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Abstract
Background This study aims to quantify changes in fibroblast
growth factor 19 (FGF19) and bile acids (BAs) in patients
with uncontrolled type 2 diabetes randomized to Roux-en-Y
gastric bypass (RYGB) vs intensive medical management
(IMM) and matched for similar reduction in HbA1c after
1 year of treatment.
Methods Blood samples were drawn from patients who
underwent a test meal challenge before and 1 year after
IMM (n=15) or RYGB (n=15).
Results Mean HbA1c decreased from 9.7 to 6.4 % after RYGB
and from 9.1 to 6.1 % in the IMM group. At 12 months, the
number of diabetes medications used per subject in the RYGB
group (2.5±0.5) was less than in the IMM group (4.6±0.3).
After RYGB, FGF19 increased in the fasted (93±15 to 152±

19 pg/ml; P=0.008) and postprandial states (area under the
curve (AUC), 10.8±1.9 to 23.4±4.1 pg×h/ml×103; P=
0.006) but remained unchanged following IMM.BAs increased
after RYGB (AUC ×103, 6.63±1.3 to 15.16±2.56 μM×h; P=
0.003) and decreased after IMM (AUC ×103, 8.22±1.24 to
5.70±0.70; P=0.01). No changes were observed in the ratio
of 12α-hydroxylated/non-12α-hyroxylated BAs. Following
RYGB, FGF19 AUC correlated with BAs (r=0.54, P=0.04)
and trended negatively with HbA1c (r=−0.44; P=0.09); these
associations were not observed after IMM.
Conclusions BA and FGF19 levels increased after RYGB but
not after IMM in subjects who achieved similar improvement
in glycemic control. Further studies are necessary to determine
whether these hormonal changes facilitate improved glucose
homeostasis.
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Introduction

Bariatric surgery is currently the most effective method for
attaining long-term weight reduction and has become a thera-
peutic option for the treatment of type 2 diabetes mellitus
(T2DM) in obese patients [1–3]. Growing evidence indicates
that several changes in neurohormonal regulators of energy
balance and glucose homeostasis following Roux-en-Y gastric
bypass surgery (RYGB) contribute to long-term weight loss
and improvement in glucose control in individuals with
T2DM [4–7]. The alterations in the direction and transit speed
of nutrient flow most likely change the secretory pattern of
gastrointestinal hormones involved in metabolic regulation [8].

Recently, the many positive metabolic effects of fibroblast
growth factor 19 (FGF19), a protein produced by the mucosal
cells of the terminal ileum, have been recognized. These include
the following: (1) decreased gluconeogenesis, (2) increased gly-
cogen and protein synthesis, (3) increased metabolic rate, (4)
decreased adiposity, (5) regulation of gallbladder filling, and (6)
regulation of bile acid (BA) homeostasis via feedback inhibi-
tion of the hepatic bile acid synthesis rate-governing enzyme
CYP7A1 [9–13]. Indeed, FGF19 transgenic mice have de-
creased adiposity and are resistant to high-fat diet-induced
weight gain. Infusion of recombinant FGF19 protein or trans-
genic FGF19 expression reduces hepatic lipid accumulation
and improves insulin sensitivity in leptin-deficient and diet-
induced obese mice [14, 15]. Moreover, targeted genetic dis-
ruption of Farnesoid X receptor (FXR) in mice substantially
reduces the ability of vertical sleeve gastrectomy to reduce body
weight and improve glucose tolerance [16].

