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Abstract Besides the role in energy storing and body health
isolating, adipose tissue produces proteins, the so-called
adipokines, with pro-inflammatory or anti-inflammatory ac-
tions that contribute to metabolic control and to appetite and
energy expenditure regulation. The marked adipose tissue loss
following bariatric surgery corresponds to a rearrangement of
serum adipokine pattern, with increase of anti-inflammatory
and decrease of pro-inflammatory agents. This might play a
relevant role in the postoperative improvement of metabolic
conditions. However, after surgically induced weight loss,
other investigations failed to evidence significant modifica-
tions of serum concentration of some adipokines. This review
speculates that the composition of adipose tissue lost could
influence postoperative changes in some adipokine concentra-
tion and that an adequate adipokine pattern plays a pivotal role
for the long-term metabolic outcome.
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Obesity is a complex disease accounted for by an increase of
body fat mass size as percent and absolute value, and each
obese patient presents metabolic alterations of a different clin-
ical relevance. Obese patients have an increase of peripheral
insulin resistance that may result in a frank type 2 diabetes and
tend to display defects of lipid metabolism, getting them prone

to cardiovascular disorders [1–3]. In addition, obesity is the
typical chronic disease, evolving after years in a heavily com-
plicated clinical picture: As a result, life expectancy is shorter
in subjects with obesity than in their lean counterpart [4–7].

Bariatric surgery is the more efficient therapy for obesity.
Bariatric procedures cause sustained weight loss: Body weight
steadily falls within normal values, weight regain or obesity
relapse occurring in only a minority of the patients [8–10].
Moreover, the surgically obtained weight loss is usually asso-
ciated with a recovery of the metabolic consequences of obe-
sity: Insulin resistance decreases, and in most subjects, a long-
lasting diabetes remission is observed [11–14], as well hyper-
tension and atherogenic dyslipidemia [15, 16]: These changes
explain a lower mortality from cardiovascular disease and an
overall higher life expectancy in former obese patients after
bariatric surgery in comparison with their counterparts not
surgically treated [17, 18].

Weight loss is accounted for by the forced reduction of food
intake in gastric restriction procedures and by the limitation of
intestinal absorption of calorie-rich substrates in
biliopancreatic diversion (BPD) and in BPD with duodenal
switch; when energy expenditure of the decreased body mass
matches the restricted energy intake from food or the reduced
energy absorption from intestinal tract, the weight loss brings
to end and body weight stabilizes unless any further changes
occur [19–21]. The mechanisms for the postbariatric surgery
metabolic recovery are still partly unknown. In most cases,
marked metabolic changes are observed from the first phases
following the operation, when body weight is still in the obese
range: Therefore, a specific effect of the operation indepen-
dent of the weight loss was suggested. Functional studies have
indicated that the new anatomo-functional conditions of the
gastrointestinal tract created by the Roux-en-Y gastric bypass
(RYGBP) and by BPD entail an intestinal transit of indigested
food and consequent deep changes in entero-hormonal
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pattern. At short term following RYGBP and BPD, a marked
increase of gastrointestinal insulinotropic polypeptide (GIP)
and of glucagon-like peptide 1 (GLP-1) production is ob-
served, with a powerful stimulation of insulin production, a
slowing gastric motility, and a peripheral and central inhibi-
tion of appetite; these new pathophysiological events partly
explain the beneficial effects of bariatric procedures, account-
ing for both the improvement of glucose control and the over-
all reduction of food intake [22–26]. Moreover, the transit in
the distal small gut of not digested ailments enhances the
intestinal secretion of PYY, an entero-hormone that sharply
stimulates satiety [27, 28]. Furthermore, the rerouting of
entero-hepatic circulation and the changes in gut micobioma
ecology could have a role in modulating postsurgical reduc-
tion of body mass and in improving the glucose tolerance
[29–31]. For long limb RYGBP and BPD, the fat intestinal
malabsorption due to the operation causes a significant lipid
and caloric deprivation from the first postoperative days and
then a marked decrease of the intracellular lipid storage, that
sharply increases muscle insulin sensitivity [32]. Moreover,
the functional exclusion of the ghrelin system deeply influ-
ences the appetite/satiety balance after RYGBP and sleeve
gastrectomy (SG), thus promoting weight loss all the more
[33–35].

