrical stimulation, has been introduced for the
treatment of obesity and diabetes. Ideally, neuromodulation should be applied automatically after food intake. The purpose of this
study was to develop a method of automatic food intake detection through dynamic analysis of heart rate variability (HRV).
Materials and Methods Two experiments were conducted: (1) a small sample series with a standard test meal and (2) a large sample
series with varying meal size. Electrocardiograms (ECGs) were collected in the fasting and postprandial states. Each ECG was
processed to compute the HRV. For each HRV segment, time- and frequency-domain features were derived and used as inputs to
train and test an artificial neural network (ANN). The ANN was trained and tested with different cross-validation methods.
Results The highest classification accuracy reached with leave-one-subject-out-leave-one-sample-out cross-validation was 0.93
in experiment 1 and 0.88 in experiment 2. Retraining the ANN on recordings of a subject drastically increased the achieved
accuracy for that subject to values of 0.995 and 0.95 in experiments 1 and 2, respectively.
Conclusions Automatic food intake detection by ANNs, using features from the HRV, is feasible and may have a great potential
for neuromodulation-based treatments of meal-related disorders.
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Abbreviations
ANN Artificial neural networks
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HRV Heart rate variability

Introduction

Many of the most prevalent health problems in the world are
associated with food intake, digestion, and nutrient absorp-
tion. These problems include obesity, diabetes, and functional
gastrointestinal disorders (FGIDs). Around 31% of adults in
the United States (US) are obese; they are at a high risk of
numerous chronic and sometimes fatal diseases, such as cor-
onary heart diseases, type 2 diabetes, hypertension, stroke,
and cancers [1, 2]. In addition, obesity represents a substantial
economic impact in healthcare, with an estimated total annual
cost over $275 billion in the US [3]. Diabetes affects 12.2% of
US adults as of 2015, costing $245 billion in the United States
in 2012 [4]. Diabetes increases the risk for numerous other
conditions, such as cardiac diseases, stroke, kidney diseases,
and neuropathy [5]. Finally, FGIDs affect up to 25% of
Americans as of 2006 [6]. The combined direct and indirect
cost of irritable bowel syndrome alone reached $21.9 billion
in the US in 2002 [7]. Because FGIDs are chronic, patients
experience persistent symptoms and have a decreased quality
of life [6, 7].
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Traditional treatments of obesity include behavior
change, pharmacological treatments, and bariatric surgery.
The only treatment with long-term effectiveness is bariat-
ric surgery, a risky and invasive procedure [1, 8]. Diabetes
is currently treated through insulin and oral medications,
often in conjunction with lifestyle changes. Bariatric sur-
gery and artificial pancreas technology are long-term pos-
sibilities, but they are also invasive [9]. FGID treatment
frequently incorporates dietary changes [10, 11], medica-
tions [12], psychological intervention [13], and other al-
ternative medicines [14].

Electrical stimulation or neuromodulation has recently
been under intensive investigation as a potential treatment
option for obesity, diabetes, and FGIDs. Gastrointestinal elec-
trical stimulation could induce weight loss, as it alters gastro-
intestinal motility, increases satiety, and decreases food intake
[1]. Gastric electrical stimulation with the Enterra system is
used to treat gastroparesis [15]. Approaches for treatment of
obesity and diabetes include stimulation to the gut, the
subdiaphragmatic sympathetic, and the vagal nerve [16, 17].
For example, vBloc therapy blocks the vagus nerve to sup-
press hunger and has been approved for treating obesity [18].

Electrical stimulation or neuromodulation during or after
eating would be most effective for most electrical stimulation-
based treatments as it is used to suppress food intake and
absorption by altering postprandial gastrointestinal motility
and hormonal secretion. This explains the need for automated
food intake detection methods. Without an automatic food
intake detection algorithm, the neuromodulation therapy
would have to be applied continuously or depend on the action
of patients (manually turn on the device) that imposes a seri-
ous compliance issue [19]. Therefore, automatic food intake
detection methods are becoming increasingly crucial to obe-
sity, overweight, diabetes, and FGID treatment. Wearable sen-
sors for real-time detection can utilize acoustics [20], gyro-
scopic sensors [21], electroglottography [22], piezoelectricity
[23], and respiratory signals [24]. However, most of these
approaches are obtrusive or do not meet expectations for re-
quired accuracy. Furthermore, if these sensors were to report
food intake to an implanted device, they would additionally
require some form of wireless communication as they could
not be directly attached to the implanted device. Because of
these limitations, there is a need to develop new approaches to
detecting food intake that can be incorporated into an implant-
able stimulator.