FGF19 secretion is stimulated by BAs binding to the FXR
on mucosal cells of the terminal ileum. Through FXR stimu-
lation, BAs also decrease de novo lipogenesis and VLDL-TG
export [17]. Other actions of BAs are mediated via the mem-
brane G protein-coupled receptor TGR5. Through TGR5,
BAs increase skeletal muscle and brown adipose tissue energy
expenditure and stimulate secretion of the incretin, glucagon-
like peptide-1 (GLP-1), which promotes satiety and stimulates
β-cell insulin release [18–20]. The different chemical proper-
ties of BAs alter their biological functions. FXR is predomi-
nantly stimulated by CDCA and its conjugated derivatives
[21], and DCA is a partial antagonist interfering with the abil-
ity of CDCA to activate FXR [22]. Haeusler et al. found that in
healthy subjects, insulin resistance correlates with a higher
ratio of fasting plasma 12a-hydroxylated/non-12a-
hyroxylated; however, this increase was not found in T2DM
subjects [23].

The many positive metabolic effects of FGF19 and BAs
raise the question of whether they play a role in weight loss
and improved glucose homeostasis following RYGB. Others
have reported increased fasting FGF19 and BA levels in pa-
tients after RYGB [24–28]. Increased postprandial levels of
BAs have also been reported [29] and appear to be specific to
RYGB, and not weight loss per se, since they are not observed
after laparoscopic adjustable gastric banding [30]. In T2DM
patients, increases in fasting levels of FGF19 and BAs follow-
ing RYGB are greater in those who experience remission of
DM compared with diabetics who do not experience remission
[31]. To date, studies comparing changes in both fasting and
postprandial levels of FGF19 and BAs following RYGB vs
changes brought about through intensive medical management
(IMM) alone are lacking in patients with uncontrolled T2DM.

The primary aim of this study was to quantify changes in
circulating levels of FGF19 and BAs in patients with T2DM
following RYGB vs IMM treatment who have been matched
for glycemic control. We hypothesized that levels of FGF19
and BAs would be significantly increased following RYGB,
but not IMM despite similar improvement in glycemia.

Materials and Methods

Study Protocol

This investigation was an ancillary study to the Diabetes Sur-
gery Study (DSS), a multicenter trial that randomized 120
patients with T2DM to intensive lifestyle and medical man-
agement with or without RYGB. The first 15 subjects (10
from Columbia University Medical Center and 5 from the
University of Minnesota) who underwent RYGB and from
whom plasma was available were studied. The first 15 IMM
subjects (7 from Columbia University Medical Center and 8
from the University of Minnesota) who matched for mean 12-
month HbA1C and change in HbA1C with the RYGB group
were included as the control group. Detailed enrollment
criteria, randomization methods, study protocol, and 12-
month clinical outcomes have been reported [32, 33]. Key
inclusion criteria were as follows: BMI 30−39.9 kg/m2;
HbA1c ≥8 %; serum C-peptide level >1.0 ng/ml 90 min after
a liquid meal of Ensure (237 ml, 250 kcal, 6 g fat, 40 g car-
bohydrate, 9 g protein); and willingness to accept randomiza-
tion. The mixed meal test was repeated 1 year after interven-
tions. IRB approval was obtained at each study site and all
subjects signed written informed consent. The study was reg-
istered in Clinical Trials.gov: NCT00641251.

Assays

Serum insulin was measured with the Immulite Analyzer (Sie-
mens, Los Angeles, CA). Total GLP-1 was measured by
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enzyme-linked immunosorbent assay (ELISA) (Millipore, St.
Charles, MO). The sensitivity, intra-assay coefficient of varia-
tion, and inter-assay coefficient of variation were 1.5 pM, 2 %,
and <12 %, respectively. FGF19 levels were determined by
ELISA (R&D Systems, Minneapolis, MN) with a minimum
detection limit of 1.2 pg/ml, and intra-assay and inter-assay
coefficients of 6.5 and 5.5 %, respectively. BAs were measured
by LC-MS with an assay sensitivity of 0.01 μM.

