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Abstract
Purpose Bariatric surgery has been associated with bone re-
modeling changes. The action of adipokines on the expression
of receptor activator of nuclear factor kappa β ligand
(RANKL) and osteoprotegerin (OPG) and on an increase in
sclerostin could be related to these changes.
Materials and Methods This study aimed to assess the reper-
cussions of weight loss, fat mass (FM), and fat-free mass
(FFM) loss and biochemical and hormonal changes on bone
remodeling markers after Roux-en-Y gastric bypass (RYGB).
Anthropometric data, parathyroid hormone (PTH), bone-
specific alkaline phosphatase (BSAP), collagen type 1 C-
telopeptide (CTX), 25-hydroxy vitamin D (25-OH-VitD), lep-
tin, adiponectin, RANKL, OPG, and sclerostin of 30 menstru-
ating women were measured preoperatively (Pre), and 3, 12,
and 24 months (m) after RYGB.
Results Leptin (34.4 (14.7; 51.9) vs. 22.5 (1.9; 52.7) ng/mL)
and OPG (3.6 (1.1; 11.5) vs. 3.4 (1.5; 6) pmol/L) decreased,
and adiponectin (7.4 (1.7; 18.4) vs. 13.8 (3.0; 34.6) μg/mL),
CTX (0.2 (0.1; 2.2) vs. 0.6 (0.4; 6.0) ng/mL), RANKL (0.1
(0.0; 0.5) vs. 0.3 (0.0; 2.0) pmol/L), and sclerostin (21.7 (3.2;
75.1) vs. 34.8 (6.4; 80.5) pmol/L) increased after 3 m. BSAP

increased after 12 m (10.1 (5.4; 18.9) vs. 13.9 (6.9; 30.2) μg/
mL) (p < 0.005). CTX correlated positively with adiponectin
at 24 m and inversely with leptin Pre; OPG at 3 m; weight,
FM, FFM, and leptin at 24 m. RANKL correlated directly
with weight at 3 m. Sclerostin correlated inversely with weight
Pre and FM at 3 m. BSAP correlated negatively with 25-OH-
VitD at 12 m, and positively with PTH at 24 m.
Conclusions RYGB induced weight loss, and biochemical,
hormonal, and body composition changes are associated with
higher bone remodeling.
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Introduction

Obesity has increased in the last decades, assuming an epi-
demic character as it affects approximately 600 million people
globally and about one-third of the North American popula-
tion [1]. In this context, bariatric surgery has been increasingly
used as a therapeutic option for obese individuals who do not
obtain satisfactory results from conventional treatments.
Currently, it is considered the most effective and long-lasting
treatment for obesity [2, 3]. Among the available surgical
techniques, Roux-en-Y gastric bypass (RYGB) has been one
of the most used, because of its lower rates of morbidity and
mortality and high excess weight loss percentage [4].

Despite the benefits related to weight loss, this procedure
has negative repercussions on bone metabolism [5–8], which
could be particularly concerning in women [6]. Although the
pathophysiological mechanisms responsible for these changes
are still not totally elucidated, a possibility would be that
weight and body composition changes induced by surgery
would promote changes in hormone metabolism and adipose
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tissue, leading to variations in the levels of important
adipokines [9–12], which could modulate the expression of
the receptor activator of nuclear factor kappa β ligand
(RANKL) and osteoprotegerin (OPG) [13–17].

Moreover, the lower mechanical load stemming from rapid
and intense weight loss after surgery may increase the expres-
sion of sclerostin [6, 18–20]. This protein, coded by the SOST
gene and produced exclusively by osteocytes, inhibits bone
formation by inhibiting the terminal differentiation of osteo-
blasts and promotes their apoptosis [21, 22]. Sclerostin also
reduces bone formation by Wnt, binding to the receptor
LRP5/6 in osteoblast cell membrane, blocking the signaling
pathway Wnt/β-catenin, and inhibiting the transcription of
osteogenic genes [23–26].

