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Abstract
Designed experiments were conducted to investigate the influence of ohmic heating (OH) at varying electric field strength 
(EFS) and holding time on the recovery of oil from mustard (Brassica juncea) seeds during mechanical expression. Hyper-
spectral imaging (HSI) in the visible-near infrared (Vis–NIR, 399–1003 nm) and short-wave infrared (SWIR, 895–1712 nm) 
ranges was used to visualize the change in oil distribution induced by OH on the mustard seeds. OH treatment led to an 
increase in expression of oil content by 25% as compared to control samples. Chemometric techniques, including partial 
least squares discriminant analysis (PLS-DA) and partial least squares regression (PLSR), were employed to analyze spectral 
data and develop models for predicting the enhancement in expressible oil due to OH treatment and its quality in terms of 
free fatty acids thereof. PLS-DA differentiated OH treated seeds from the control sample for by Vis–NIR and SWIR HSI at 
93.0 and 95.8% accuracy, respectively. The variable selection method (iPLS) identified crucial wavelengths with minimal 
performance loss for accurate prediction. The PLSR model using SWIR HSI data accurately predicted oil content and fatty 
acid composition (R2 > 0.92), while Vis–NIR predictions exhibited a lower accuracy (R2 > 0.73).
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Introduction

Mustard (Brassica juncea) is a versatile crop known for its 
richness in minerals and high-quality oil. On an average, 
mustard seeds comprise about 40% oil and are cultivated 
worldwide to produce edible vegetable oil, making it an 
integral part in various global cuisines [1]. Renowned for 
its richness in essential fatty acids like erucic acid (C22:1), 
alpha-linolenic acid (C18:3), linoleic acid (C18:2) and oleic 
acid (C18:1), mustard oil holds a significant position owing 
to its positive impacts on heart and skin health, alongside its 
anti-inflammatory properties [2]. These nutritional attributes 
on one hand contributes to the escalating demand for mus-
tard oil; and on the other hand, makes mustard oil a potent 
tool of enhanced economic dividends for the vendors.

The inadequate production of mustard seeds combined 
with a modest recovery (26–27%) rate of oil during mechani-
cal milling contributes to a perineal unscalable gap in pro-
duction and demand [3]. Enhancing oil recovery rates is 
imperative to bridge this gap and ensure a steady supply of 
mustard oil to meet escalating consumer demands [4].

While mechanical milling remains a common technique 
for oil extraction, its inherent limitation lies in the consider-
able amount of residual oil trapped within the milled cake, 
leading to incomplete extraction. A range of pre-treatment 
approaches has been investigated for an enhanced recov-
ery of mustard oil during mechanical extraction. The pre-
treatments include size reduction, crushing, hulling, crack-
ing, enzymatic hydrolysis and thermal treatments, each 
aiming to disrupt the cell matrix of the raw material and 
enhance oil yield [5]. However, in pursuit of further yield 
improvement, researchers have shifted their focus towards 
exploring novel pre-treatment technologies. Pre-treatment 
improves oil yield compared to mechanical pressing alone, 
maximizing the amount of oil extracted from mustard seeds 
[6]. Unlike conventional treatments, ohmic heating (OH) has 
emerged as a promising environmentally friendly option [7] 
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that uses electrical currents to generate heat within the oil 
seed matrix, facilitating oil extraction [8]. The application 
of electrical resistance induces Joule heating, elevating seed 
temperature and reducing oil viscosity, thereby enhancing 
oil flow and extraction efficiency [9]. Furthermore, OH can 
induce electro-permeabilization, augmenting cell membrane 
permeability and expediting oil release, consequently bol-
stering oil recovery rates [10]. OH as a treatment method can 
offer significant advantages during oil extraction. After OH 
treatment, oil can be extracted through mechanical milling 
or pressing. The integration of OH as a treatment step to the 
regular mechanical expression of mustard oil has the poten-
tial to revolutionize oil extraction processes, particularly 
in the mustard oil industry. This aligns with the growing 
demand for safe, sustainable and efficient food processing 
methods.

Despite the promise of OH as a treatment method, evalu-
ating their efficacy and impact on oil recovery and quality 
necessitates robust analytical techniques. Traditional meth-
ods, while reliable, often entail laborious procedures, con-
sume significant resources and pose safety risks in laboratory 
settings [11]. Hyperspectral imaging (HSI) integrates digital 
imaging with spectroscopic analysis, enabling the capture of 
spectral and spatial data simultaneously, thereby providing 
important information about the quality and chemical com-
position of food products [12]. Leveraging advanced mul-
tivariate analysis techniques such as principal component 
analysis (PCA), partial least squares-regression (PLSR) and 
discriminant analysis (PLS-DA), HSI facilitates to identify 
the relevant information from complex spectral data, aiding 
in the classification, prediction and quantification of spe-
cific parameters [13, 14]. In this context, HSI emerges as a 
rapid, non-invasive and robust approach for assessing the oil 
content and quality of mustard seeds post the OH treatment.

In light of these considerations, the present study aimed 
to elucidate the effect of OH treatment on mechanically 
expressible oil in mustard seeds, focusing on changes in oil 
content and fatty acid composition by using visible-near 
infrared (Vis–NIR) and short-wave infrared (SWIR) HSI to 
identify the spatial spread of oil within mustard seeds after 
OH treatment.

Material and methods

Experimental materials

The experiment used mustard (Brassica juncea) seeds (var. 
RH-0749) purchased from the National Seed Corporation 
Limited, Bhopal, India. The seeds had an average moisture 
content (w.b.) of 6.9 (± 0.03) % and diameter of 1.7 (± 0.3) 
mm. All the foreign material from the seeds were cleaned 
before storing them securely in airtight bags at 4 °C [15]. 