Calculations and Statistical Analysis

Data is presented as mean values±SEM. Homeostasis model
assessment of insulin resistance (HOMA-IR) was calculated
as reported by Matthews et al. [34], and Matsuda Index was
calculated as a measure of insulin sensitivity determined from
the mixed meal challenge [35]. Differences at baseline and at
12 months between groups were assessed with t tests. Change
from baseline within group was assessed using paired t tests.
Between-group differences in change between baseline and
12 months were assessed using two-sample t tests. Statistical
analysis was performed with Statistical Analysis Software
(version 9.3, SAS Institute Inc., Cary, NC). A two-sided P
value <0.05 was considered statistically significant.

Results

Subject Characteristics and Glucostatic Parameters

Characteristics of the 30 subjects before and 1 year after random-
ization to IMM or RYGB are shown in Table 1. At baseline,
there were no differences in clinical characteristics such as age,

weight, BMI, duration of DM, or the use of diabetes medications
including insulin. Mean total body weight decreased by 11.4±
2.3 % and 28.9±2.2 % for IMM and RYGB subjects, respec-
tively. Both mean 12-month HbA1C and change in HbA1C
were comparable between groups; however, the number of
DM medications used per subject was significantly greater in
the IMM group (Table 1). Fasting glucose and insulin decreased
significantly in RYGB subjects, with only fasting glucose de-
creasing significantly in IMM subjects (Table 2). Insulin resis-
tance as determined by HOMA-IR decreased from 14.1±3.6 to
2.1±0.9 in RYGB patients vs a nonsignificant decrease from
13.0±2.5 to 7.0±1.7 in IMM patients (P=0.18 for between-
group change). Similarly, Matsuda Index increased from 3.6±
1.0 to 11.1±1.6 in RYGB patients vs an increase from 1.9±0.3
to 5.7±1.7 in IMMpatients (P=0.10 for between-group change).
While area under the curve (AUC) for insulin did not change
significantly, the pattern of secretion was altered after RYGB
with an accelerated time to reach peak levels (Table 2, Fig. 1).

FGF19

After RYGB, fasting FGF19 levels increased by 62 %; there
was an even more pronounced 96 % increase in the postpran-
dial state as measured by AUC (Table 2, Fig. 2). There was no
change in fasting or postprandial FGF19 levels in IMM sub-
jects. Neither fasting nor AUC FGF levels at 12 months cor-
related with weight loss in IMM patients (r=0.43 and 0.42 for
weight loss vs fasting FGF and AUC FGF, respectively; P=
0.13 for both). Post-RYGB FGF19 levels also did not corre-
late with weight loss in the fasted (r=0.08; P=0.78) or post-
prandial state (r=0.16; P=0.56). At 12 months, there was a
trend towards a negative association between FGFAUC levels

Table 1 Subject characteristics before and after IMM or RYGB

IMM P valuea RYGB P valuea P valueb

Month 0 Month 12 Month 0 Month 12

Male/female (n) 8/7 – 6/9 – 0.46

Age (years) 48.5±2.1 – 46.9±2.2 – 0.59

DM duration (years) 8.1±1.7 – 11.2±1.7 – 0.21

Weight (kg) 104.4±3.9 92.8±4.6 0.0001 105.0±3.3 74.6±3.3 <0.0001 <0.0001

BMI (kg/m2) 35.5±0.9 31.5±1.1 0.0002 36.2±0.7 25.7±0.9 <0.0001 <0.0001

Total weight loss (%) – 11.4±2.3 – 28.9±2.2 <0.0001

HbA1C (%) 9.1±0.2 6.1±0.1 <0.0001 9.7±0.2 6.4±0.3 <0.0001 0.49

DM meds (n/subject) 4.6±0.3 4.6±0.3 1 4.1±0.7 2.5±0.5 0.07 0.11

HOMA-IR (mmol×mU×l−2) 13.0±2.5 7.0±1.7 0.08 14.1±3.6 2.1±0.9 0.002 0.18

Matsuda Index

(1/(mmol/l)2×(pmol/l)2) 1.9±0.3 5.7±1.7 0.03 3.6±1.0 11.1±1.6 0.0003 0.10

Values represent mean±SEM
aP within group change
bP difference in the change over time between groups; any significant differences (P<0.05) between groups at the same time-point are indicated in italics
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Table 2 Glucose, hormone, and bile acid measurements before and after IMM or RYGB