Food intake is highly regulated by the central nervous sys-
tem [25]. The autonomic nervous system also plays a key role
in the control of energy homeostasis and body weight [26].
The autonomic system consists of a sympathetic and a para-
sympathetic branch, whose activities are affected differently
by periods of fasting and food intake. Food intake has been
reported to consistently increase sympathetic activity and de-
crease vagal activity [27, 28].

The cardiac autonomic function can be assessed by the spec-
tral analysis of heart rate variability (HRV) [28, 29]. The spec-
trum of HRV displays two major spectral components, i.e., a
low-frequency (LF) component (0.04–0.15 Hz) and a high-
frequency (HF) component (0.15–0.40 Hz). The LF reflects
mainly sympathetic activity with some parasympathetic input,
while the HF represents solely parasympathetic activity. In ad-
dition, the LF/HF ratio reflects the sympathovagal balance.

Since food intake alters cardiac autonomic functions that can
in turn be measured by changes in the HRV, we hypothesize
that the HRV can be used to detect food intake. The HRV signal
can be assessed from the electrocardiogram (ECG), whereas the
ECG can be recorded noninvasively and repetitively using sur-
face electrodes. The ECG signals obtained from surface elec-
trodes can be used to train an artificial neural network (ANN)
and in real neuromodulation applications, the ECG signal can
be easily acquired using the implantable neuromodulation de-
vice via one electrode placed at its stimulation lead and the case
of the stimulator (serving as another electrode). Lu et al. already
assessed the change in LF, HF, and LF/HF ratio after eating a
standardized meal; however, they did not consider the dynamic
nature of the HRV [28]. Although the HRV is also affected by
factors than food intake, we expect that food intake can be
discriminated from other factors by considering different fea-
tures of the HRV and by analyzing these in a subject-specific
manner. This is because the food intake is a unique process that
is different from other factors.

The objective of the present study was to perform a dynam-
ic analysis of the HRV to detect food intake, with the goal of
using the algorithm in an implantable electrical stimulator in a
real-time fashion. The automatic food intake detection was
achieved by training an artificial neural network (ANN) with
HRV features as inputs, and then using this ANN to detect
food intake.

Materials and Methods

Neural Network Method

The ANN is a machine learning technique inspired by the way
neurons are connected in the brain [30]. It is composed of
neurons, each of which can receive a number of inputs and
process these to compute its activation, or output. ANNs are
structured in layers, in which outputs from one layer are
weighted and passed to the next layer as inputs (Fig. 1).

Since neural networks can process large amounts of data
and can easily learn from examples, they are suitable for food
intake detection, a two-class classification problem in which
the samples are classified as belonging to the fasting or feed-
ing stage. In this study, the training examples consisted of
parameters derived from subject data as input and one of
two states as output.
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Experiment 1: a Small Sample Series with a Standard
Test Meal

Experimental Protocol

After 6 h or more of fasting, the ECG was recorded from 16
subjects (all healthy adult volunteers) using an electrocardio-
gram (ECG) device (MedKinetic, Ningbo, China) via three
surface electrodes. The inclusion criteria are as follows: (1)
age, 18–65 years; (2) absence of any clinical symptoms; (3)
taking no medications; (4) willingness to sign the consent
form. The exclusion criteria are as follows: (1) any history
of abdominal surgery; (2) any systemic diseases; (3) taking
any medications during the 3 days before the test; (4) allergic
to adhesive ECG electrodes. No limits were set on the body
weight and height. The recording consisted of 60 min in the
fasting state and 10 min during eating. The meal given to the
subjects consisted of around 450 cal. It included a donut, a
cookie, a yogurt, an egg, and 80 ml of water. The subjects
were asked to remain still and avoid talking during the whole
period of ECG measurements.

Signal Processing and Feature Extraction

The ECG signal was processed in MATLAB using a custom-
designed software. In order to compute the HRV, first the R-
peaks of the ECG signal were detected using the Pan-
Tompkins algorithm [31] that finds QRS complexes based
on the analysis of their slope, amplitude, and width. Once
the R-peaks were detected, the R-R interval signal, or
tachogram (which expresses the HRV), was derived from

them. This beat-to-beat sampled signal was then resampled
to 4 Hz using linear interpolation. We then analyzed the
tachogram dynamically in the time domain and frequency
domain. The total length of the signal was divided into non-
overlapping segments, or epochs, of different lengths: 2, 5,
and 8 min. For the time domain analysis of the HRV, different
time-domain features were computed on each epoch of the
non-resampled tachogram (Table 1). Each epoch was thus
defined as one sample, with a number of corresponding fea-
tures. Each of the samples was labeled as “fasting” or “feed-
ing.” The label “fasting/feeding” was accorded to samples
corresponding to segments of the ECG during the fasting/
feeding state.