They were accessed as per the experimental requirement and 
allowed to equilibrate under laboratory conditions before 
being used further. All the experiments were conducted in 
the Machine Vision laboratory, Agro produce and processing 
division, ICAR—Central Institute of Agricultural Engineer-
ing, Bhopal.

Ohmic heating (OH) treatment

The experiments were conducted using an in-house ohmic 
heating setup (Fig. 1) equipped with a temperature control-
ler for setting and maintaining desired temperatures (0–300 
°C), a contactor to handle high currents for the heating ele-
ment, a Variac for adjusting the applied voltage (0–300 V) 
during heating with a circuit breaker for overload protection, 
a metal box for housing the voltmeter, ammeter, indicator 
lights and an energy meter. The mustard seed had an initial 
moisture content of 6.9% (w.b.), but preliminary contextual 
experiments trials revealed that adding moisture to the seeds 
till a moisture level of 35% facilitated a consistent flow of 
electric current. This ensured efficient heating and allowed 
a desired endpoint temperature (EPT) of 90 °C. Conversely, 
lower moisture levels (20–30%) resulted in inadequate cur-
rent flow and hindered attaining the target temperature [16]. 
The moistened mustard seeds were then subjected to ohmic 
heating with a specified electric field strength (EFS, V/
cm) until an EPT of 90 ºC was achieved at the geometric 
centre. This temperature was maintained throughout the 
holding time (HT, s). The temperature of the mixture was 
measured by a thermocouple (Vigital India Pvt. Ltd., New 
Delhi, India) probe inserted into the mixture in the ohmic 
heating tray. The mixture was then treated and dried in the 
shade until it reached a moisture level of 6–7% (w.b.). The 
dried seeds were subsequently utilized for further analysis 
and oil extraction. The EFS (22, 24.5 and 27 V/cm) and 
HT (300, 600 and 900 s) were chosen as the independent 
variables in the experimental design, which resulted in nine 
treatments with three replications each. The control sam-
ples also underwent water addition (up to 35%) followed by 
drying to 6–7% moisture content. This was done to isolate 
the effects of water addition and drying from the OH treat-
ment, ensuring that observed spectral changes can be more 

Fig. 1  Schematic diagram of in-house developed ohmic heating set-
up
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accurately attributed to the OH process itself. Classification 
and quantification of oil and fatty acid content was carried 
out with HSI for two OH treatment conditions, one (OH1) 
based on maximum mechanically expressible oil recovery; 
and two (OH2) based on maximum ohmic heating treatment 
intensity. The conditions for OH1 and OH2 with respect to 
EFS and HT were 24.5 V/cm, 900 s and 27 V/cm, 900 s, 
respectively.

Oil extraction using laboratory scale oil expeller

Both treated and control samples of mustard seeds were 
milled using a laboratory oil expeller (SH-800, Shreeja Pvt. 
Ltd., Rajkot, India). The milled crude oil underwent sequen-
tial clarification through a sieve and a muslin cloth to remove 
suspended impurities. After extraction, the oil was stored in 
polyethylene terephthalate (PET) containers and maintained 
at 4 °C in a refrigerator [15] for analysis.

Fatty acid composition analysis

Standard method [17] was adopted to identify fatty acids in 
the mustard oil samples from the OH treated mustard seeds. 
This involved transesterifying triglycerides to fatty acid 
methyl esters (FAME), which were subsequently analyzed 
using a GC–MS/MS (QP-2010 Ultra mass spectrometer and 
GC 2010 with AOC 20i/s chromatograph) equipped with 
an ELITE-2560 column and helium carrier gas at a specific 
flow rate. Specific temperature (Initial temperature 100 °C 
and injection temperature 230 °C) profiles were applied dur-
ing the analysis. Comparison of FAME mass spectra with 
the NIST library identified compounds with over 90% simi-
larity, which were then quantified as comparative percent-
ages of the entire peak region.

Hyperspectral imaging

Hyperspectral imaging systems

Two HSI systems were used to obtain hyperspectral images 
of mustard seeds in reflectance mode. The first of these sys-
tems was a Vis–NIR HSI system (Specim Imaging, Oulu, 
Finland). The wavelength range was 399–1003 nm, with a 
spectral precision of 2.8 nm for 97 spectral bands. Software 
Specim-DAQ ver. 3.61 (Specim Imaging, Oulu, Finland) 
facilitated camera parameter adjustments, real-time data 
collection and visualization of images. The second HSI 
system was for the SWIR range (Pika NIR-320, Resonon 
Inc., USA), with a wavelength range of 895–1712 nm, a 
spectral resolution of 4.9 nm and 168 spectral bands. A dedi-
cated software Spectronon Pro version 3.4.0 (Resonon Inc., 
USA) was used for capturing SWIR HSI images. In both the 
HSI systems, 3-D hyperspectral data cube was obtained by 

mechanically moving the object using a movable platform. 
In the SWIR system, each line within the data cube con-
tained 320 individual pixels.

Hyperspectral image analysis

Accurate analysis of hyperspectral images can be ensured 
after noise correction and removing the uneven distribution 
of reflectance across the various wavebands by pre-process-
ing the raw hyperspectral image. The correction method 
involves removing dark current from the camera sensor by 
acquiring a dark image  (Dref) with the light switched off 
and an opaque lid covering the camera lens to eliminate any 
reflection. Under the same lighting conditions as the raw 
image  (Rimage), a white reference image  (Wref) was acquired 
using a custom Teflon plate with a uniform and high reflec-
tance of 99.9%. The following equation was used to compute 
the relative reflectance (R) of the hypercube [18]:

Pre-processing of hyperspectral images resulted in erro-
neous data such as dead pixels, spikes and outliers can dis-
tort the spectral signature of the object being imaged and 
lead to inaccurate results. Thus, it was essential to identify 
and remove such data points during pre-processing to ensure 
the accuracy and reliability of subsequent analysis [19]. In 
this research, spatial binning approach was employed to 
decrease the spatial dimensions of the image followed by 
removal of dead pixels. The image background was removed 
using a mask created by the k-means clustering algorithm.