The consistent weight loss and the rearrangement of the
gastrointestinal physiology due to the operations promote a
permanent modification of the metabolic attitudes of the obese
patients, and in the majority of the cases, the positive postop-
erative effects are steadily maintained in the long run [8–10,
36–40]. However, in some patients, the weight loss tends to be
regained throughout the time toward a frank obese condition,
and the postoperative metabolic benefits are lost, with type 2
diabetes or dyslipidemia relapse at long term. The mecha-
nisms that produce the stabilization of the weight and meta-
bolic outcome have to be investigated.

Adipokines

The main function of adipose tissue is traditionally the triglyc-
eride storage as fat under conditions of excess energy intake
and their release during period of famine: Moreover, adipose
tissue offers mechanical protection to internal organs and
plays a fundamental role as thermal isolator. Recently, adipose
tissue has also been recognized as a complex endocrine organ
contributing to the release of bioactive peptides, the so-called
adipokines [41]. Although the full set of human adipokines is
not still entirely identified, adipose tissue produces more than
600 forms of hormone-like proteins that contribute to regulat-
ing appetite and satiety, insulin secretion and sensitivity, fat
distribution, energy expenditure, and endothelial function;
moreover adipokines control the inflammation mechanisms,
the blood pressure, and the hemostasis system [42].

Alterations in adipokine secretion may be of clinical relevance
for the link between obesity and its inflammatory and meta-
bolic and cardiovascular comorbidities [41–44]. The discov-
ery of leptin in 1994 could be considered the initial milestone
for adipokine research [45]. Leptin is a protein substantially
produced by the adipose with a blood concentration directly
proportional to body fat size. Leptin controls appetite and food
intake acting as satiety signal, influences energy expenditure,
and may act as insulin sensitizer by regulating both beta cell
mass and apoptosis [45–47]. Adiponectin is secreted by adi-
pocytes and has strong insulin sensitizer, anti-inflammatory,
and anti-apoptotic properties [48–50]. Adiponectin increases
energy expenditure acting on the brain, thus promoting weight
loss, and stimulates insulin production and exocytosis: In clin-
ical studies, circulating adiponectin is negatively related to the
different facets of the metabolic syndrome, including insulin
resistance, abdominal fat accumulation, increased blood pres-
sure, and dislipidemia [48–51]. FGF21 is produced by the
liver, adipose tissue, and skeletal muscle, stimulates glucose
uptake into adipocytes, increases thermogenesis and energy
expenditure, and promotes fat utilization, these different ac-
tions resulting in a substantial improvement of glucose and
lipid metabolism [52, 53]. BMP-4 and BMP-7 are proteins
produced in different tissues (adipose tissue, placenta, thyroid
gland, skin, gastrointestinal systems) that during organogene-
sis regulate brown and white adipogenesis and energy expen-
diture [54, 55]. In adult life, BMP-4 and BMP-7 are expressed
by large adipocytes, increase peroxisome proliferator activat-
ed receptor γ (PPAR γ), and drive preadipocytes toward
brown phenotype. In hypertrophic obesity, the adipocyte re-
sistance to BMP-4 may contribute to the limitation of expan-
sibility of adipose tissue and then may prevent obesity-related
diseases [56, 57]. Vaspin is highly expressed in visceral adi-
pose tissue, and elevated serum vaspin concentration is asso-
ciated with central obesity, impaired insulin sensitivity, de-
crease metabolic fitness, and increased leptin level [58, 59].
Apelin is expressed in adipose tissue, central nervous system,
heart skeletal muscle, and stomach [48, 60]. Apelin contrib-
utes to the regulation of glucose metabolism and to the control
of blood pressure; furthermore, apelin modulates food intake,
lipolysis, cardiovascular and fluid homeostasis, cell prolifera-
tion, and angiogenesis [60, 61]. In obesity and diabetes, in-
creased circulating apelin would be a symptom of apelin re-
sistance as adaptation to elevated endogenous apelin levels
[42]. Visfatin is produced and secreted in visceral adipose
tissue, as well as in a variety of cells including lymphocytes,
monocytes, and hepatocytes [62]. Visfatin and insulin bind
different sites of the same receptor, and data on the effects of
visfatin on insulin action and on body fat size after weight loss
are inconclusive [63]. Resistin is produced by adipocytes and
by immunocompetent cells [64]. By other effects, resistin de-
creases the peripheral insulin sensitivity acting on the specific
membrane receptors, and it has been considered as a link
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between obesity, insulin resistance, and diabetes [65, 66].
Retinol banding protein 4 (RBP4) is produced in the liver
and in the mature adipocytes and is the unique transport pro-
tein for retinol. The plasma RBP4 level is higher in postmen-
opausal women and in patients with visceral obesity and type
2 diabetes, and blood RBP4 concentration is positively asso-
ciated to the severity of insulin resistance and the development
of visceral obesity in children and adolescents [67–69].
Adipose tissue is an additional source of dipeptidyl peptidase-
4 (DPP-4) [70] a strong antagonist of GIP and GLP-1. The
rapid GIP and GLP-1 rapid degradation results in impaired
insulin action leading to chronic hyperglycemia [71]. In human
adipose tissue, DPP-4 is more highly expressed in dysfunction-
al adipose tissue, and recent data suggest that low-grade chronic
inflammation can upregulate DPP-4 expression, leading to the
appearance or to the worsening of obesity-related type 2 diabe-
tes [72, 73]. TNFα is a pro-inflammatory adipokine that is
expressed by monocytes and by macrophages [42]: TNF is
produced in dysfuncional adipose tissue, correlates with the
degree of obesity, and strongly impairs insulin signaling and
insulin secretion [74, 75]. IL-1β is a pro-inflammatory cytokine
that is produced by the immune cells and by the dysfunctional
adipose tissue and may have a role in beta cell destruction and
apoptosis, contributing to the development and to the progress
of diabetes [76]. In humans with obesity and diabetes, IL-1β
release increases with glycemic deterioration; moreover, IL-1β
was identified as key players in paracrine inflammatory
pathways in adipose tissue [77].