Thus, changes in the levels of adipokines, RANKL, OPG,
and sclerostin could be involved in the bone remodeling
changes that occur after bariatric surgery, with bone repercus-
sions proportional to weight loss [19, 20, 27–29]. However,
studies on the subject are still scarce, and the relationships that
exist between these proteins and bone remodeling after sur-
gery have not been totally clarified. Thus, the objective of this
study was to assess the repercussions of RYGB-related weight
loss and body composition, biochemical, and hormonal
changes on serum bone remodeling markers.

Materials and Methods

This prospective and observational study assessed the bio-
chemical, hormonal, and bone remodeling parameters of
obese women before and after RYGB, and it was approved
by the local Research Ethics Committee (protocol number
3710-2010) and the studies were conducted according to the
principles of the 1964 Helsinki Declaration. Informed consent
was obtained from all individual participants included in the
study.

Patients

The sample consisted of menstruating women aged 18 to
50 years, with obesity grades II (gII; BMI 35–39.99) or III
(gIII; BMI ≥40.0). The women underwent RYGB according
the institution’s protocol between May 2009 and December
2011. After the women were informed about the objectives of
the study and the data collection procedures, they read and
signed an informed consent form.

The exclusion criteria were the presence of the following
conditions diagnosed by protocol tests established by the
American Consensus for Bariatric Surgery [2]: severe renal
or hepatic diseases, collagen diseases, hypogonadism, hyper-
parathyroidism, hyperthyroidism, type 2 diabetes mellitus
(DM) decompensated or hypercortisolism, or use of drugs that
knowingly affect bone metabolism (corticosteroids, thiazides

diuretics, anticonvulsant, and furosemide); discontinuation of
nutritional or medical follow-up; and gestation.

Preoperatively, the patients were followed at an outpatient
clinic for 12 months by dietitians, psychologists, and endocri-
nologists to better prepare them for surgery and minimize
perioperative risks. During this time, the patients underwent
tests to exclude endocrine causes of obesity and assess surgi-
cal risk. Of the 35 initial candidates, one patient died 1 week
after surgery, and another, 6 months after surgery, both from
obesity-related complications. Three patients were lost to fol-
low-up. Thus, 30 patients were effectively studied.

Study Design

The patients eligible for surgery were called 3 days before the
procedure for data collection (age, self-reported ethnicity) and
baseline anthropometric and biochemical assessments (T0).
These assessments were repeated 3 (T3), 12 (T12), and
24 months (T24) after surgery. In each visit, the patients re-
ceived medical and nutritional advice and were prescribed a
multivitamin/multimineral supplement (Materna®), protein
supplement (30 g/day, Isofort®, for the first 30 days after
surgery), calcium citrate (1200 to 1500 mg/day), cholecalcif-
erol (3000 IU/day), and intramuscular vitamin B12 (5000 IU
every 3 months, Citoneurin®) [30].

Anthropometric measurements (weight (in kilograms (kg))
and height (in meters (m)), body mass index (BMI), weight
loss (%), and body composition (fat mass (FM, in kilograms
and percentage) and the fat-free mass (FFM, in kilograms and
percentage) determined by bioelectrical impedance analysis
(Maltron BF model 906; Rayleigh, Essex, England))) were
collected on all study occasions by the same researcher
(MFGB).

Laboratory Analysis

The studied bone remodeling markers were collagen type 1 C-
telopeptide (CTX) and bone-specific alkaline phosphatase
(BSAP). The other biochemical and hormonal variables were
serum calcium (Ca), parathyroid hormone (PTH), 25-hydroxy
vitamin D (25-OH-VitD), leptin, adiponectin, RANKL, OPG,
and sclerostin.

Blood was collected in tubes containing separator gel com-
ponents, using a needle coupled with the Vacutainer® system,
and the tubes were centrifuged at 3000 rpm by a cooled cen-
trifuge for 10 min. The serum was frozen to −80 °C until
determination of the Ca and PTH levels by the dry chemistry
method and chemiluminescence, respectively. BSAP and
CTX were determined by chemiluminescence (Beckman
Coulter, Fullerton, CA); 25-OH-VitD was measured by
high-performance liquid chromatography (HPLC) (DiaSorin
kit, Stillwater, MN, USA). The serum was also used for the
measurements of adiponectin, leptin, RANKL, OPG, and
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sclerostin, which were measured by enzyme-linked immuno-
sorbent assay-ELISA (Biomedica Medizinprodukte GmbH &
Co. KG, Vienna, Austria).