In spectral pre-processing, a combination of methods 
was employed, including light scattering correction, noise 
reduction and background normalization, to ensure accu-
rate analysis of the morphology of mustard seeds. Distinct 
spectral pre-processing methods, including Standard Normal 
Variate (SNV), Savitzky-Golay smoothing (SGS), SG First 
Derivative (SGD-F) and SG Second Derivative (SGD-S) 
were applied to the data independently and in combination. 
Both smoothing and derivative were used with a 7-point 
window and second-order polynomial. Hyperspectral image 
pre-processing, encompassing both spatial and spectral 
domains, was conducted using HYPER-Tools v3.0 within 
MATLAB R2019 (MathWorks, USA).

HSI data from control and OH-treated samples of mustard 
seed were analyzed. Each HSI sample comprised an aver-
age of 76 (± 4) seeds collected as a single layer on a petri 
dish, and 700 spectral reflectance values were acquired from 
each sample. This resulted in 2100 pixels for the Vis–NIR 
region (97 wavebands) and 2210 pixels for the SWIR region 
(137 wavebands). These datasets were used in subsequent 
multivariate analyses for model development. The datasets 

(1)R =

Rimage − Dref

Wref − Dref

× 100
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were partitioned into calibration and cross-validation sets 
to ensure accurate prediction and minimize potential errors 
using a 70:30 split. An additional test set with 300 pixels for 
both the Vis–NIR and SWIR regions was used.

Principal component analysis (PCA)

Principal component analysis was used for understanding 
the impact of OH treatments in terms of the spectral char-
acteristics of mustard seeds [20]. Analyses were performed 
on both raw and pre-processed hyperspectral data using the 
Nonlinear Iterative Partial Least Squares (NIPALS) algo-
rithm with mean centering and three principal components. 
Additionally, hyperspectral images were represented as false 
colour images by projecting the PCA model to represent 
pixel colours corresponding to chemical variations [21] 
which might have been induced by the OH treatment.

Classification model analysis

Partial least squares discriminant analysis (PLS-DA), a well-
established statistical method for handling high-dimensional 
data was utilized to develop classification models for dif-
ferentiating between control and OH-treated mustard seeds. 
The optimal number of latent variables (LVs) were selected 
using the least Root Mean Square Error of Venetian Blinds 
Cross-Validation (RMSECV) to ensure that the models cap-
tured the most relevant information and does not result in 
overfitting with respect to specific dataset. This calibration 
and cross-validation approach ensured that the model gen-
eralizes well to unseen data by ensuring its accuracy and 
reliability on unseen samples. The statistical robustness of 
the models was judged by metrics like specificity, sensitivity, 
precision, accuracy and error [14].

where, TP represents correctly identified positives, TN indi-
cates correctly classified negatives. FP represents incorrectly 

(2)Specificity =
TN

(FP + TN)

(3)Sensitivity =
TP

(FN + TP)

(4)Precision =
TP

(FP + TP)

(5)Accuracy =
TP + TN

(TN + FP + TP + FN )

(6)Error =
FP + FN

(TN + FP + TP + FN)

identified negatives (as positive) and FN indicates incor-
rectly classified positives (as negative).

Prediction model analysis

The effectiveness of hyperspectral data in predicting 
mechanically expressible oil and fatty acid composition in 
OH treated mustard seeds was evaluated through Partial 
Least Squares Regression (PLSR) analysis. This method 
aimed to establish a robust relationship between the predic-
tor variables (X) represented by the spectral data and the 
response variables (Y) comprising the experimentally meas-
ured oil and fatty acid values. This relationship was con-
structed using LVs, orthogonal linear combinations of the 
original spectral features designed to maximize the covari-
ance between X and Y [22]. Root mean square error (RMSE) 
and the observed increase in model performance with each 
additional LV included were used to find the ideal number 
of LVs, this was achieved by developing two sets of models. 
The first set comprised full-spectrum models, which utilized 
the complete spectral range for LV generation. The second 
set consisted of Interval PLS (iPLS) models wherein the 
spectral data was segmented into smaller, specific intervals 
using the iPLS variable selection method. Individual LVs 
were then generated for each interval, enabling the identifi-
cation of the most informative wavelength range for predic-
tion [23]. The developed PLSR models underwent rigorous 
evaluation using diverse metrics. The average prediction 
error was calculated by root mean square error for calibra-
tion (RMSEC), while R2 measured the explained variance 
for calibration set and cross-validation (R2

CV, RMSECV) 
provided an independent assessment of the model to predict 
unseen data. The models were independently tested using 
testing set (R2

T, RMSET). This multi-pronged approach 
ensured reliable PLSR models for predicting mechanically 
expressible oil and the fatty acid composition in mustard 
seeds treated with OH.