IMM P valuea RYGB P valuea P valueb

Month 0 Month 12 Month 0 Month 12

Glucose (mg/dl)

Fasting 212±12 126±8 <.0001 229±21 116±9 0.0003 0.33

AUC ×103 31.4±1.4 19.6±1.2 <.0001 33.6±2.1 19.3±1.5 0.0002 0.45

Insulin (μU/ml)

Fasting 27.2±5.5 20.2±4.1 0.33 27.3±8.6 7.1±2.9 0.007 0.17

AUC ×103 4.9±0.6 6.1±1.0 0.16 4.8±1.4 3.9±0.8 0.24 0.06

FGF19 (pg/ml)

Fasting 114±23 86±15 0.34 93±15 152±19 0.008 0.02

AUC ×103 10.9±1.6 11.1±1.4 0.91 10.8±1.9 23.4±4.1 0.006 0.01

GLP-1 (pM)

Fasting 26.5±3.6 27.2±4.4 0.83 24.6±4.2 15.6±2.8 0.03 0.06

AUC ×103 3.7±0.4 3.9±0.6 0.62 3.6±0.5 5.1±0.8 0.12 0.19

Total BA (μM)

Fasting 2.63±0.45 1.65±0.22 0.07 1.69±0.40 2.77±0.55 0.10 0.01

AUC 8.22±1.24 5.70±0.70 0.01 6.63±1.30 15.16±2.56 0.003 0.0004

Primary BA (μM)

Fasting 0.54±0.23 0.17±0.04 0.14 0.23±0.10 0.63±0.37 0.18 0.05

AUC 0.96±0.31 0.54±0.11 0.25 0.57±0.13 1.59±0.74 0.18 0.09

Secondary BA (μM)

Fasting 0.64±0.10 0.54±0.09 0.30 0.42±0.06 0.50±0.09 0.33 0.15

AUC 1.34±0.23 1.38±0.20 0.86 0.93±0.15 1.63±0.29 0.03 0.08

Taurine-BA (μM)

Fasting 0.14±0.03 0.09±0.01 0.16 0.11±0.04 0.17±0.05 0.33 0.04

AUC 0.69±0.17 0.39±0.06 0.07 0.57±0.19 1.34±0.32 0.05 0.01

Glycine-BA (μM)

Fasting 1.31±0.34 0.84±0.16 0.22 0.93±0.30 1.47±0.32 0.25 0.09

AUC 5.22±0.98 3.40±0.46 0.04 4.57±1.06 10.60±2.23 0.01 0.002

Primary/total (%)

Fasting 18.4±4.5 11.2±2.4 0.14 12.2±3.1 18.4±4.4 0.06 0.02

AUC 12.5±3.7 9.14±1.5 0.45 9.5±2.0 11.1±3.5 0.67 0.39

Secondary/total (%)

Fasting 30.0±3.9 33.9±3.5 0.46 29.9±3.3 22.5±4.1 0.03 0.07

AUC 17.8±2.6 25.2±2.3 0.03 16.4±2.5 13.9±2.7 0.45 0.03

Glycine/total (%)

Fasting 45.9±5.1 48.9±3.6 0.60 51.0±3.5 52.9±5.8 0.69 0.89

AUC 62.1±3.8 58.6±2.1 0.45 66.5±2.9 66.8±4.6 0.95 0.58

Taurine/total (%)