For the dynamic analysis of the HRV in the frequency
domain, frequency-domain features were computed for each
quasi-stationary epoch of the resampled tachogram. Each
epoch’s power spectrum, or power spectral density (PSD),
was estimated using Welch’s method [32], by averaging the
periodograms of half-overlapped Hanning windowed seg-
ments of each epoch.

After computing the power spectral density (PSD) of
the HRV for every epoch, we extracted the frequency-
domain features (Table 1). These features were all derived
from the PSD in multiple frequency bands, namely the
very low frequency band (VLF, 0.003–0.04 Hz), the low
frequency band (LF, 0.04–0.15 Hz), and the high frequen-
cy band (HF, 0.15–0.4 Hz). The total power in these fre-
quency bands was obtained by integrating the PSD over
the respective frequency ranges.

Altogether, the feature extraction process results in a total
of 6 time-domain and 5 frequency-domain features for each

Fig. 1 Neural network with three layers used in this study. The input layer
size is eleven, the hidden layer consists of a variable amount of neurons,
and the output layer size is two

Table 1 Time- and frequency-domain features

Feature Description

HR mean Mean heart rate of each epoch (in bpm)

HR SD Standard deviation of the heart rate in each epoch (in bpm)

NN mean Mean normal-to-normal interval, i.e., mean time interval
between consecutive heart beats (R-R interval) in
each epoch (in s)

NN
max-min

Difference between longest and shortest R-R
interval in each epoch (in s)

RMSSD Square root of the mean-squared differences
between successive R-R intervals (in s)

pNN50 Proportion of interval differences of successive R-R
intervals greater than 50 ms in each epoch (in %)

VLF Very low frequency spectral power (0.003 to 0.04 Hz)

LF Low frequency spectral power (0.04 to 0.15 Hz)

HF High frequency spectral power (0.15 to 0.4 Hz)

LF/HF Ratio of low to high frequency power

nLF Normalized low frequency power relative to
HF + LF, i.e., LF

LFþHF

OBES SURG (2020) 30:2547–2557 2549



epoch and for each subject. Each feature is thus composed of
numerous samples that correspond to the epochs into which
the tachogram was divided.

Training and Testing of ANN

Detecting food intake is a two-class classification problem, in
which the samples are classified as belonging to the fasting or
feeding stage. We tackled this classification problem by train-
ing a pattern recognition network in MATLAB. The training
examples that were fed to the ANN consisted of samples and
their corresponding labels. Each sample was a vector with
eleven entries corresponding to features of the HRV. Its label
classified it as belonging to the fasting or the feeding stage.
The Levenberg-Marquardt backpropagation function was se-
lected because its performance was among the best. The mean
squared normalized error was chosen as the performance mea-
sure. During training, the samples were randomly divided into
80% training samples and 20% validation samples.

This study considered 3 different epoch lengths: 2, 5, and
8 min. In the time-frequency analysis, decreasing the epoch
length increases the time resolution but leads to a loss in fre-
quency resolution [33]. Thus, there is a trade-off between
frequency resolution and time resolution when the ANN tries
to differentiate between samples of the fasting and feeding
stage. The minimum 2 min epoch length was selected based
on the fact that in practice, occurrences of meals shorter than
2 min are quite rare. Moreover, detecting such short timescale
changes in the HRV would in practice result in a high false
positive rate, as transient changes in the HRVon such a small
timescale can be related to numerous other factors than feed-
ing. The upper limit of 8 min was determined based on a
similar reasoning: further increasing the epoch length would
mean that short, small meals would go undetected too easily,
as the features are averaged measures over the whole epoch
length. This would in turn result in a high false negative rate.

Three numbers of neurons in the hidden layer were com-
pared: 3, 5, and 10. The information in the following para-
graph is based on [34]. If the number of neurons in the hidden
layer is too low, the classification problem will be underfitted,
i.e., the neurons will not be able to adequately solve the clas-
sification problem. However, having too many neurons may
result in overfitting and an increase in training time.
Unfortunately, there is no simple way to select the perfect
amount of neurons. There are, however, some rule-of-thumb
methods, one of which suggests that the size of the hidden
layer should be between the size of the input layer and the
size of the output layer. With this in mind, we tested the per-
formance of the neural network with 3, 5, and 10 neurons in
the hidden layer.