Fourier transform infrared spectroscopy (FTIR)

The functional groups of the control and OH treated mustard 
oil samples were examined using an FTIR spectrophotom-
eter (ALPHA Bruker, Ettlingen, Germany) at room tem-
perature. A diamond crystal ATR plate was used for the 
samples as they were positioned for FTIR analysis. Before 
each analysis, the ATR plate was thoroughly cleaned with 
isopropyl alcohol of analytical quality. The spectral data 
were obtained across the 4000–600  cm−1 wavelength range 
with a resolution of 2  cm−1, scanner frequency of 7.5 kHz 
and sample and background each of 24 scans. Opus (v. 6.0, 
Bruker, Ettlingen, Germany) software was used for instru-
ment process control, spectral sampling and preliminary file 
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modification. To mitigate the interference of  H2O and/or 
 CO2 bands in the ratio spectra, compensation was applied.

Results and discussion

Effect of OH treatment on oil and fatty acids

The effect of OH treatment on mustard seeds shows that 
the mechanically expressible oil obtained from OH1 and 
OH2 treatments were 33.18 (± 0.05) and 32.94 (± 0.02) %, 
respectively. The results showed that OH treatment led to an 
increase in oil content compared to control samples which 
yielded 26.41 (± 0.18) % oil. The increase in expressed oil 
can be attributed to the ohmic heat treatment, which might 
have enhanced oil extraction efficiency from the seeds [24]. 
Regarding the fatty acid composition, the OH treatment 
exhibited minor effects on the individual fatty acid con-
tents. While there were slight decreases in C18:1, C20:1 and 
C18:3 contents, there were no significant changes in C18:2 
content. However, the OH treatment resulted in an increase 
in C22:1 content, indicating a potential influence of thermal 
treatment on the synthesis or retention of erucic acid. The 
variations in saturated, unsaturated, MUFA and PUFA con-
tent suggest that OH treatment might have induced changes 
in the overall fatty acid profile of mustard seeds, albeit to a 
limited extent. The observed increase in saturated fatty acids 
and the slight decrease in unsaturated fatty acids indicate 
the potential impact on the overall saturation level of fatty 
acid composition. However, the differences in MUFA and 
PUFA content among the treatments were relatively small 
(Table 1). A similar observation for Gac aril oil was also 
reported [25]. These findings suggest that OH treatment 
affects the oil recovery and the proportion of certain fatty 
acid compositions of the samples.

Spectral characteristic

Reflectance disparities caused by OH treatment was substan-
tially more prominent in the SWIR region of the spectrum 
than in the Vis–NIR region. This is likely because the SWIR 
region is more sensitive to changes in the chemical com-
position and structural changes induced by the treatments 
of the samples. On the other hand, the Vis–NIR regions 
are more sensitive to changes in the physical properties 
of the samples, such as their texture and colour [26]. The 
Vis–NIR–SWIR spectra (Fig. 2a and b) of OH treated mus-
tard seeds show that the control sample has a higher reflec-
tance value than the treated samples. Perhaps OH treatment 
has resulted in creation of micro cracks on the seed surface 
and exposed the brighter endosperm this might have made 
the surface texture rough, resulting in reduced reflectance. 
Further analysis showed that the spectra of OH1 and OH2 

samples were quite similar, likely due to the parameters of 
electric field strength and holding time not varying suffi-
ciently to produce distinguishable changes in the spectral 
properties.

The Vis–NIR spectra of samples OH1 and OH2 pre-
processed with SGS (Fig.  2a) showed a dip observed 
between 399 and 422 nm, after which the profile was 
flat until 563 nm. Beyond 563 nm, the spectra exhibited 
a steady increase up to 1002 nm. A similar pattern was 
observed for the control sample, albeit with slightly higher 
reflectance values. Vis–NIR spectra with SNV + SGS 
(Fig. 2c) pre-processing for control samples demonstrated 
a sharp decline up to 441 nm and dip at 770 nm, after 
which the gradual increase in profile was observed, while 
for both treated samples (OH1 and OH2) rapid increase 
up to 441 nm was observed and peak at 770 nm followed 
by the gradual decrease of reflectance values in the pro-
files. Applying SGD-S spectral pre-processing (Fig. 2e) 
to the Vis–NIR spectra revealed additional peaks and val-
leys corresponding primarily to the colour variations of 
the samples. These features were prominent in the visible 
range at 422, 447, 490 and 789 nm and in the NIR range at 
834, 866 and 905 nm [27]. The seeds being dark brownish 
to yellowish red (inner), the reflectance value across all the 
cases demonstrated an increase from 560 nm till the end of 
spectra, 1000 nm. Conversely, after applying SGS to SWIR 
hyperspectral data (Fig. 2b), distinctive reflectance bands 
were identified for control samples at 1087, 1208 and 1463 
nm and for ohmic treated samples at peak observed at 
1087, 1355 and 1409 and dip at 1189, 1379 and 1563 nm. 
Furthermore, SNV + SGS (Fig. 2d) showed an additional 
dip and peak at 1419 nm for control and treated samples. 

Table 1  Mechanically expressible oil (%) and fatty acid composition 
(%) of OH treated mustard seeds

Treatments do not have a significant difference (p > 0.05) when repre-
sented by the same characters (Tukey’s test)

Control samples OH treatment

OH1 OH2

Oil content
26.41 ± 0.18a 33.18 ± 0.04b 32.94 ± 0.02bc

Fatty acids
C22:1 50.74 ± 0.11a 53.72 ± 0.05b 53.91 ± 0.02c

C20:1 4.89 ± 0.03a 4.48 ± 0.02b 4.48 ± 0.02bc

C18:3 13.32 ± 0.42a 11.87 ±  002b 11.79 ± 0.04bc

C18:2 14.06 ± 0.34a 14.33 ± 0.04a 14.26 ± 0.00a

C18:1 8.88 ± 0.31a 7.61 ± 0.05b 7.61 ± 0.01bc

Unsaturated 96.82 ± 0.05a 96.19 ± 0.04a 96.25 ± 0.01a

Saturated 3.18 ± 0.05a 3.81 ± 0.04b 3.75 ± 0.01bc

MUFA 67.25 ± 0.05a 67.84 ± 0.00b 68.07 ± 0.01c

PUFA 29.57 ± 0.03a 28.34 ± 0.03b 28.18 ± 0.03c
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SGD-S pre-processing (Fig. 2f) revealed additional SWIR 
peaks and valleys at 986, 1063, 1208, 1330 and 1617 nm. 
The SWIR spectra show that the treated samples have dis-
tinctive characteristic bands at 1087, 1355 and 1409 nm. 
These bands are characteristic of organic compounds, such 
as carbohydrates and proteins [28].