Fasting 5.7±0.7 6.0±0.6 0.66 6.9±0.9 6.2±0.7 0.46 0.39

AUC 7.6±1.1 7.1±0.7 0.64 7.6±1.0 8.3±1.0 0.62 0.50

12α/non-12α hydroxy

Fasting 1.07±0.15 1.16±0.14 0.50 1.28±0.20 1.26±0.16 0.93 0.66

AUC 1.00±0.16 1.06±0.12 0.62 1.04±0.17 1.14±0.13 0.55 0.88

Values represent mean±SEM for fasting measurements and AUC from fasting value to 120 min post-meal. Units of measure are displayed for fasting
values. AUC values are per minute Primary BAs are CA, CDCA; secondary BAs are LCA, DCA, UDCA, HDCA; taurine-conjugated BAs are TDCA,
TCDCA, TLCA, TCA; glycine-conjugated BAs are GCA, GDCA, GCDCA; 12 α-hydroxylated BAs are CA, GCA, TCA, DCA, GDCA, TDCA; non-
12 α-hydroxylated BAs are CDCA, GCDCA, TCDCA, UDCA, HDCA, LCA, TLCA
aP within group change
bP difference in the change over time between groups; any significant differences between groups (P<0.05) at the same time-point are indicated in italics
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and HbA1C (r=−0.44; P=0.09) in RYGB subjects, which
was not apparent in IMM subjects (r=0.04; P=0.88).

Bile Acids

Following IMM, postprandial total BA levels decreased and
fasting levels trended towards decreased levels as well
(Table 2, Fig 3). Measurements of individual BAs are present-
ed in Table 3. Following RYGB, total BAs increased most
markedly in the postprandial state, with a 129 % increase in
total BA AUC and a 64 % increase in total BA fasting levels
(Table 2; Fig. 3). Changes were observed in the composition
of BA species with a decrease after RYGB and an increase
after IMM in secondary unconjugated BAs (Table 2). No
changes were observed in the ratio of 12α-hydroxylated/
non-12α-hyroxylated BAs. Prior to surgery, total BAs did
not correlate with FGF19 levels. After surgery, there was a
significant correlation of total BA and FGF19 levels in the
fasted and postprandial states (r=0.56, P=0.03 and r=0.54,

P=0.04, respectively) only in the RYGB group. There were
no significant correlations between total BAs and HbA1c in
either group.

Discussion

The objective of this study was to quantify glycemic control
independent changes induced by RYGB compared to IMM in
FGF19 levels, and from here to contextualize these changes
with BA levels. We have demonstrated increases in fasting
and postprandial levels of both FGF19 and total BAs that
are specific to RYGB, and not simply improved glycemic
control. Furthermore, there is an accelerated time to peak post-
prandial levels that is observed post-RYGB for both FGF19
and total BAs. These findings are consistent with findings of
Wewalka et al., who also noted that improved glycemic con-
trol via IMM in T2DM patients did not increase fasting BA
levels [36]. Though it is impossible to exclude the

Fig. 1 Measurement of glucose
and hormone responses to a
mixed meal before and after
medical or surgical intervention
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confounding effect of greater weight loss after RYGB, the
study by Kohli et al., which controlled for weight loss and
demonstrated significantly increased levels of BAs in non-
diabetic patients undergoing RYGB but not LAGB, suggests
that weight loss alone does not account for increased levels of
BAs [30]. Furthermore, lack of correlation between FGF19 or
BAs and weight change in RYGB patients suggests that

metabolic effects mediated by FGF19 and BA are independent
of total weight loss.

The hormone changes observed in this study may reflect
increased efficiency of enterohepatic circulation following in-
testinal rerouting after RYGB. In the immediate postoperative
period, a more efficient and undiluted flow of bile acids
through the biliopancreatic loop isolated from food in the

Fig. 3 Measurement of total bile
acid response to a mixed meal
before and after medical or
surgical intervention

Fig. 2 Measurement of FGF19
response to a mixed meal before
and after medical or surgical
intervention
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alimentary loop may result in a quicker and more robust up-
take of bile acids into the terminal ileum, thereby leading to
faster and increased postprandial FXR-mediated expression of

FGF19. In fact, accelerated postprandial BA curves have been
noted as early as 4 weeks post-RYGB [29]. Over time, BAs
may have a trophic effect on ileal mucosa, as demonstrated by