Statistical Analyses

Statistical analyses of the anthropometric and laboratory data
were performed by the software SPSS® version 21.0 for
Windows (Statistical Package for the Social Sciences) and
Microsoft Office Excel version 2010. The study occasions
were compared by the non-parametric Friedman test, followed
by Dunn’s multiple comparison test. Spearman’s correlation
coefficient verified the correlation between the various study
variables. All analyses used a statistical significance level of
5%.

Results

Clinical Characteristics

The median age of the patients at baseline was 41.5 years, and
70% (n = 21) reported being white. The calculated 24-month
excess weight lost (%EWL) for these patients was
71.9 ± 18.1% using the calculation method [62]. The median
(min-max) BMI decreased from 48.3 (37.8; 62.2) kg/m2 be-
fore surgery to 39 (30.8; 50.9) kg/m2, 33.1 (23.1; 41.2) kg, and
31.8 (23; 40.4) kg/m2 at 3, 12 (p < 0.001), and 24 months of
procedure, respectively. Before surgery, 90% of the patients
had obesity gIII; at the end of the follow-up, 57% (17) of the
patients continued to be obese, and only 10% (3) had a BMI

compatible with their ideal weight (p < 0.01; Table 1). Surgery
promoted progressive and significant loss of weight and its
compartments, which were more expressive in the first year
after surgery (p < 0.05; Table 1). Total weight decreased by a
median (min-max) of 40.95 (21.0; 75.0) kg, of which 33.45
(16.3; 63.5) kg were FM and 7.9 (1.4; 17.1) kg were FFM. In
percentages, fat mass decreased by 12 (5.1; 30.8) %, and FFM
increased by 12.03 (5.1; 30.9) % (p < 0.05).

Laboratory Data

The baseline serum levels of 25-OH-VitD were compatible
with vitamin D insufficiency or deficiency in 90% of the pa-
tients. This percentage had decreased to 70% by T3 and T12
and to 66% by T24. Ca and PTH levels did not change be-
tween T0 and T24 (p > 0.05) (Table 2).

Adiponectin increased significantly while leptin decreased
between T0 and the other occasions. Unlike adiponectin,
whose level changed between T3 and T12, leptin level did
not change between the postoperative follow-ups (Table 2;
Fig. 1).

RANKL and sclerostin were higher at T3, but OPG was
lower. Postoperatively, RANKL changed between T3 and
T12, sclerostin changed between all three postoperative fol-
low-ups, and OPG did not vary (Table 2; Fig. 1).

Serum CTX increased significantly between T0 and T3,
remained high at T12, and decreased by T24 (p < 0.001)
(Table 2; Fig. 1). BSAP was higher at T12 (p < 0.001) and
remained high at T24 (Table 2; Fig. 1).

At T24, CTX correlated inversely with body weight
(r = −0.451; p = 0.024), FM (r = −0.418; p = 0.038), and

Table 1 Weight, body mass index, and body compartments of 30 patients submitted to Roux-en-Y gastric bypass (RYGB) at baseline and 3, 12, and
24 months after surgery

Variable T0 T3 T12 T24 pa CMb

Med (min; max) Med (min; max) Med (min; max) Med (min; max)

Weight 124.1
(93.0; 157.2)

101.5
(74.0; 126.6)

84.3
(62.0; 112.2)

82.1
(62.0; 109.9)

<0.001 T0 > T3, T12, T24
T3 > T12, T24

BMI 48.3
(37.8; 62.2)

39.0
(30.8; 50.9)

33.1
(23.1; 41.2)

31.8
(23.0; 40.4)

<0.001 T0 > T3, T12, T24
T3 > T12, T24

FM (kg) 66.8
(43.3; 90.0)

50.1
(19.4; 68.0)

35.4
(15.6; 56.7)

32.9
(14.7; 54.7)

<0.001 T0 > T3, T12, T24
T3 > T12, T24

FM (%) 53.0.
(46.4; 58.8)