Principal component analysis (PCA)

The hyperspectral data analysis using pre-processing tech-
niques and PCA revealed significant findings in distinguish-
ing between OH treated and control mustard seed samples. 
PCA score plots (Fig. 3) constructed for PC1 and PC3 using 
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Fig. 2  Average spectra of OH treated mustard seeds following spectral processing (a and b) SGS, (c and d) SNV + SGS and (e and f) SGD-S for 
Vis–NIR and SWIR wavelengths, respectively
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SGS for Vis–NIR spectral data showed the distinct separa-
tion between OH treated and control samples. The control 
samples exhibited a clustered distribution in the PC3 positive 
section, suggesting a unique spectral characteristic specific 
to this group. Moreover, the concentration of control seed 
samples in negative section of PC1 contributed to their dif-
ferentiation from the OH treated samples along the PC3 axis, 
indicating substantial differences in their spectral profiles. 
Treated samples OH1 and OH2 showed similar dispersed 
distributions through PC1 and PC3, making it difficult to 
differentiate among the treatments.

The loading plot (Fig. 5a) analysis of the Vis–NIR data 
provided further details on the particular spectral character-
istics associated with each principal component. PC1 shows 

a modest peak at 441 nm, then a plateauing trend extending 
till 575 nm. This plateau was subsequently surpassed by a 
steadily increasing profile. On the other hand, PC2 displayed 
the dip at 447 nm, then an increasing trend up to 569 nm, 
after which the profile reached a plateau and remained rela-
tively unchanged until 642 nm, after which another notable 
increase was observed. The PC3 loading profile exhibited 
a steep downward slope up to 435 nm, followed by a more 
gradual slope and a dip in the loading at 750 nm before 
concluding with a sharp rise.

Analysis of the principal component score plot (PC1 vs. 
PC2) derived from SWIR spectral data with SNV spectral 
pre-processing of OH pre-treated samples (Fig. 4) dem-
onstrated clear differentiation between treated and control 

Fig. 3  PCA comparison for mustard seeds: control vs. OH treated—a PCA score plot with SGS, b PC1 to PC3 scores from Vis–NIR Data

Fig. 4  PCA comparison for mustard seeds: control vs. OH treated—a PCA score plot with SNV pre-processed, b PC1 to PC2 score from SWIR 
data
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groups. Distinguishing between the treated samples remains 
challenging due to similar dispersion patterns in the score 
plot. PC1 provided the most distinct separation between 
these sample groups on the score plot. Control samples 
mainly clustered in the negative PC1 region, while treated 
samples formed a distinct cluster in the positive PC1 region.

The SWIR data loading plot (Fig. 5b) revealed distinct 
spectral characteristics for the first three PCs. PC1 exhibited 
peaks at 1082, 1395 and 1413 nm, alongside dips at 1374 
and 1468 nm. Similarly, PC2 displayed peaks at 1136, 1188 
and 1364 nm, contrasted by dips at 1164, 1217, and 1532 
nm. Finally, PC3 loadings showed peaks at 1140, 1189, 1384 
and 1463 nm while exhibiting dips at 1082 and 1408 nm.

The Vis–NIR and SWIR analyses provided better under-
standing of the unique spectral characteristics associ-
ated with each sample group and PC1 proved particularly 
effective in discriminating between the control and treated 

samples. However, it should be noted that differentiating 
among the treatments (OH1 and OH2) within the treated 
samples was challenging due to their similar dispersion 
patterns in the score plot. This indicates that the spectral 
profiles of OH1 and OH2 treatments may have overlapping 
characteristics, making it difficult to distinguish them solely 
based on the PCA score plot. Researchers used PCA to clas-
sify brassica species [23] and infected maize seeds [21].

Classification model development

The PLS-DA model performed good during the classifi-
cation of control samples, as indicated by high sensitiv-
ity, specificity, precision and accuracy values using both 
Vis–NIR and SWIR spectral data (Table 2). In the case of 
Vis–NIR, the highest classification scores were obtained 
without pre-processing of raw spectral data. The calibration 

(a) (b) 

Fig. 5  PCA loadings for spectral data of OH treated mustard seeds a Vis–NIR, and b SWIR HIS

Table 2  PLS-DA classification 
model performance for OH 
pre-treated mustard using raw 
spectral data of Vis–NIR HSI 
and SNV + SGS spectral data of 
SWIR HSI, with 10 and 8 LVs, 
respectively

Calibration Cross Validation Testing

Control OH1 OH2 Control OH1 OH2 Control OH1 OH2

Vis–NIR Accuracy 0.933 0.930 0.928
Specificity 0.921 0.972 0.969 0.912 0.977 0.963 0.906 0.981 0.958
Sensitivity 0.997 0.557 0.675 0.997 0.535 0.711 0.997 0.518 0.736
Precision 0.984 0.628 0.693 0.981 0.701 0.653 0.979 0.726 0.627
Non-assigned 0.610 0.605 0.601

