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Abstract
Background Gastrointestinal bypass changes the gut mi-
crobiota and decreases systemic endotoxemia in obese
subjects. Epithelial barrier integrity is crucial for confin-
ing enteric bacteria in the lumen and preventing gut-
derived endotoxemia. The effect of bypass surgery on
intestinal barrier functions remains poorly understood.
This study aimed to evaluate the changes in intestinal

permeability and gut barrier between rats receiving
Roux-en-Y duodenojejunal bypass (DJB) or sham oper-
ation (SO).
Methods Eighteen Sprague–Dawley rats were assigned
to DJB or SO groups. Tissues of the alimentary,
biliopancreatic, and common limbs in the small intestine,
and the colon, were collected 2 weeks after operation.
Mucosa-associated bacteria were quantified by colony
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forming units. Intestinal permeability was determined by
mucosal-to-serosal dextran flux measured in Ussing cham-
bers. Expression of occludin and proliferating cell nuclear
antigen (PCNA) in the intestinal mucosa was examined by
western blots.
Results Enteric bacterial numbers were increased in the ali-
mentary and common limbs after DJB. Reduced dextran per-
meability was found in the alimentary limb, common limb,
and colon after DJB. Moreover, increased villus height and
crypt depth were found to be associated with higher mucosal
levels of occludin and PCNA levels in the alimentary and
common limbs after DJB.
Conclusions DJB in rats altered gut microbiota and reduced
intestinal permeability due to increased epithelial proliferation
and tight junctional protein expression. Our results show that
bypass surgery led to fortification of the intestinal barrier func-
tions, whichmay provide an explanation for the decreased risk
of systemic endotoxemia in postoperative patients.

Keywords Duodenojejunal bypass . Intestinal barrier .

Intestinal permeability . Gut microbiota . Systemic
endotoxemia

Introduction

The gastrointestinal tract is the largest reservoir of microor-
ganisms in the human body. Physical, chemical, and immune
barriers of the gastrointestinal tract prevent bacterial dissemi-
nation and invasion of the systemic bloodstream and other
viscera [1]. The intestinal epithelial barrier is formed by inter-
cellular tight junctions that determine gut permeability and is
maintained by dynamic turnover of the crypt-villus axis.
Abnormal intestinal permeability may predispose the host to
gut-derived endotoxemia.

Recent studies have demonstrated increased intestinal per-
meability, systemic endotoxemia, and inflammation in obese
subjects and diabetic patients [2–6]. Bypass surgeries are clin-
ically applied in these patients, showing numerous benefits
postoperatively. Roux-en-Y gastric bypass (RYGB), one of
the most popular bariatric surgeries, sustains long-termweight
loss in severely obese subjects. Following changes of the an-
atomical structures of the gastrointestinal tract, RYGB alters
the gut microbiota [7–9] and reduces systemic endotoxemia
[10, 11]. Duodenojejunal bypass (DJB) (Figure S1) and
duodenojejunal bypass with sleeve gastrectomy are novel
metabolic surgeries for type II diabetes mellitus [12–14].
Low-grade inflammation is a common feature in diabetic pa-
tients [15]. Although there are still relatively few clinical re-
ports, improvement of diabetes after DJB or DJB with sleeve
gastrectomy may also be accompanied by reduced systemic
inflammation. These findings suggest that bypass surgery
might change intestinal permeability. To date, limited reports

have focused on the relationship between bypass surgery and
intestinal permeability, and the results of these reports are still
controversial [16–18].

To explore the effect of bypass on intestinal permeability,
we chose a surgery model of DJB over RYGB for the follow-
ing reason. RYGB restricts the volume of food intake by lim-
iting gastric accommodation, but it also impacts on gastric
secretion of enzymes, hormones, and acid. Hence, changes
in pathophysiology after RYGBmight be due to the combined
effects of volume restriction, malsecretion, and malabsorp-
tion. Because DJB represents a pure intestinal bypass proce-
dure without reduction of gastric volume and secretion, we
used a DJB model to investigate the effects of bypass surgery
on intestinal permeability and to explore possible mechanisms
underlying the changes in epithelial barrier function.