47.0
(21.8; 54.2)

40.2
(23.6; 53.1)

40.1
(23.0; 49.8)

<0.001 T0 > T3, T12, T24
T3 > T12, T24

FFM (kg) 57.2
(45.7; 72.5)

53.5
(45.1; 69.6)

48.9
(39.1; 61.8)

48.3
(40.2; 61.1)

<0.001 T0 > T12, T24
T3 > T12, T24

FFM (%) 46.1
(41; 53.6)

53.1
(45.82; 78.2)

59.8
(46.9; 76.4)

59.9
(50.2; 77.0)

<0.001 T0 < T3, T12, T24
T3 < T24

Weight, body mass index, and body compartments in median (minimum-maximum)

BMI body mass index, FM fat mass, FFM fat-free mass, BMI body mass index, T0 baseline (before surgery), T3 3 months after surgery, T12 12 months
after surgery, T24 24 months after surgery
a Friedman’s test for dependent samples
bMC = Dunn’s multiple comparison test
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FFM (r = −0.417; p = 0.038) in kilograms. CTX also corre-
lated negatively with serum leptin preoperatively (r = −0.40;
p = 0.031), at T24 (r = −0.554; p = 0.004), and with OPG at T3
(r = −0.37; p = 0.048); finally, it correlated positively with
adiponectin at T24 (r = 0.453; p = 0.023). RANKL was di-
rectly correlated with body weight at T3 (r = 0.366;
p = 0.046). Sclerostin correlated inversely with body weight
at T0 (r = −0.379; p = 0.039) and with FM at T3 (r = −0.391;
p = 0.03). BSAP correlated negatively with 25-OH-VitD at
T12 (r = −0.412; p = 0.033) and positively with PTH at T24
(r = 0.49; p = 0.024).

Discussion

The negative influence of weight loss and the hormonal and
biochemical changes induced by bariatric surgery on bone
health has been reported [7, 11, 20, 31–35], in addition to
the association between excess body weight loss and bone
mineral density (BMD) 1 to 2 years after RYGB [20, 34, 36].

Bone turnover increased in the study sample, evidence by
higher CTX and BSAP after RYGB. Interestingly, CTX in-
creased 3 months after the procedure, remained high at the 1-
year follow-up, and decreased by the 2-year follow-up. These
findings corroborate Yu et al. (2015) who found that this
marker increased significantly and was associated with
BMD 2 years after RYGB [7]. Elias et al. (2014) compared
RYGB with vertical-banded gastroplasty, found that these
changes did not occur in women submitted to gastroplasty,

and suggested that bone loss may be more strongly associated
with techniques that promote malabsorption [37]. The BSAP
levels in the study sample had increased by T12 and remained
high at T24, confirming Bruno et al. (2010), who observed
this same behavior in this enzyme after the same follow-up
period [38]. These findings suggest that bone formation oc-
curs after bone resorption. Indeed, another study did not find
changes in this marker shortly after RYGB [39].

The mechanisms involved in the relationship between bar-
iatric surgery and bone changes are complex and not fully
understood. A possibility would be the effect of adipokines
on bone remodeling and markers. However, data on this effect
are controversial. Some studies find an association with bone
formation markers and report positive [13, 19, 40] or negative
action, regardless of gender, age, and BMI [41, 42]. The
adiponectin of the present sample was directly correlated with
CTX at T24. Its levels increased progressively from T3 to
T12, but had stabilized by T24. As a matter of fact, this
adipokine is inversely related to the amount of adipose tissue
and can be associated with postoperative bone changes [43].
Although scarce, studies have reported an increase in
adiponectin and its association with higher bone resorption,
evidenced by higher collagen type 1 cross-linked N-
telopeptide (NTX), or lower total, spinal, and pelvic BMD in
patients submitted to RYGB [29, 44, 45].