The training and testing of the ANNs was performed in
several ways, which are explained and discussed in the fol-
lowing paragraphs. First, leave-one-subject-out (LOSO)

cross-validation was used. This way of testing and training
evaluated how well the classifier performed on unseen, new
subjects. Then, leave-one-subject-out and leave-one-out
(LOSO-LOO) cross-validation were used, to evaluate how
adding samples of specific patients to the training set would
improve the accuracy. Finally, the performance of the ANN
was tested in a more realistic setting, in which the ANN was
first trained on all 16 subjects and then retrained on some
recordings of a new, unseen patient. The testing was per-
formed on unseen recordings of the same patient. This simu-
lated the way the ANN would be trained and retrained in its
application in future implant devices.

LOSO cross-validation was the first method used for train-
ing and testing. It is similar to K-fold cross-validation, but the
partitioning of the dataset is different. Each partition contains
all the samples corresponding to one subject [35]. LOSO cross-
validation thus consisted of training the ANN with the samples
of all except one subject and then testing on the samples of that
one subject. All subjects were used as a test set exactly once.
This cross-validation method was used to test how well the
designed classifier generalized to new, unseen subjects. In the
context of an implantable stimulating device, LOSO would be
the equivalent of training the classifier beforehand on a data-
base of different people and using the algorithm to detect food
intake in a new subject without retraining it.

The second way of training and testing evaluated the
ANN’s performance with retraining on a particular subject.
We used a combination of leave-one-subject-out and leave-
one-out (LOSO-LOO) cross-validation. The first part of the
method consisted of training the ANN with LOSO, i.e., train-
ing on all but one subject. In the second part, the ANN was
retrained on all but one sample of the previously excluded
subject. This part consisted of applying LOO cross-
validation to the samples of one particular subject, with each
sample of the subject being used as a test set exactly once. The
performance was expected to improve with respect to LOSO
cross-validation because of the subject retraining.

The classifier’s performance was represented as follows:
the sensitivity, specificity, accuracy, and area under the receiv-
er operating characteristic curve (AUC) [33]. Due to the ran-
dom initialization of some of the parameters of the ANN, the
LOSO procedure did not lead to reproducible results.
Therefore, it was performed ten times and the performance
values were each averaged over the ten iterations.

Experiment 2: a Large Sample Series with Varying
Meal Size

Experimental Protocol

The second dataset contained ECG recordings from 37
healthy control subjects and 73 patients with functional dys-
pepsia. Of the total of 110 subjects, 68 were female and 42
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were male. The inclusion and exclusion criteria for the healthy
control were the same as in experiment 1. The inclusion
criteria for patients were as follows: (1) age, 18–65 years;
(2) met criteria for functional dyspepsia according to Rome
IV criteria; (3) willing to sign the consent form. Exclusion
criteria for patients are as follows: (1) pregnant or lactating,
(2) a history of gastrointestinal surgery, (3) any other diseases
that may explain the symptom of functional dyspepsia, (4)
severe psychological or mental diseases, or (5) allergic to ad-
hesive ECG electrodes. Similar to experiment 1, no limits
were set on the body weight and height. All of the recordings
were made using the same recording technology and electrode
placement as in experiment 1. This time however, no record-
ings were obtained during the feeding stage. The recordings
consisted of 30 min in the fasting stage (before eating) and
30 min in the postprandial state (after eating).

Instead of giving a fixed amount of a solid meal, the sub-
jects in this experiment were asked to consume a liquid meal
at a rate of 60 mL/min until complete fullness. The meal was
prepared by dissolving 100 g of Nestle Full Cream Milk
Powder and 50 g of cola powder in 1120 mL of water. The
tolerated volume averaged 855 ± 294 mL. The data used to
compare the fasting data was the data obtained after the max-
imum intake of the nutrient liquid meal instead of the data
during eating or drinking. All postprandial data were acquired
immediately after termination of eating/drinking.

Signal Processing and Feature Extraction

Each ECG signal was processed with the same methods as in
experiment 1. This processing consisted of R-peak detection,
tachogram computation, and resampling. The same time-
domain and frequency-domain analyses were performed to
extract the eleven features from tachogram segments.