Table 3 Individual bile acid measurements before and after IMM or RYGB

IMM P valuea RYGB P valuea P valueb

Month 0 Month 12 Month 0 Month 12

CA (μM)

Fasting 0.12±0.05 0.05±0.01 0.12 0.10±0.07 0.35±0.25 0.18 0.09

AUC 0.19±0.07 0.11±0.03 0.31 0.11±0.04 0.68±0.45 0.19 0.15

CDCA (μM)

Fasting 0.41±0.19 0.13±0.03 0.13±0.03 0.28±0.13 0.19 0.06

AUC 0.77±0.25 0.43±0.10 0.160.25 0.46±0.13 0.91±0.31 0.19 0.08

LCA (μM)

Fasting 0.024±0.003 0.025±0.004 0.81 0.015±0.0002 0.013±0.0002 0.27 0.41

AUC 0.050±0.009 0.057±0.011 0.35 0.032±0.004 0.034±0.007 0.72 0.58

DCA (μM)

Fasting 0.44±0.09 0.39±0.07 0.45 0.30±0.05 0.40±0.08 0.17 0.12

AUC 0.94±0.19 1.02±0.16 0.61 0.68±0.12 1.34±0.26 0.02 0.07

UDCA (μM)

Fasting 0.11±0.03 0.08±0.02 0.22 0.07±0.02 0.03±0.01 0.12 0.92

AUC 0.23±0.06 0.19±0.04 0.46 0.14±0.05 0.10±0.03 0.54 0.97

HDCA (μM)

Fasting 0.06±0.01 0.05±0.01 0.30 0.04±0.01 0.06±0.01 0.10 0.05

AUC 0.12±0.03 0.11±0.02 0.34 0.08±0.02 0.15±0.03 0.01 0.008

TCA (μM)

Fasting 0.04±0.009 0.02±0.004 0.11 0.02±0.005 0.04±0.014 0.20 0.05

AUC 0.15±0.04 0.07±0.01 0.02 0.10±0.04 0.31±0.09 0.05 0.01

TDCA (μM)

Fasting 0.04±0.01 0.02±0.005 0.20 0.04±0.02 0.06±0.02 0.46 0.19

AUC 0.22±0.08 0.11±0.02 0.15 0.21±0.10 0.41±0.12 0.21 0.08

TCDCA (μM)

Fasting 0.05±0.01 0.04±0.01 0.28 0.04±0.02 0.07±0.01 0.35 0.17

AUC 0.30±0.07 0.19±0.04 0.07 0.23±0.06 0.60±0.13 0.01 0.002

TLCA (μM)

Fasting 0.01±0 0.01±0 – 0.01±0 0.01±0.0007 0.33 0.33

AUC 0.023±0.002 3±0.001 0.97 0.022±0.0015 0.025±0.003 0.45 0.53

GCA (μM)

Fasting 0.24±0.06 0.11±0.03 0.11 0.14±0.04 0.31±0.12 0.19 0.05

AUC 0.95±0.18 0.47±0.10 0.005 0.72±0.20 2.42±0.55 0.009 0.002

GDCA (μM)

Fasting 0.41±0.16 0.23±0.05 0.26 0.28±0.11 0.42±0.12 0.43 0.18

AUC 1.53±0.50 0.92±0.13 0.18 1.46±0.59 2.56±0.55 0.12 0.04

GCDCA (μM)