Leptin was inversely correlated with CTX at T0 and T24.
Its level decreased significantly between T0 and T3, but sta-
bilized after T3. Weight loss reduces leptin secretion,

Table 2 Laboratory test results of 30 patients submitted to Roux-en-Y gastric bypass (RYGB) before and 3, 12, and 24 months after surgery

Laboratory test Period pa CMb

T0 T3 T12 T24

25-OH-VitD (ng/mL) 21.0 (12.4; 37.6) 26.4 (11.9; 36.6) 26.1 (12.9; 42.1) 23 (11.3; 49.4) 0.044 ns

Calcium (mg/dL) 9.1 (8.3; 10.2) 9.3 (8.3; 10.1) 9.1 (8.5; 10.0) 9.1 (8.2; 10.4) 0.39 ns

PTH (pg/mL) 58.9 (19.6; 158.3) 59.9 (25; 143.1) 65.7 (39.5; 245.5) 65.1 (27.2; 185.4) 0.034 ns

Adiponectin (μg/mL) 7.4 (1.7; 18.4) 10.3 (5.1; 60.8) 13.0 (6.2; 28.2) 13.8 (3.0; 34.6) <0.001 T0 < T3, T12, T24
T3 < T24

Leptin (ng/mL) 34.4 (14.7; 51.9) 20.5 (6.2; 34.6) 16.8 (3.3; 45.8) 22.5 (1.9; 52.7) <0.001 T0 > T3, T12, T24

CTX (ng/mL) 0.2 (0.1; 2.2) 0.6 (0.4; 6.0) 0.5 (0.2; 0.9) 0.3 (0.2; 0.7) <0.001 T0 < T3, T12
T3 > T24

BSAP (μg/L) 10.1 (5.4; 18.9) 8.7 (5.5; 14.1) 13.9 (6.9; 30.2) 15.9 (6.9; 44) <0.001 T0 < T12, T24
T3 < T12, T24

RANKL (pmol/L) 0.1 (0.0; 0.5) 0.3 (0.0; 2.0) 0.2 (0.0; 0.7) 0.2 (0.0; 0.5) <0.001 T0 < T3 ; T3 > T24

OPG (pmol/L) 3.6 (1.1; 11.5) 3.3 (0.3; 4.7) 3.2 (0.3; 5.9) 3.4 (1.5; 6) <0.001 T0 > T3, T12, T24

Sclerostin (pmol/L) 21.7 (3.2; 75.1) 34.8 (6.4; 80.5) 24.5 (0.0; 54.8) 17.8 (3.0; 38.9) <0.001 T0 < T3 ; T3 > T12, T24

Laboratory test result median (minimum-maximum)

25-OH-VitD 25-hydroxy vitamin D, Ca serum calcium, PTH parathormone, CTX collagen type 1 C-telopeptide, BSAP bone-specific alkaline phospha-
tase, RANKL receptor activator of nuclear factor kappa β ligand, OPG osteoprotegerin, ns not significant, T0 baseline before surgery, T3 3 months after
surgery, T12 1 year after surgery, T24 2 years after surgery
a Friedman’s test for dependent samples
bMC = Dunn’s multiple comparison test
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suggesting that this protein may have a paracrine or endocrine
effect on bone remodeling [42, 46]. Leptin seems to behave
contrary to adiponectin as it correlates directly with weight
[29, 47, 48] and inversely with bone resorption markers, such
as NTX [38, 42, 49].

In addition to adipokines, other proteins seem to be
involved in the pathophysiological mechanism associated
with bariatric surgery-induced bone changes. In bone re-
modeling, the balance between bone formation and re-
sorption is sustained by the RANK/RANKL/OPG axis
[50], which regulates osteoclastogenesis and is responsi-
ble for bone resorption or osteoclast apoptosis,

stimulating bone formation [51]. The adipose tissue may
unbalance the RANKL/RANK/OPG axis and consequent-
ly, change bone mass. The significant increase in RANKL
in the study sample associated with OPG decrease after
surgery, as well as the inverse relationship between CTX
and OPG at T3 suggest higher osteoclastic activity and
early bone resorption after RYGB. These findings confirm
other studies that suggest a strong correlation between
weight loss and body composition changes as bone re-
sorption increases and BMD decreases [13, 52, 53].
Studies on RANKL and OPG behavior after RYGB in
humans were not found.