Artificial Neural Network

We should note that the classification problem to be solved in
experiment 2 was different from the problem in experiment 1.
In experiment 1, the classes to be distinguished were the
fasting and the feeding stage. In this second experiment, an
ANN was designed to classify samples as belonging to either
the fasting stage (before eating) or the postprandial stage (after
eating). The classification was performed similarly as in ex-
periment 1. The training examples that were fed to the ANN
consisted of samples with eleven entries corresponding to fea-
tures of the HRV. Each sample corresponded to a label indi-
cating whether it belonged to the fasting or the postprandial
stage. The design parameters (training function, performance
function, training/validation ratio, and number of layers) cho-
sen for the ANNwere the same as in experiment 1. Again, the
three different ways of training and testing were performed.
The LOSO and LOSO-LOO cross-validation methods were

applied with window lengths of 2, 5, and 8 min, and 3, 5, and
10 neurons in the hidden layer. The sensitivity, specificity,
accuracy, and AUC were computed to evaluate the ANNs’
performances.

Similarly as in experiment 1, we also tried the third way of
training and testing, to quantify howmuch the ANN improves
by going from general to subject-specific training. First, the
ANN was trained on the original 110 subjects and tested on a
new, unseen subject. Then, it was retrained on one and on two
recordings of the new subject. Its performance was evaluated
for all three situations. The new subject used in this experi-
ment was the same one as the new subject in experiment 1,
with three recordings of which 30 min of fasting data and
30 min of postprandial data were used here.

Results

Features of HRV

Figure 2 shows a typical example of a tachogram, in which the
red-dashed line indicates the beginning of the feeding stage,
defined as the moment the subject starts eating. The magni-
tude of the signal (R-R interval) clearly decreases after the
subject starts eating, demonstrating an increase in heart rate.

Figure 3 shows some of the time- and frequency-domain
features of the HRVof a healthy subject using an epoch length
of 8 min. The figure shows a complete time window from the
fasting stage to the postprandial stage. The fasting stage
stopped at 32 min, after which the feeding stage started (indi-
cated by the dashed line in Fig. 3). At 48 min, the subject
stopped eating and the postprandial stage started (indicated
by the dot-dashed line in Fig. 3. The figure shows an increase
in the HRmean when the person started eating. The NNmean
is reciprocal to the HR mean and decreased when food intake
started. The RMSSD also decreased during the feeding stage,
whereas the LF/HF and nLF (normalized low frequency) in-
creased when food intake started. The postprandial stage was
characterized by a decrease in the HR mean, LF/HF, and nLF,
and an increase in the NN mean and RMSSD. The HR mean
and NN mean were different in the postprandial stage com-
pared with the fasting stage, while the other features in Fig. 3
had similar values in the postprandial stage as in the fasting
stage. This figure represents typical dynamic changes of HRV
parameters from fasting to eating to postprandial. The HRV
data from the FD patients showed similar dynamic changes of
these HRV parameters.

Automated Detection of Food Intake Based
on Experiment 1

Classification results are shown in Tables 2 and 3. With the
LOSO cross-validation (Table 2), the epoch length and
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number of neurons did not have a large influence on the per-
formance. An increasing epoch length did decrease the sensi-
tivity a little. This effect was a lot stronger when LOSO-LOO
cross-validation was used (Table 3). With LOSO, the mean
accuracy was 0.83, the mean sensitivity was 0.51, and the
mean specificity was 0.89. With LOSO-LOO, the ANN

reached maximal accuracy (0.93) and sensitivity (0.79) values
with 2 min epochs. The mean specificity increased to 0.97.

The last part of the experiment consisted of training the
ANN with the data of the original 16 subjects and testing it
on a new, unseen subject. First, the ANN was not retrained
with the data of the new subject. Then, the ANNwas retrained

Fig. 3 Features for one subject.
Dashed line indicates the moment
when the subject starts eating.
Dot-dashed line indicates the start
of the postprandial stage. Epoch
length, 8 min

Fig. 2 Part of the tachogram of
one subject. Dashed line indicates
the moment when the subject
starts eating
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on one and two recordings of the new subject. The resulting
accuracy, sensitivity, specificity, and AUC are shown in Fig. 4.
The specificity was exceptionally high in this example: it was
equal to 1 for all of the cases, meaning that all fasting samples
were correctly classified for the new subject. All other perfor-
mance values were improved by retraining the ANN with the
data of the new subject. The performance values were already
close to maximal when the ANN was retrained on the first
recording of the new subject and tested on the second and
third recording. Consequently, there was a little room for im-
provement when more recordings of the same subject were
added to the retraining data. In this part of the experiment, the
epoch length was 2 min and the number of neurons in the
neural network was 10.