Materials and Methods

Experimental Animals

Eighteen male Sprague–Dawley rats received water and stan-
dard chow (5001, LabDiet, St. Louis, MO, USA) ad libitum
after birth. At 10 weeks of age, rats were randomly allocated
to DJB or sham operation (SO) groups. For healing of the
surgical anastomoses, rats were not allowed to eat and had
access only to water, for 24 h after surgery. Thereafter, stan-
dard chow and water were available ad libitum for 2 weeks
after the operation. All rats were housed under a 12/12-h
light–dark cycle at room temperature (21 ± 2 °C). The inves-
tigation was approved by the Institutional Animal Care and
Use Committee in National Taiwan University. All applicable
institutional and/or national guidelines for the care and use of
animals were followed.

Surgery

After overnight fasting, rats were anesthetized with isoflurane
(5 % for induction and 2–3 % for maintenance). Under sterile
conditions, an upper midline laparotomy of approximately
4 cm was made. For the DJB group, the proximal duodenum
was divided, and the distal duodenal stump was closed with 5-
0 vicryl (Ethicon, Somerville, NJ, USA) by hand-sewn suture.
The small bowel was divided to create a 30-cm biliopancreatic
limb, a 35-cm alimentary limb, and then a common limb. The
duodenojejunostomies and jejunojejunostomies were per-
formed with interrupted sutures, followed by abdominal clo-
sure. For SO rats, a duodenostomy over the proximal duode-
num was made and then re-closed. A transection of the jeju-
num at 35 cm and a jejunostomy at 65 cm below the ligament
of Treitz were also made, and re-anastomoses and re-closures
were completed. All rats received similar preoperative and
postoperative care.
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Euthanasia was performed at 12 weeks of age. Fasting
blood samples were collected after euthanasia. Dipeptidyl
peptidase-4 inhibitor was added to the blood samples to pre-
vent the degradation of glucagon-like peptide-2 (GLP-2).
Intestines, including the proximal alimentary limb, proximal
biliopancreatic limb, distal common limb, and proximal colon
in DJB animals, and anatomically similar regions in SO ani-
mals were dissected for analyses.

Detection of Serum LPS, LBP, and GLP-2 Concentration

Lipopolysaccharide (LPS) is one of the major components in
the gram-negative bacterial cell wall [19]. LPS binds with

lipopolysaccharide binding protein (LBP) in blood and then
induces systemic immune responses [20]. Recent studies
show that LPS and LBP could both serve as effective clinical
markers of endotoxemia [10, 20–22]. Serum LPS levels were
measured using the limulus amebocyte lysate (LAL) test
(Associates of Cape Cod, East Falmouth, MA, USA), and
serum LBP and GLP-2 concentrations were measured using
the relevant enzyme-linked immunosorbent assay kits
(Biometec, Greifswald, Germany for LBP; BioVendor, Brno,
Czech Republic for GLP-2) for rats according to the manufac-
turers’ instructions.

Quantification of Mucosa-Associated Bacteria
in Intestines

Intestinal segments of the alimentary limb, biliopancreatic
limb, common limb, and colon were excised using aseptic
techniques. Tissues were prepared as previously described
[23, 24]. The tissue homogenates were cultured at 37 °C over-
night on fresh blood agar (Scientific Biotech, Taiwan) to ex-
amine the growth of total bacteria. The bacterial colony-
forming units (CFUs) were calculated and normalized to
log10 of CFUs per gram of the intestinal tissue (log CFU/g).

Ussing Chamber Studies and Intestinal Permeability
Assay

Fresh intestinal segments of the alimentary limb,
biliopancreatic limb, common limb, and colon were excised.
The external muscle layers were stripped off, leaving the sub-
mucosal plexus and mucosa intact. The muscle-stripped tis-
sues were mounted and managed in Ussing chambers (WPI
Instruments, Sarasota, FL, USA) according to the Ussing
chamber and macromolecular flux assay protocol previously
reported [23, 25, 26]. The opening area (2 cm2) of the chamber
exposed the tissue to 5 ml of circulating oxygenated Krebs
buffer (115 mmol/L NaCl, 8 mmol/L KCl, 1.25 mmol/L
CaCl2, 1.2 mmol/L MgCl2, 2.0 mmol/L KHPO4, 25 mmol/L
NaCO3, pH 7.33–7.37). The serosal buffer contained
10 mmol/L of glucose that was osmotically balanced with
10 mmol/L of mannitol in the mucosal buffer. A circulating

Table 1 Body weights and
postoperatively circulating
biological characteristics of rats
received sham operation and
duodenojejunal bypass