Adipokines, Obesity, Low-Grade Inflammation,
and Insulin Resistance

In overweight and in obese individuals, genetic and environ-
mental factors result in a chronic positive energy balance that
leads to the weight gain and to changes in adipose tissue size,
distribution, function, and cellular composition. The expan-
sion of adipose tissue deeply influences adipocyte biology
and adipokine production and secretion. In physiological con-
ditions, harmonic adipokine modifications follow the increase
of the adipose tissue size: In humans, approximately 20 % of
the obese population remains fully insulin-sensitive and met-
abolically normal, the metabolically health obese subject [78,
79]. On the other hand, most individuals develop abnormal
adipose tissue accumulation, with hypertrophy, ectopic fat de-
position, hypoxia, chronic stress, and fat macrophage and neu-
trophil infiltration. When the accumulated adipose tissue pro-
duces excess of pro-inflammatory factors, a low degree in-
flammation develops, which predisposes to atherosclerosis,
cancer, and cardiovascular diseases [63, 80–84]. Moreover,
the pro-inflammatory adipokines regulate with inhibitory mol-
ecules the muscle and adipocyte glucose uptake, the muscle
and liver glycogen, and protein synthesis and the hepatic

neoglycogenesis, thus determining a reduction of peripheral
insulin action and increasing insulin resistance [41, 80]. In
addition, environmental factors such as hypoxia and chronic
stress may cause adipose tissue dysfunction, with macro-
phage, lymphocytes, fibroblasts, and endothelial cell deposi-
tion [85], and ectopic fat deposition is followed by production
of factors (RBP4, resistin, and apelin) leading to insulin resis-
tance and insulin secretion inhibition [45, 86]. When fat accu-
mulates, the adipose tissue cell infiltration might increase,
producing a surplus of pro-inflammatory factors determining
the usual metabolic complications of the obese status [87, 88].

In the overweight and obese patients, the metabolic health
is relatively independent of the adipose tissue size, the occur-
rence of metabolic derangements being mainly accounted for
by the body fat distribution, composition, morphology, and
physiology and by consequence by the adipokine secretion
pattern. In the so-called benign obesity, some patients may
show a true obese status without significant increase of insulin
resistance and with a good cardiovascular health, while in
other individuals, the type 2 diabetes and the cardiovascular
diseases can develop in condition of overweight or only mild
obesity.