Automated Detection of Food Intake Based
on Experiment 2

For the experiment with fasting and postprandial data from
110 subjects (with no feeding data and varying meal size),

the performance is reported in Tables 4 and 5, showing sensi-
tivity and specificity values that are more balanced than in
Tables 2 and 3. The performance values of the two experi-
ments cannot be compared exactly because the two experi-
ments had very different meals (fixed solid meal vs liquid
meal with varying size) and conditions (feeding vs postpran-
dial). For the LOSO cross-validation method (Table 4), the
sensitivity values were generally higher than the specificity
values. The mean accuracy was 0.64. In Table 5, the reported
performance of the ANN is better than in Table 4. Using
LOSO-LOO as cross-validation, method increased the mean
accuracy to 0.85 and the maximum accuracy to 0.88. The
accuracy, sensitivity, and specificity reached a maximum for
2 min epochs (Table 5).

The last part of the experiment again consisted of training
the ANN with the data of the original 110 subjects and testing
it on a new, unseen subject. First, the ANN was not retrained
with the data of the new subject. Then, the ANNwas retrained
on one and two recordings of the new subject. The resulting
accuracy, sensitivity, specificity, and AUC are shown in Fig. 5.
All performance values except for the specificity were im-
proved when the ANN was retrained on the new subject.
The figure shows an improvement in all performance values
when the ANN was retrained with two rather than one record-
ing of the new subject. In this part, the epoch length was 2 min
and the number of neurons in the neural network was 10.

Discussion

In this study, the ECG was processed to derive the HRV,
whose features were dynamically extracted and then used to
train an ANN to detect food intake. The major findings from
the experiments were as follows: (1) the LOSO-LOO cross-
validation method yielded higher performance values than the
LOSO method; (2) the highest accuracies obtained with
LOSO-LOO cross-validation in experiments 1 and 2, respec-
tively, were 0.93 and 0.88; (3) testing with subject-specific
retraining resulted in better classification performance than
testing without said retraining.

The automated food intake detection is required for the
treatment of obesi ty, diabetes, and FGIDs using
neuromodulation via an implantable stimulator, such as intes-
tinal electrical stimulation for obesity [36–41]. The primary
advantage of using the ECG as a signal to detect food intake is
the fact that in future neuromodulation therapies using an im-
plantable pulse generator (IPG), the stimulation lead and the
IPG can be used as electrodes for detecting the ECG, elimi-
nating the need for special sensors/electrodes. The advantage
of using an ANN for the food intake detection is that ample
data are available for training the ANN, and most importantly,
the algorithm for the detection is simple once the ANN is
trained, which is ideal for the implantable stimulator as the

Table 2 ANN performance in exp 1 with leave-one-subject-out
(LOSO)

Epoch
length (min)

Number of
neurons

Accuracy Sensitivity Specificity AUC

2 3 0.82 0.54 0.89 0.81

2 5 0.82 0.54 0.88 0.82

2 10 0.81 0.58 0.86 0.81

5 3 0.84 0.47 0.91 0.79

5 5 0.84 0.47 0.90 0.79

5 10 0.85 0.52 0.90 0.80

8 3 0.83 0.43 0.91 0.74

8 5 0.82 0.52 0.88 0.77

8 10 0.82 0.53 0.87 0.77

Table 3 ANN performance in exp 1 with leave-one-subject-out and
leave-one-out

Epoch length
(min)

Number of
neurons

Accuracy Sensitivity Specificity AUC

2 3 0.93 0.78 0.97 0.93

2 5 0.93 0.79 0.97 0.94

2 10 0.93 0.77 0.97 0.93

5 3 0.90 0.54 0.96 0.85

5 5 0.91 0.54 0.97 0.87

5 10 0.91 0.51 0.97 0.85

8 3 0.85 0.12 0.96 0.68

8 5 0.85 0.06 0.97 0.66

8 10 0.86 0.13 0.98 0.73
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training of the ANN can be done without the use of IPG, and
once the ANN is trained, the weights of the ANN can be
uploaded to the IPG for on-line detection of food intake.

With the LOSO cross-validation method in experiment 1
(small sample size but with feeding data and fixed meal), the
mean accuracy was 0.83. The ANN demonstrated little to no
change in performance when tested with different epoch
lengths and numbers of neurons. As depicted in Table 2, the
performance values showed only minor fluctuations.
Conversely, Table 3 shows how the epoch length had a clear
influence on results obtained with the LOSO-LOO method.
Because the feeding stage of experiment 1 lasted only 10 min,
the epoch length had a major impact on the amount of samples
available for training. For example, each subject had just 1
sample in the feeding stage when an 8-min epoch was used.
The tests with 2- and 5-min epoch lengths had more training
samples in the feeding stage. The shorter the epoch length, the
more training samples in the feeding stage and the better the
ANN were able to identify the feeding stage. This effect was
not due to the intrinsic quality of features obtained with certain

window lengths, but due to the fact that the ANN had not
enough training data per subject. It primarily had a large im-
pact on the sensitivity, and consequently also influenced the
accuracy and AUC. Table 3 shows that the highest sensitivity
obtained was 0.79 (2-min epoch) and the lowest was 0.13 (8-
min epoch). Overall, using LOSO-LOO cross-validation im-
proved the accuracy compared with LOSO cross-validation:
the mean accuracy increased to 0.85 and the maximum accu-
racy to 0.88. Again, the number of neurons appeared to have
no effect on the performance.