Sham operation Duodenojejunal bypass p value

Preop. body weight (gm) 369.4 ± 4.7 368.8 ± 3.6 0.927

Postop. body weight (gm) 400.8 ± 10.6 380.2 ± 8.9 0.158

LPS (EU/mL) 0.22 ± 0.03 0.19 ± 0.02 0.549

LBP (μg/mL) 2.33 ± 0.06 2.34 ± 0.19 0.952

GLP-2 (ng/mL) 3.63 ± 0.13 4.83 ± 0.31 0.001

Values were expressed as means ± SEM

Preop. preoperative, Postop. postoperative, LPS lipopolysaccharide, LBP lipopolysaccharide binding protein,
GLP-2 glucagon-like peptide-2

Fig. 1 Enteric bacterial numbers were increased in the alimentary limb
and common limb after DJB compared with SO. The CFU results are
plotted as box and whisker graphs. The boxes (containing 50 % of all
values) show the median (horizontal line across the middle of the box)
and interquartile range, while the whiskers represent the 10th and 90th
percentiles. The extreme data are indicated by circles. DJB
duodenojejunal bypass, SO sham operation, CFU colony-forming unit.
*p < 0.05
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water bath maintained the temperature of the buffer at 37 °C.
The tissues were clamped at 0 V using a voltage clamp. The
potential difference (PD, mV) and the short-circuit current
(Isc, μA/cm2) of the tissues were determined on line to verify
tissue viability. Intestinal permeability was determined by the
level of mucosal-to-serosal flux of dextran conjugated to fluo-
rescein isothiocyanate (dextran-FITC, molecular weight =
4 kDa; Sigma, St. Louis, MO, USA). The dextran probe was
added to the mucosal buffer at a final concentration of
500 μM. Samples (250 μL) of serosal buffer were collected
at 0, 30, 60, 90, and 120 min after addition of dextran probe
and were replaced with Krebs buffer/glucose. The fluores-
cence units of dextran-FITC in serosal buffer were determined
at ex/em = 490/530 nm using a multi-mode plate reader
(Beckman Coulter Paradigm, USA), and the concentration
(nM) was calculated according to a standard curve.

Histopathology

Intestinal segments of the alimentary limb, biliopancreatic
limb, and common limb were collected, fixed in 4 % parafor-
maldehyde, and embedded in paraffin wax with proper orien-
tation of the crypt-villus axis. Sections of 4 μm thickness were

deparaffinized and stained with hematoxylin and eosin.
Histologic structures were observed by a light microscope.

Western Blotting

Scraped intestinal mucosa of the alimentary limb,
biliopancreatic limb, and common limb were prepared as pre-
viously described [25, 27]. Western blotting with anti-
occludin (1:3000; Invitrogen, Carlsbad, CA, USA), anti-
proliferating cell nuclear antigen (PCNA; 1:2000; Cell
Signaling Technology, Danvers, MA, USA), and anti-β-
actin (1:50000; Genetex, Irvine, CA, USA) were performed.
Band density was quantified by photoimage analysis.

Statistical Analyses

All results were expressed as mean ± SEM, except that bacte-
rial CFU numbers were presented as median values. The
means were compared by Student’s t test. When comparing
the bacterial CFU values that failed to satisfy the normality
assumption, the data was compared by nonparametric Mann–
Whitney U test. A p value <0.05 was considered significant.

Fig. 2 Intestinal permeability was decreased in the alimentary limb,
common limb, and colon after DJB compared with SO. The mucosal-
to-serosal dextran flux in Ussing chambers was measured at 0, 30, 60, 90,

and 120 min in the alimentary limb (a), biliopancreatic limb (b), common
limb (c), and colon (d). Values are expressed as mean ± SEM. DJB
duodenojejunal bypass, SO sham operation. *p < 0.05; **p < 0.01
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Results

The preoperative and postoperative body weights, and post-
operatively circulating biological characteristics, are shown in
Table 1. The preoperative body weight, postoperative circu-
lating LPS, and LBP levels did not differ between rats in the
DJB and SO groups. The postoperative body weight of DJB
rats appeared to be lower than that of SO rats, although this
was not statistically significant. In contrast, the postoperative
circulating GLP-2 concentrations of DJB rats were signifi-
cantly higher than those of SO rats.