SWIR Accuracy 0.962 0.958 0.959
Specificity 1.000 0.974 0.986 1.000 0.974 0.982 1.000 0.974 0.983
Sensitivity 1.000 0.695 0.589 1.000 0.644 0.588 1.000 0.666 0.589
Precision 1.000 0.555 0.724 1.000 0.546 0.681 1.000 0.548 0.692
Non-assigned 0.627 0.625 0.625
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model presented high sensitivity for the control sample 
(0.997), while for the OH1 and OH2 samples, it decreased 
to 0.557 and 0.675, respectively. The cross-validation and 
testing models presented a similar pattern, with high sensi-
tivity for the control sample (0.997) and decreased sensi-
tivity for OH1 (0.535 cross-validation, 0.518 testing) and 
OH2 (0.711 cross-validation, 0.736 testing). Specificity was 
generally high in calibration, cross-validation and testing 
sets, with values ranging from 0.906 to 0.977 in all catego-
ries. Precision varied more prominently with control sam-
ples demonstrating high precision (0.984 calibration, 0.981 
cross-validation and 0.979 testing), but reduced precision for 
treated samples. The accuracy of the Vis–NIR model was 
not more than 0.933 with the non-assigned rate of 0.610. The 
highest classification accuracy for the SWIR spectral data 
was achieved using SNV with SGS pre-processing. Calibra-
tion, cross-validation and testing models showed perfect sen-
sitivity (1.000) for the control sample and moderately high 
sensitivity for OH treated samples. The specificity was also 
perfect (1.000) for the control samples and remained high 
for the treated samples. Precision was perfect for control 
samples but reduced for treated samples. The accuracy of the 

SWIR model was higher compared to the Vis–NIR model, 
with values more than 0.958 at a non-assigned rate of 0.627.

The results demonstrate a high level of accuracy suggest-
ing that the model was proficient in distinguishing control 
samples from treated ones. This successful classification 
highlights the effectiveness of the model in differentiating 
between the two sample types based on their spectral charac-
teristics. However, the performance of the model is reduced 
when classifying OH treated mustard samples using the 
Vis–NIR spectral data. The non-assigned rates were higher 
than desired in all cases. This suggests that the model may 
be misclassifying a proportion of samples [29]. Similar find-
ings were observed for PLS-DA models using HSI spectra 
for barley [30], rice grains [31] and corn kernels [32].

Prediction model development

Distinct PLSR models were built to analyse the Vis–NIR 
and SWIR spectra of OH treated mustard seeds (Table 3). 
The Vis–NIR model achieved the best prediction accuracy 
for oil content using SNV spectral pre-processing, with an 
R2 value of 0.767 and RMSE of 1.509. The R2

CV and R2
T 

Table 3  Prediction of fatty acid 
composition and oil content in 
OH treated mustard seeds from 
PLSR model using Vis–NIR–
SWIR HSI spectra

LVs Latent variables,   R2 coefficient of determination, RMSEC Root mean square error for calibration, 
RMSECV cross validation, RMSET testing

Spectral pre-processing LVs Calibration Cross validation Testing

R
2

C
RMSE R

2

CV
RMSECV R

2

T
RMSET

Vis–NIR
Oil SNV 7 0.767 1.509 0.755 1.550 0.761 1.529
Fatty acids
C22:1 SNV + SGD-S 10 0.792 0.661 0.792 0.661 0.756 0.716
C20:1 SNV + SGD-S 10 0.794 0.087 0.768 0.093 0.758 0.095
C18:3 SNV + SGD-S 10 0.792 0.320 0.766 0.339 0.784 0.326
C18:2 SNV + SGD-S 10 0.750 0.057 0.750 0.057 0.751 0.057
C18:1 SNV 7 0.767 0.288 0.755 0.296 0.745 0.301
Unsaturated SNV + SGD-S 10 0.790 0.130 0.763 0.138 0.752 0.141
Saturated SNV + SGD-S 10 0.790 0.130 0.763 0.138 0.752 0.141
MUFA SNV + SGD-S 10 0.736 0.177 0.711 0.185 0.703 0.188
PUFA SNV 7 0.758 0.305 0.745 0.313 0.735 0.319
SWIR
Oil SNV + SGD-S 8 0.988 0.338 0.987 0.355 0.991 0.292
Fatty acids
C22:1 SNV 2 0.992 0.126 0.992 0.127 0.991 0.128
C20:1 SNV 2 0.996 0.013 0.996 0.013 0.996 0.013
C18:3 SNV 2 0.993 0.058 0.993 0.058 0.993 0.058
C18:2 SNV + SGS 2 0.936 0.029 0.936 0.029 0.935 0.029
C18:1 SNV 2 0.996 0.040 0.996 0.040 0.995 0.040
Unsaturated SNV + SGS 2 0.989 0.038 0.989 0.030 0.989 0.030
Saturated SNV + SGS 2 0.989 0.038 0.989 0.030 0.989 0.030
MUFA SNV + SGD-S 8 0.922 0.097 0.917 0.100 0.921 0.097
PUFA SNV 2 0.984 0.078 0.984 0.079 0.984 0.078
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was 0.755 and 0.761 respectively and the corresponding 
RMSECV and RMSET was 1.550. and 1.529 respectively. 
These values indicate a moderate correlation (R2 < 0.80) 
between the predicted and actual oil content. The fatty acid 
predictions for Vis–NIR spectra combined with the SGD-S 
smoothing pre-processing technique achieved better results 
than SNV pre-processing with LVs ranging from 7 to 10. 
These fatty acids achieved R2 values varied between 0.736 
and 0.794 during calibration and R2

CV and R2
T values varied 

between 0.703 and 0.784 during cross-validation and testing. 
The best prediction performance was observed for C20:1 
by SGD-S smoothing pre-processing with R2, R2

CV and R2
T 

values of 0.794, 0.768 and 0.784, respectively, and RMSE, 
RMSECV and RMSET values of 0.087, 0.093 and 0.095, 
respectively.