Experiment 2 was designed to mimic real-world situa-
tions by including a large number of subjects, mixing
healthy controls and patients, and providing a meal with
different sizes. In practical applications, a large number of
subjects can be used to train the ANN since the ECG mea-
surement is noninvasive. Patients with functional dyspep-
sia were included in the experiment to represent diversity
of subjects as they may have different postprandial changes
in autonomic functions. Different meal sizes (varied from
400 to 1200 mL) were allowed in this experiment to reflect

Fig. 4 The ANN’s performance
in experiment 1 (16 subjects,
fasting and feeding stage) when
the ANN is tested on recordings
of a new, unseen subject, and
when the ANN is tested on the
same subject after retraining on 1
and 2 recordings of this subject.
The epoch length is 2 min and the
number of neurons is 10

Table 4 ANN performance in exp 2 with leave-one-subject-out
(LOSO)

Epoch length
(min)

Number of
neurons

Accuracy Sensitivity Specificity AUC

2 3 0.64 0.68 0.59 0.68

2 5 0.64 0.68 0.59 0.68

2 10 0.63 0.68 0.59 0.68

5 3 0.65 0.70 0.60 0.69

5 5 0.65 0.70 0.60 0.69

5 10 0.65 0.69 0.61 0.68

8 3 0.64 0.69 0.59 0.70

8 5 0.65 0.69 0.60 0.70

8 10 0.64 0.68 0.61 0.69

Table 5 ANN performance in exp 2 with leave-one-subject-out and
leave-one-out

Epoch length
(min)

Number of
neurons

Accuracy Sensitivity Specificity AUC

2 3 0.88 0.87 0.88 0.95

2 5 0.87 0.87 0.88 0.95

2 10 0.87 0.87 0.87 0.94

5 3 0.86 0.86 0.85 0.93

5 5 0.85 0.86 0.85 0.93

5 10 0.86 0.85 0.86 0.93

8 3 0.82 0.81 0.82 0.90

8 5 0.81 0.80 0.82 0.89

8 10 0.81 0.81 0.82 0.89
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future clinical application. In addition, the ECG data dur-
ing feeding were excluded to represent future applications
that do not need stimulation during feeding. Nevertheless,
experiment 2 yielded similar results; the LOSO method
results showed no influence from epoch length or number
of neurons (Table 4) while the LOSO-LOO method
showed higher performance values for shorter epoch
lengths (Table 5). Unlike experiment 1, which had a 10-
min feeding period, this experiment had 30-min fasting and
postprandial periods. Therefore, longer epoch lengths did
not decrease performance values as drastically as in exper-
iment 1. Performance values still increased with shorter
epochs because of their positive effect on the amount of
training samples. Table 5 shows that the highest sensitivity
was 0.87 (2-min epoch), and the lowest was 0.80 (8-min
epoch) for the LOSO-LOO method. This was an improve-
ment with comparison with the LOSO method, yielding a
mean accuracy of 0.64 (Table 4). Neither method showed
impact from the number of neurons.

It is also important to note that the specificity was sim-
ilarly influenced by epoch length in experiment 2, whereas
experiment 1 showed no correlation between the two. In all
experiment 1 tests, specificity was considerably higher
than sensitivity. In other words, the ANN was capable of
detecting fasting better than feeding, a result of the unbal-
anced sample proportion between the two stages. During
the experiments, the ECG was recorded for 1 h during the
fasting stage and only 10 min during feeding. As a result,
the ANN was trained with more samples from the fasting
stage, leading to better performance in detecting this stage
than the feeding stage. In general, experiment 2 avoided
this issue by having equal fasting and postprandial periods.
This led to more balanced sensitivity and specificity.
Lowering the decision threshold can improve the sensitiv-
ity at the expense of decreasing the specificity. A trade-off
can be made by selecting the desired sensitivity and

specificity in the ROC curve and applying the correspond-
ing threshold to the algorithm.