Enteric bacterial numbers were significantly increased in
the alimentary limb and common limb after DJB compared
with SO rats. In contrast, there was no difference of total
bacterial contents in the biliopancreatic limb and common
limb between DJB and SO groups (Fig. 1).

Concerning intestinal permeability, the mucosal-to-serosal
dextran-FITC fluxes were lower in the alimentary limb, com-
mon limb, and colon after DJB compared with SO rats
(Fig. 2). Furthermore, the expression levels of epithelial tight
junctional occludin in the mucosa of alimentary limb and
common limb of DJBwere higher than in those of SO (Fig. 3).

With respect to microscopic morphology, the villus height
and crypt depth were both increased in the alimentary limb

and common limb after DJB compared with SO (Fig. 4). DJB
rats also had higher mucosal levels of PCNA in the alimentary
limb and common limb (Fig. 5).

Discussion

In this study, we have shown that DJB in rats alters gut mi-
crobiota, reduces intestinal permeability, and induces mucosal
hypertrophy (Table S2). In rats receiving DJB, the small in-
testine was surgically manipulated into three discrete sections
which may each contribute to distinct local responses of gut
microbiota, intestinal permeability, and intestinal epithelial
turnover. One of the differences among the alimentary limb,
biliopancreatic limb, and common limb between the DJB and
SO treatments is the exposure to undigested nutrients and
biliopancreatic enzymes. The macronutrients, bile, and pan-
creatic juice may therefore play an important role in the path-
ophysiologic changes of gut bacteria, intestinal permeability,
and intestinal adaption.

Recent studies describe changes of intestinal microbiota in
obese humans, and in patients with diabetes mellitus. Obesity
is associated with higher Firmicutes and lower Bacteroides in
comparison with lean subjects [28–30]. Furthermore, a
metagenome-wide association study showed type II diabetic
patients have gut microbial dysbiosis with a decrease in
butyrate-producing bacteria and an increase in various oppor-
tunistic pathogens [31]. Fecal studies of the gut microbiota in
humans and rats after RYGB also reveal alterations of intesti-
nal bacteria [7–9]. Furthermore, Osto et al. confirmed that
RYGB in rats induces changes in the microbiota of the ali-
mentary limb and common limb [32]. Although bacterial spe-
cies were not analyzed in the current study, the total bacteria
numbers increased in the alimentary limb and common limb
of rats after DJB. The alteration of microbiota after DJBmight
be due to the effects of relatively lower body weight and
intestinal bypass, but the detailed mechanism remains
obscure.

Evidence that supports reduced intestinal permeability after
DJB is scant. Our data show that intestinal permeability de-
creased in the alimentary limb, common limb, and colon after
DJB, but not in the biliopancreatic limb. Gut permeability is
mainly determined by the integrity of paracellular tight junc-
tions, which include transmembrane junctional proteins such
as occludin and claudins, junction-associated molecules
linked to intracellular zonula occludens, and bridges to cyto-
skeletal actin and myosin filaments [33]. We found increased
expression of occludin in the mucosa of the alimentary and
common limbs after DJB, which is consistent with the obser-
vation of decreased gut permeability.

DJB rats exhibited significant adaptive intestinal changes
with increased villus height and crypt depth in the alimentary
and common limbs, indicative of heightened epithelial

Fig. 3 Increased levels of epithelial tight junctional occludin in the
intestinal mucosa of rats which received DJB compared with SO. (a)
Western blotting images. (b) Results of densitometric analysis. Values are
expressed as mean ± SEM. DJB duodenojejunal bypass, SO sham
operation. **p < 0.01
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proliferation. The increased expression levels of PCNA in the
common limb after DJB confirmed the increased intestinal pro-
liferation and crypt hyperplasia. Fully differentiated epithelial
cells often exhibit high levels of tight junction proteins com-
pared to newly proliferated cells, to fortify barrier functions at
the interface with enteric microbes. These findings are similar
to the results from a short bowel syndrome rat model receiving
RYGB, which also showed increased bowel width, villus
height, and crypt depth in the alimentary and common limbs
[34]. Strengthening of epithelial barrier function and tight junc-
tions may therefore be an adaptive mechanism attributed to the
increase of crypt proliferation and villus growth after DJB.