Adipokine and Bariatric Surgery

Following bariatric surgery, the near totality of the bariatric
patients leads a completely normal life in the long run, thus
demonstrating a completely normal nutritional status.
Therefore, it can be presumed that after the operation, the
protein pool has remained within physiological limits and that
the weight loss is substantially represented by a reduction of
adipose tissue size. Until recently, the adipose tissue was con-
sidered a homogeneous and nearly metabolically inert body
sector, without significant functional changes after a surgically
obtained size reduction. Recently, the intense and broadly dif-
ferentiated adipose tissue endocrine and paracrine activity
prompted to hypothesize that the quality of the adipose tissue
lost would be of great relevance in determining the weight and
the metabolic postoperative outcome.

In the past decade, some studies were carried out investi-
gating the effects of the surgical obtained weight loss on the
adipokine serum concentration. Leptin substantially reflects
the subject’s adiposity: After bariatric surgery, the serum lep-
tin concentration reduces during the period of weight loss,
remains unchanged when body weight is maintained, and
may progressively increase paralleling the weight regain [63,
89–93]. The marked fall of serum leptin concentration at very
short term following BPD or RYGBP is likely due to the
postoperative temporary break of food intake [23, 94], and
the early recovery of leptin resistance can partly account for
the marked improvement of the insulin sensitivity observed in
the first phases after RYGBP and BPD. However, data of
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recent studies suggest that in the diabetic patients undergoing
BPD, changes in leptin production play only a minor role in
the recovery of insulin function [89]. The surgically induced
weight loss is accompanied by a marked and progressive rise
in serum adiponectin level [63, 89, 95–99]. Adiponectin has
powerful insulin-sensitizing and anti-inflammatory properties,
and the increased serum adiponectin level partly accounts for
the metabolic benefits obtained by bariatric procedures in
most operated patients [42, 48]. In addition, since adiponectin
increases energy expenditure, the rise of serum adopinectin
level may contribute in promoting the postoperative weight
loss and maintenance [51]. Moreover, a higher adiponectin
serum concentration is associated to a reduced cardiovascular
risk, and this could reflect the decrease of cardiovascular mor-
tality after weight loss surgery [100]. In the diabetic patients,
unlike leptin, the postbariatric surgery adiponectin increase
appears to be related more to the restoration of insulin secre-
tion than simply to weight loss [89, 101, 102]. In other words,
the balance between the adipose tissue pro-inflammatory
product and its anti-inflammatory counterpart would play a
pivotal role in determining the metabolic outcome of the op-
eration [103].

The studies carried out on the postbariatric surgery produc-
tion and serum concentration of the other adipokines give only
inconclusive and contradictory results [63]. The classical pro-
inflammatory cytokines, such as TNF-α and IL-1β, are large-
ly produced not in the adipose tissues and have predominant
paracrine action, the circulating levels being only negligible
[42, 48]: For these reasons, the postoperative changes in
TNF-α and IL-1β serum concentration might be unapparent
or not clinically relevant [97, 99, 104–106]. Plasma visfatin
levels increase after bariatric surgery, and values are positively
related to the percentage of waist circumference reduction
[107, 108]: Furthermore, the visfatin has well documented
insulin-mimetic actions [109], and it might indicate a role
for visfatin in improved insulin sensitivity. The effect of bar-
iatric surgery on plasma resistin levels is inconclusive: Some
studies reported a postoperative decrease of resistin after
RYGBP [110–112] and a positive relationship between
resistin level and glucose intolerance [111–113], while in oth-
er investigations, no change in resistin concentration was ob-
served in spite of positive metabolic outcome after the opera-
tion [64, 113, 114]. A marked decrease of serum apelin con-
centration was demonstrated after bariatric surgery in severely
obese patients with impaired glucose tolerance, and the adi-
pose tissue expression of apelin is positively related with the
improved insulin sensitivity [115, 116]. Likewise, the blood
vaspin levels decrease after surgically induced weight loss
[117–119], values reflecting however more the insulin action
than the obesity degree. Retinol banding protein levels are
decreased following surgically obtained weight loss,
reflecting a postoperative improvement in insulin resistance
and a reversal of the glucose intolerance [69, 120, 121].