Fig. 1 Changes in serum
adipokine, bone remodeling
markers, and other bone markers
in 30 patients submitted to Roux-
en-Y gastric bypass (RYGB) be-
fore (T0) and 3 (T3), 12 (T12),
and 24 (T24) months after sur-
gery. a Adiponectin (T0 < T3,
T12, T24; T3 < T24; p < 0.05). b
Leptin (T0 > T3, T12, T24;
p < 0.05). c Collagen type 1 C-
telopeptide (CTX) (T0 < T3, T12;
T3 > T24; p < 0.05). d Bone-
specific alkaline phosphatase
(BSAP) (T0 < T12, T24;
T3 < T12, T24; p < 0.05). e
Receptor activator of nuclear fac-
tor kappa β ligand (RANKL)
(T0 < T3; T3 > T24; p < 0.05). f
Osteoprotegerin (OPG) (T0 > T3,
T12, T24; p < 0.05). g Serum
sclerostin changes in 30 patients
submitted to Roux-en-Y gastric
bypass (RYGB) before and 3, 12,
and 24 months after surgery
(T0 < T3 ; T3 > T12, T24;
p < 0.05)
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Finally, complementing the hypothesis of the relationship
between adipose tissue loss and higher bone resorption, re-
searchers have proposed that skeletal load may be an efficient
means of avoiding bone loss and increasing the formation of
new bone [54]. Thus, load changes may induce a compensa-
tory increase in bone remodeling [55] mediated by osteocytes
and sclerostin and inhibit the Wnt/β-catenin pathway [23–25,
56]. When the body is not properly exercised or the skeletal
load decreases very quickly due to the intense and rapid
weight loss promoted by bariatric surgery, bone turnover in-
creases, as indicated by bone resorption markers, which are
sometimes associated with lower BMD and higher risk of
fractures [6, 57]. The endogenous inhibitor of the Wnt path-
way, sclerostin, is considered a key regulator of bone homeo-
stasis, and it can be used as a new marker for bone resorption
assessment [20, 58]. This protein increases in individuals who
join a weight loss program after they lose at least 10% of their
body weight [38, 59–61]. Nevertheless, its role after bariatric
surgery is controversial. The increase in serum sclerostin pro-
vides important information about the continuous loss of
BMD after surgery [19, 20]. Nonetheless, Grethen et al.
(2012) did not find serum sclerostin changes in obese women
submitted to RYGB and normal-weight women [19].
Sclerostin increased significantly in the study sample between
T0 and T3, but had decreased by T12. This protein was neg-
atively correlated with total body weight before surgery and
with FM 3 months after RYGB, which could be partly ex-
plained by the mechanostat theory. Therefore, while preoper-
ative excess weight would be associated with low sclerostin,
protecting against bone resorption, the rapid initial weight
loss, especially the loss of body fat induced by bariatric sur-
gery, could increase the protein level in the first months after
RYGB. Thus, lower sclerostin in the long-term follow-ups
could be related, among others, to weight loss deceleration
during this phase.

Some of the study limitations include its observational
character and sample size. Despite these limitations, this study
is clinically important because it established that FM and FFM
loss after RYGB can be associated with changes in proteins
intrinsically related to bone tissue metabolism, namely
adiponectin, leptin, RANKL, OPG, and sclerostin, which
can be involved in the mechanisms associated with higher
bone remodeling after surgery.

Conclusion

Bariatric surgery remains the most effective treatment for se-
verely obese patients, although the potential effects on bone
health are only partially understood. There is a complex rela-
tionship between weight loss and biochemical, hormonal, and
body composition changes induced by RYGB, with many

peripheral and central mediators potentially involved in the
regulation of bone homeostasis.

Changes of sclerostin, CTX, and adiponectin in this study
provide further important information on bone metabolism in
patients after bariatric surgery. Apparently, the weight reduc-
tion and the body compartments and changes of adipokines
interfere on bone remodeling. The clinical implications for
osteoporosis and fracture risk are still unclear and additional
data are clearly needed to characterize the clinical impact of
the observed bone loss, but, in order to prevent bone loss and
fractures, the health care team should start monitoring the
aspects of the daily life of patients who undergo RYGB early
and thoroughly.
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