The different intestinal segments after DJB are exposed to
different stimulants. The alimentary limb is exposed to undi-
gested nutrients; the biliopancreatic limb is exposed to bile
and pancreatic juice; and the common limb is exposed to a
mixture of nutrients and digestive enzymes. Previous studies
have shown that macronutrients, including carbohydrate, pro-
tein, and fat, stimulate intestinal adaptation [35–39].
Furthermore, the gut microbiota can regulate the proliferation
and apoptosis of the intestinal epithelium [1]. In addition to
macronutrients and hormones, alteration of the gut microbiota
after DJB may therefore be one of the mechanisms inducing
intestinal adaptation.

GLP-2, a gut hormone released from enteroendocrine L
cells, directly affects the gut mucosa to increase the absorptive
surface area. GLP-2 stimulates intestinal mucosal cell prolif-
eration, and then either induces expansion of the normal mu-
cosal epithelium or attenuates intestinal injury [40, 41]. The
increased circulating level of GLP-2 after DJB might reflect
the increased local function of L cells to modulate hypertro-
phy of the small intestine.

It is well known that the gram-negative bacterial cell
wall product LPS is the main component underlying the
pathology of septicemia [19]. A high circulating LPS level
can trigger systemic inflammation and thus induce the de-
velopment of obesity and insulin resistance [42]. LBP is an
acute-phase protein, mainly derived from the liver, and is
easily detectable in the blood for binding to LPS [20].
Compared with the short half-life of LPS and the technical
limitations of its measurement, LBP is relatively stable and
easy to measure. Recent reports reveal that LBP could
serve as a clinical marker of effective endotoxemia in
chronic low-grade inflammation [10, 20–22]. Although
the bacteria counts increased in the alimentary and com-
mon limbs after DJB, the circulating levels of LPS and
LBP were not different between DJB and SO treatments,
possibly due to the reduced intestinal permeability. These

Fig. 4 Villus height and crypt
depth were both increased in the
alimentary limb and common
limb after DJB compared with
SO. (a) Micrographs of intestinal
section (hematoxylin and eosin
staining, ×100). (b) Villus height. (c)
Crypt depth. Values are expressed
as means ±SEM. Bar indicates
100 μm. DJB duodenojejunal
bypass, SO sham operation.
*p< 0.05; **p<0.01
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results indicate that the adaptive mechanism of the gut
following DJB may decrease the risk of systemic
endotoxemia.

The strengths of current study are to disclose DJB in rats
altered gut microbiota and fortified the intestinal barrier,
which were due to increased epithelial proliferation and tight
junctional protein expression. Table S2 summarizes the
changes after DJB compared with those after SO.
Nevertheless, our study may have limitations. First, recent
studies indicate that obesity is a factor that increases the intes-
tinal permeability via unknown mechanisms [4]. To focus on
the modulatory effect of DJB surgery per se on gut barrier, we
chose standard rats instead of an obese and/or diabetic rat
model. The present results could not simulate the postopera-
tive change in obese subjects. Although there is no significant-
ly statistical difference, the postoperative bodyweights in DJB
rats are relatively lower than those in SO rats. The finding
might be due to the short postoperative period and/or the com-
pensatory effect of the increased villus height and crypt depth
in the intestine after DJB. As obesity increases endotoxemia
[10], the similar weight might be one of the possible mecha-
nisms that there are no differences of the postoperative serum
levels of LPS and LBP between DJB and SO. An ongoing
project for the change of intestinal barriers in a high-fat diet-

induced obese rat model is currently in progress to clarify the
postoperative pathophysiologic change in obese subjects.
Second, Taqi et al. reported significant adaptive changes with
increased villus height and crypt depth 2 weeks after RYGB in
a short bowel syndrome rat model [34]. Therefore, we analyze
the physiological changes 2 weeks after DJB. The postopera-
tive changes are dynamic and complex. Further works with
different postoperative time points would be helpful to eluci-
date the longitudinal changes after operation.

Conclusions

In summary, decreased intestinal permeability and increased
tight junction protein expression were found after DJB in rats.
Although bacterial overgrowth was observed in the alimentary
limb and common limb after DJB, there was no increase in the
circulating LPS levels, most likely due to the intact barrier
function of the intestinal epithelium. The increased villus height
and crypt depth served as an adaptive mechanism to maintain
epithelial barrier integrity after DJB. Our findings suggested
that intestinal barrier function was strengthened following by-
pass surgery, whichmay play a critical role in the decreased risk
of systemic endotoxemia in postoperative patients.
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