In case of SWIR spectra, the prediction of oil content 
using SNV combined with SGD-S pre-processing achieved 
excellent results. An R2 value of 0.988 was obtained dur-
ing calibration, with an RMSE of 0.338. The R2

CV and R2
T 

was 0.987 and 0.991 respectively and the corresponding 
RMSECV and RMSET was 0.355. and 0. 292 respectively. 
During fatty acid predictions using SWIR spectra, C18:1, 
C20:1, C18:3, C22:1, saturated and unsaturated fatty acids 
all achieved high R2 values of 0.992 to 0.996 during calibra-
tion and for cross-validation and testing the R2

CV and R2
T 

values ranged from 0.935 to 0.996, with 2 LV. MUFA and 
PUFA predictions achieved R2 values of 0.922 and 0.984 
during calibration, respectively; for cross-validation, the 
R2

CV values were 0.917 and 0.984, and for R2
T values were 

0.921 and 0.984 with LVs ranging from 2 to 8.
Ohmic heat treatment resulted in moderately accurate 

predictions of oil and fatty acid content in Vis–NIR, but 
SWIR spectra provided significantly better results. The use 
of SNV pre-processing alone showed excellent results. This 
can be attributed to the SWIR spectral range capturing more 
detailed information regarding the chemical composition 
and molecular structures of the mustard seeds. The SWIR 
spectra captured more discriminative features relevant to the 
oil content and fatty acid compositions, resulting in more 
accurate predictions [33]. These findings align with obser-
vations reported in prior studies on various crops, including 
brassica seeds to predict oil content [23] and chia seeds to 
predict fatty acid concentration [34].

The specific wavelengths were identified by iPLS 
model, this model demonstrated its effectiveness to pre-
dict the mechanically expressible oil content in mustard 
seeds (Table 4). In case of Vis–NIR spectra, the model 
selected key wavelengths in the range of 399–465, 520–539, 
557–563, 582–588 and 632–638 nm, utilizing 2 LVs. In the 
SWIR spectra, prominent wavelengths for oil content pre-
diction ranged from 967 to 991 nm, employing 1 LV. These 
findings suggest that these wavelength regions contained 
valuable information for accurately predicting oil content in 

the mustard seed samples. While the iPLS model applied to 
Vis–NIR spectra demonstrated moderate success in predict-
ing overall fatty acid composition, its most notable strength 
lies in quantifying C20:1. The selected wavelengths encom-
passed 399–613, 632–638, 656–675, 757–776, 796–815 and 
925–944 nm, employing 4 LVs. In case of SWIR spectra, 
the iPLS model showed exceptional performance. The best 
performance of SWIR spectra was observed for predicting 
C18:1, the selected wavelengths are 967–991 nm utilizing 
4 LVs. Similar results were reported for choy sum [35] and 
brassica seeds [23, 36] to find specific wavelengths using 
iPLS variable selection method.

Prediction map

The spatial spread of oil and fatty acid components within 
experimental conditions of OH-treated mustard seeds was 
comprehensively analyzed using dedicated prediction maps 
generated for each component (Figs. 6 and 7). This approach 
enabled a meticulous seed-by-seed understanding of the OH 
pre-treatment conditions which impacted the localization 
and concentration of these vital constituents within indi-
vidual seeds.

A visual representation of component intensity was cre-
ated using a MATLAB jet colormap. Blue hues denote lower 
values, while red hues signify higher values. For ease of 
interpretation, the mean reference measurement values of 
each sample are presented above their respective colour-
map. The prediction map displayed spatial distribution pat-
terns at the individual pixel level. The spatial distribution of 
predicted component concentrations was visualized through 
colour intensity variations in the prediction maps, where 
each colour intensity of each pixel represented its predicted 
component concentration. Notably, the SWIR HSI-based 
map clearly outperforms the Vis–NIR HSI map in terms of 
superior level of clarity and distinctiveness of component 
distribution. This feature of SWIR can be attributed to the 
fact, that wavelength of SWIR is longer than Vis–NIR, hence 
it has a higher imaging resolution, reduced scattering, lower 
light absorption and better penetration capabilities through 
biological materials, all these features resulting in informa-
tion which can be more easily resolved [37, 38]. Neverthe-
less, researchers also use prediction maps to observe the 
distribution of TA, TSS and firmness in mango samples [39]. 
Also, the prediction maps show the spatial distribution of 
ground papaya seeds as an adulterant within black pepper 
samples [40].

Fourier transform infrared spectroscopy (FTIR)

FTIR spectrum (Fig. 8) of oil from control and oil from OH 
treated mustard seeds samples (OH1 and OH2) was exam-
ined to explore changes in peak wavelengths and absorbance 
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values, aiming to understand the potential molecular altera-
tions that might have been induced by ohmic heating treat-
ment. The spectra of control and treated mustard oil sam-
ples were collected in the mid-infrared region within the 
4000–600  cm−1 range. The control samples exhibited peaks 
at wavelengths of 2923, 2856, 2352, 1744, 1456, 1365, 
1159 and 716  cm−1. The treated samples exhibited similar 
peaks, except at 2362  cm−1, where no peak was observed in 
the treated samples. However, the remaining peaks showed 

decreased absorbance values compared to the control 
samples, depending on the specific treatment conditions. 
This decrease in absorbance indicates structural changes 
and potential modifications in the molecular composition 
associated with the formation of FFA and diglycerides as 
a result of ohmic heating treatment [41]. One prominent 
peak at 2923  cm−1 corresponds to the asymmetric stretch-
ing vibrations of the  CH2 groups present in aliphatic hydro-
carbon chains. Similarly, the peak observed at 2856  cm−1 is 