Fasting 0.67±0.15 0.50±0.10 0.36 0.51±0.16 0.75±0.11 0.23 0.13

AUC 2.74±0.38 2.01±0.30 0.03 2.39±0.38 5.62±1.45 0.02 0.007

Values represent mean±SEM for fasting measurements and AUC from fasting value to 120 min post-meal. Units of measure are displayed for fasting
values. AUC values are per minute.
aP within group change
bP difference in the change over time between groups; any significant differences (P<0.05) between groups at the same time-point are indicated in italics
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ileal mucosa hyperplasia following surgical translocation of
the ileum to a location directly distal to the duodenum in
rodent studies [37]. Mucosal hyperplasia, with presumably
increased expression of BA transporters, may lead to in-
creased BA reuptake and consequent FGF19 secretion, there-
by sustaining increased levels of both hormones over time.
Positive correlation between postoperative FGF19 and total
BA levels highlights the potential post-RYGB interplay be-
tween these hormones. Given the negative feedback loop be-
tween FGF19 and bile acids, it is possible that the increased
levels of FGF19 in turn suppress CYP7A1, thereby preventing
sustained elevated levels of potentially toxic BAs.

Following RYGB, all BA species trended towards in-
creased fasting levels and demonstrated statistically signifi-
cant increases in AUC values (with the exception of the pri-
mary unconjugated subset, which only trended towards sig-
nificance). These findings are consistent with findings report-
ed by Kohli et al., who demonstrated a proportionate post-
prandial increase in all BA species, but differed from other
studies that have reported decreases in the fasting taurine-
conjugated fraction or no change in the AUC of the unconju-
gated fraction following RYGB [28–30]. Nevertheless, the
proposed mechanism of enhanced enterohepatic efficiency is
consistent with a more ubiquitous increase in postprandial
levels of BA species. The percent composition of BA species
did change in the fasted state, with an increase in primary
unconjugated BAs and a decrease in secondary unconjugated
BAs. Given that secondary BAs are produced in the distal
small intestine or colon by bacterial enzymes, the intestinal
rerouting and changes in intestinal microbiota known to ac-
company RYGB may certainly account for the decreased per-
cent of secondary unconjugated BAs [38]. Lack of change in
the ratio of 12a-hydroxylated/non-12a-hyroxylated bile acids
despite improved insulin resistance was not unexpected given
that the relative increase in this ratio has been associated with
insulin resistance in healthy non-diabetic rather than diabetic
subjects [23].

We did not detect a positive correlation between total BAs
and GLP-1 that would be expected given the action of BAs on
TGR5 (data not shown). Steinert et al. also did not find an
association between postprandial plasma BAs and GLP-1
levels [39] although other groups have reported a positive
association between peak GLP-1 levels and peak BA levels
[24, 30]. These seemingly discrepant findings may be due to
different timing of sample collections and/or composition of
meal stimuli [40]. Nevertheless, our observation that BAs
positively correlate with FGF19 and not GLP-1 raises the
interesting possibility that the post-RYGB effects of BAs
may occur predominantly through FXR rather than TGR5.
Consistent with this hypothesis, Meyer-Gerspach et al. dem-
onstrated that a physiological load of CDCA is a weak stim-
ulus for GLP-1 with no insulinotropic GLP-1-dependent ef-
fects on glucose homeostasis or appetite perceptions [41].

Instead, intraduodenal infusion of CDCA resulted in an im-
pressive dose-dependent increase in FGF19 and attenuated
insulin release after an OGTT, leading them to similarly im-
plicate the FXR pathway as the predominant means through
which BAs exert glycemic control. Importance of FXR sig-
naling has also been demonstrated in a rodent model of verti-
cal sleeve gastrectomy, where despite increased circulating
bile acids the ability of surgery to reduce body weight and
improve glucose tolerance was significantly reduced in the
absence of FXR [16].

A strength of this study is the similar improvement in
HbA1c between groups which effectively rules out the possi-
bility that improved glycemia is casual to the differences in BA
and FGF19 levels. A limitation of the study is that greater
weight loss is likely to have contributed to improvement in
HbA1c after surgery. It is also difficult to compare groups given
that fewer diabetes medications were required to achieve simi-
lar HbA1c reduction post-RYGB. Clearly, more studies are
necessary to untangle the different mediators of glycemic con-
trol that occur with various methods of weight reduction.
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