When an abnormally great fat storage is chronically present
for decades, it is not surprising that adipose tissue dysfunction
may develop [88, 122, 123]. Adipose tissue dysfunction en-
tails changes in adipose tissue composition and increased
number of immune cells within the adipose tissue promoting
apoptosis, fibrosis, and adipocyte autophagy. In addition, the
so-called epicardial fat accumulates, a visceral thoracic fat
depot in the mediastinum and along the heart cavities, and
fat may be stored in nonadipose tissues, infiltrating multiple
organs including the liver, pancreas, and skeletal muscle
[124–126]. Adipose tissue dysfunction and accumulation of
ectopic fat could lead to changes in adipokine secretion, thus
causing modification of the cytokine pattern with develop-
ment of the low-grade inflammation and the insulin resistance
that characterize obesity. During the surgically obtained
weight loss, the demolition of dysfunctional adipose tissue
may result in deranged blood adipokine or cystokine pattern
with predominance of cytokines with pro-inflammatory ac-
tion: This would prevent both an optimal weight loss and a
stable metabolic recovery. A postoperative increase of the ab-
solute or relative delivery of TNF-α, IL-β, visfatin, or apelin
could explain the persistence of type 2 diabetes or the diabetes
relapse in the follow-up, and the lack of recovery of leptin
resistancewould influence food consumption and lead to post-
operative weight regain.

Type 2 diabetes is considered as a progressive disease for a
gradual deterioration of insulin secretion due to the increased
beta cell apoptosis [127, 128]: Therefore, after bariatric sur-
gery, a progressive worsening throughout the years of the
metabolic conditions has to be expected: In contrast, the ma-
jority of the diabetic individuals having undergone RYGBP
and BPD achieve indefinitely in maintaining a completely
normal glucose metabolism. Since the early gastrointestinal
effects are substantially similar in all patients, it can be spec-
ulated that the steadily positive metabolic results could be
accounted for by the long-term maintenance of an optimal
balance between pro-inflammatory and anti-inflammatory
proteins. This hypothesis is supported by the positive associ-
ation between the blood adiponectin concentration and the
beta cell insulin secretion at long term after BPD observed
in patients with stable type 2 diabetes postoperative resolution
[89]. Furthermore, among the postobese subjects after
RYGBP or BPD, the prevalence of new onset type 2 diabetes
is markedly lower than in the general population, suggesting
factors that specifically prevent the physiological decline of
insulin secretion throughout the time [129, 130].

Conclusion and Future Directions

The body of literature of the past decade has explained the
weight-independent metabolic benefits obtained after bariatric
surgery by means of gastrointestinal theories: Since the good
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weight and metabolic outcome are maintained at long and at
very long term by most operated patients, these effects are
regarded as permanent. Though following RYGBP and BPD
the entero-hormonal pattern does not change throughout the
postoperative years, diabetes relapse after the operation occurs
in more than a quarter of the operated patients who were
diabetic prior to the operation independently of weight regain
[11–14]. Therefore, the presence of other factors influencing
postbariatric surgery clinical results has to be assumed.

In the vast majority of the obese patients, a deranged blood
adipokine pattern is present, most likely reflecting an adipose
tissue dysfunction of moderate or severe degree. After mas-
sive weight loss obtained by bariatric procedures, profound
modifications of adipokine production may develop, that
could be related to the amount and to the composition of the
adipose tissue lost: The predominance of anti-inflammatory
products such as adiponectin corresponds to a recovery from
metabolic complications, while the presence of a relative or
absolute excess of pro-inflammatory protein, such as leptin,
visfatin, resistin, apelin, or RBP, could be associated with
negative metabolic outcome and/or weight regain and obesity
relapse.

Therefore, after the initial weight loss and the benefic ef-
fects of the entero-hormones, an adequate adipokine and cy-
tokine environment could play a substantial role in determin-
ing the long-term and very long-term results of any bariatric
procedure.

To the present, adipose tissue morphology in obesity of
extreme degree is only poorly known, and very few data are
available on the adipose tissue dysfunction on the related se-
rum adipokine pattern: Furthermore, the cellular composition
of the adipose tissue loss after massive surgically or not sur-
gically induced weight reduction is still unknown.

Moreover, only small information is available on the
adipokine pattern at long term following bariatric surgery,
with the related clinical correlation in terms of both weight
and metabolic outcome. Each body sector consuming energy
communicates with the system that absorbs (gastrointestinal
tract) and with the system that stores (adipose tissue) energy.
A good nutritional health throughout the time implies an ac-
curate balance between energy intake and expenditure, then an
adequate enterokine and adipokine function. Therefore, for a
true recovery from obesity, the stable reduction of body
weight must also correspond to the normalization of the
adipokine pattern.
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