Table 4  Prediction of fatty acid 
composition and oil content in 
OH treated mustard seeds from 
iPLS model using Vis–NIR–
SWIR HSI spectra

LV Latent variables, NW  number of wavelengths, R2 coefficient of determination, RMSEC root mean 
square error for calibration,  RMSECV cross validation, RMSET testing

Spectral pre-processing NW LV Calibration Cross validation Testing

R
2

C
RMSEC R

2

CV
RMSECV R

2

T
RMSET

Vis–NIR
Oil content SNV + SGS 22 3 0.537 2.138 0.535 2.142 0.533 2.145
Fatty acids
C22:1 SNV 50 4 0.567 0.953 0.566 0.954 0.566 0.954
C20:1 SNV + SGS 54 4 0.587 0.124 0.584 0.124 0.584 0.124
C18:3 SNV 50 4 0.568 0.461 0.566 0.462 0.565 0.462
C18:2 SNV + SGS 52 4 0.539 0.078 0.536 0.078 0.537 0.078
C18:1 SNV + SGS 54 4 0.587 0.384 0.584 0.385 0.582 0.386
Unsaturated SNV + SGS 54 4 0.583 0.183 0.580 0.184 0.583 0.183
Saturated SNV + SGS 54 4 0.583 0.183 0.580 0.184 0.583 0.183
MUFA SNV + SGS 48 4 0.520 0.239 0.517 0.240 0.514 0.242
PUFA SNV 44 4 0.561 0.411 0.559 0.411 0.559 0.411
SWIR
Oil content SNV 6 1 0.995 1.010 0.995 1.010 0.994 1.03
Fatty acids
C22:1 SNV 6 1 0.994 0.471 0.994 0.471 0.994 0.471
C20:1 SNV 6 1 0.996 0.062 0.996 0.062 0.995 0.063
C18:3 SNV 6 1 0.995 0.227 0.994 0.227 0.994 0.227
C18:2 SNV + SGS 6 1 0.933 0.046 0.933 0.046 0.931 0.047
C18:1 SNV 6 1 0.996 0.192 0.996 0.192 0.996 0.192
Unsaturated SNV 6 1 0.989 0.094 0.989 0.094 0.988 0.095
Saturated SNV 6 1 0.989 0.094 0.989 0.094 0.988 0.095
MUFA SNV 6 1 0.924 0.142 0.924 0.142 0.924 0.142
PUFA SNV 6 1 0.986 0.208 0.986 0.208 0.984 0.21

Fig. 6  Spatial distribution of predicted fatty acid/oil content in OH-treated mustard seeds (PLSR-based Vis–NIR HSI map)
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associated with the symmetric stretching vibrations of the 
 CH2 groups in aliphatic hydrocarbon chains. The decrease in 
absorbance at this wavelength indicates a potential reduction 
in unsaturated or polyunsaturated fatty acids in the treated 
mustard oil. It can be inferred that the treatment may have 
influenced the degree of saturation or altered the fatty acid 
composition of the oil [42, 43]. The peak observed at 1744 
 cm−1 corresponds to the stretching vibrations of the carbonyl 
group (C = O) in esters, aldehydes and carboxylic acids. The 
decrease in absorbance at this wavelength suggests a poten-
tial reduction in the concentration of these functional groups 
in the treated mustard oil. Moreover, several other peaks 
were observed at 1456, 1365, 1159 and 716  cm−1 associated 
with functional groups such as  CH2 bending vibrations,  CH3 
bending vibrations, C–O stretching vibrations and aromatic 
C–H bending vibrations [41]. The decrease in absorbance at 
these wavelengths suggests possible alterations in the com-
position of these functional groups induced by the treatment. 

These findings suggest that the potential modifications in the 
molecular composition and structure have been caused by 
the OH treatment.

Conclusion

Exploring the possibilities of extracting more edible oil from 
mustard seeds was the key motivation for this research work. 
Ohmic heating (OH) is one treatment which can cause subtle 
rupture to the seed structure, break the oil–bearing cellular 
matrix and thus enhance the availability of extracted oil from 
mustard seeds during mechanical oil expression. Designed 
experiments were conducted with electric field strength and 
holding time as variables for treating mustard seeds in an 
ohmic heating setup. Further, this research investigated the 
potential of Vis–NIR–SWIR hyperspectral imaging (HSI) 
combined with chemometrics for non-destructive assessment 

Fig. 7  Spatial distribution of predicted fatty acid/oil content in OH-treated mustard seeds (PLSR-based SWIR HSI map)
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of oil content and fatty acid composition in OH treated mus-
tard seeds. PLS-DA models achieved high accuracy in differ-
entiating OH-treated seeds from control samples, with 93.0 
and 95.8% accuracy for Vis–NIR and SWIR, respectively. 
Additionally, PLSR models built using SWIR data exhibited 
excellent predictive capabilities for oil content and most of 
the fatty acids achieved R2 values exceeding 0.92. The pre-
dicted values aligned well with the results obtained from the 
reference analytical methods. The results revealed superior 
performance of SWIR–HSI compared to Vis–NIR data in 
both classification and prediction models. The ability of the 
variable selection method (iPLS) to identify crucial wave-
lengths for accurate prediction with minimal performance 
loss further highlights the potential of Vis–NIR–SWIR HSI 
as a rapid, non-destructive tool for assessment of oil quality 
in terms of fatty acid composition and oil content in mustard 
seeds.
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