In both experiments 1 and 2, the final part was to train the
ANN on the original subjects and to test it on a new, unseen
subject. First, the ANN was not retrained on the new subject;
then, it was retrained on one recording of this subject; finally,
it was retrained on two recordings of the subject. The purpose
of this was to mimic the ANN’s training process in a real-life
application. If an implantable stimulator were to be used in a
patient, it would first need to acquire a sufficient amount of
patient-specific ECG to retrain the ANN, which can be done
easily before the treatment starts. In this way, the classifier
would be specified to match the patient’s own characteristics.

The results of the subject-specific training and testing are
reported in Figs. 4 and 5 for experiment 1 and 2, respectively.
They showed that the performance was, in fact, significantly
improved after retraining on subject-specific recordings. In
experiment 1 (Fig. 4), we see an exceptionally high specificity
of 1 in all three cases. The other performance values were
greatly improved when the ANNwas retrained on one record-
ing of the new subject. Retraining on one recording was
enough to obtain almost maximal performance values when
the ANN was tested on the second and third recording. When
the network was retrained on the first and the second recording
and tested on the third one, there was no more significant
improvement. The accuracy, sensitivity, specificity, and
AUC were 0.993, 0.979, 1, and 1. The perfect amount of data
to retrain on should be investigated in further studies that
include more than three subject-specific data recordings. In
experiment 2 (Fig. 5), all performance measures except spec-
ificity were greatly improved when subject-specific retraining
was included. The specificity was decreased from 0.95 to 0.92
in exchange for a huge improvement in sensitivity from 0.05
to 0.83. Moreover, all the performance values were addition-
ally increased by retraining on two subject-specific recordings
rather than one. After retraining on two recordings, the values

Fig. 5 The ANN’s performance
in experiment 2 (110 subjects,
fasting and postprandial stage)
when the ANN is tested on
recordings of a new, unseen
subject, and when the ANN is
tested on the same subject after
retraining on 1 and 2 recordings
of this subject. The epoch length
is 2 min and the number of
neurons is 10
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for accuracy, sensitivity, specificity, and AUC were, respec-
tively, 0.95, 0.94, 0.96, and 0.98. We expect these values to
further improve with more subject-specific retraining.
Comparing the subject-specific retraining in experiment 1
and 2 shows that the dataset on which the ANN is trained
beforehand plays a large role in how well it performs initially
in detecting food intake in a new subject. Fortunately, subject-
specific retraining of the ANN can easily be used to improve
this performance up to the desired accuracy.

The promising results in this study suggest that the HRV
can be used to detect food intake dynamically. However, this
study has limitations, and a few more issues need to be ad-
dressed before the ANN can be used in an implantable stim-
ulation device. Further studies should include more data, par-
ticularly in the fasting stage under different situations rather
than pure laboratory setting. Conditions other than eating that
may alter autonomic functions should be included in future
studies, such as exercise, walking, and running. Future work
should also consider different types of meals, including
snacks, to see how the changes in features (between fasting
and feeding) depend on the type and amount of food. Finally,
the decision threshold in the ANN should be tuned depending
on the desired sensitivity and specificity.

We would conclude this discussion with some general con-
siderations on the clinical application of ANNs in future
neuromodulation therapies for treating obesity, diabetes, and
FGIDs. An ANN can first be trained on a general dataset.
Then, using the ECG acquired from a candidate patient, the
same ANN can be retrained to achieve a higher accuracy.
After the retraining, the weights of the ANN are fixed. The
pacemaker can then be programmed to include a simple, stat-
ic, input-output function determined by the final weights of
the ANN. We should note that the nature of these treatments
does not require perfect detection of fasting and feeding. For
example, the decision threshold could be adapted to trigger
stimulation when eating a full meal, but not when eating a
snack. Changing this threshold is the equivalent of making a
trade-off between sensitivity and specificity. With these con-
siderations in mind, ANNs trained for food intake detection
have high potential for clinical applications.

In conclusion, this study investigates a promising approach
to detect food intake using the ECG as primary signal. It uses
time- and frequency-domain features derived from the dynam-
ic analysis of the HRV. The features suggest that the sympa-
thovagal balance increases upon food intake. The parameters
serve as inputs to train an ANN to detect food intake. When
discriminating between fasting and feeding with LOSO cross-
validation, the highest accuracy obtained was 0.85. Subject-
specific retraining improves the classification accuracy to
0.995. Based on these promising results, we suspect that
ANN-based food intake detection has high potential in mini-
mally invasive electrical stimulation treatment for obesity, di-
abetes, and FGIDs.
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