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Gas chromatography (GC) techniques coupled with GC 
data is the most often employed to determine aromatic pro-
files of fruits and beverages [5]. But solely chemical analy-
sis is not possible to assess apple juice quality, due to the 
complex synergism, antagonism and combination of aroma 
compounds. Sensory evaluation techniques are of additional 
importance by refining the products’ sensory properties [6]. 
However, these methods are difficult for common produc-
ers and consumers due to technique equipment and trained 
expert panelist requirements. Therefore, it is necessary to 
develop a reliable and simple method to certify the apple 
juice aroma, which is highlighting and in an attempt to ulti-
mately appeal to producers and consumers.

The electronic nose (EN), an innovative analytical tech-
nique, recognizes samples via olfaction, offering a rapid, 
sensitive, non-invasive and easy-to-handle system to assess 
food quality [7]. Just like the nose of the human being, EN 
identifies the whole volatile information without individual 
ones. EN consists of a sampling system, an array of chemical 
sensors with different selectivity, an instrumentation system 
collecting electrochemical signals, and a pattern recognition 
system [8]. It is widely used in headspace analysis of liquid 

Introduction

Fresh apple juice is one of the most frequently consumed 
fresh juices all over the world, due to natural viridian, pleas-
ant taste, good smell, established nutritional and economical 
value [1]. Fresh apple juice is usually processed directly to 
consumers or developed apple juice products. Aroma is one 
of the most important factors to evaluate character and qual-
ity of apple juices and final apple juice products [2]. There 
are more than 300 volatiles produced by apples [3]. Some 
compositions have been proved to be “character impact” 
compounds. In particular, some components in very low 
concentrations contribute typical characteristics to apple 
aroma [4].
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Abstract
A common theme of food authentication studies is the requirement to which the raw apple juice samples can be com-
pared to establish its authenticity. In order to discriminate eight varieties of apple juices using electronic nose (EN), we 
tried to extract the most relevant information from EN response signals. Experiment parameters were optimized to ensure 
the response curve fully characterizing sample information. The optimal conditions were 10 mL of volume and 90 min 
equilibration. Sensor optimization was conducted to eliminate redundant information. Sensors W1C, W5C, W3S, W2S, 
W5S and W1W were chosen for pattern recognition. This process improved the PCA-based pattern performance. Best 
discrimination performance was obtained utilizing response signals of stationary phase according to multivariate analy-
sis. Linear discriminant analysis (LDA) and Support Vector Machine (SVM) were carried out to develop discrimination 
models. Both LDA and SVM achieved satisfactory variety-based classification performance, with both 100% accuracy 
classification rates in terms of recognition ability and prediction ability. The perfect performance indicated that EN can be 
successfully applied in apple juices discrimination. And the results obtained will play a positive role in successful com-
mercialization application of EN to apple juice industry.
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or solid food samples [9]. EN has been widely applied in 
apple juice sector, including quality assessment, control and 
assurance [10, 11], apple cultivars discrimination [12], dif-
ferentiation of apple flavors and essences [13], prediction of 
Penicillium expansum spoilage and patulin concentration in 
apples and juice production [14], rapid screening of Alicy-
clobacillus acidoterrestris spoilage in fruit juices [15].

Although EN has such a wide range of applications, it 
still poses some problems, such as sensor drift, unsatisfac-
tory repeatability and reproducibility due to sensitivity to 
operational conditions, or poor gas sensitivity and selec-
tivity. The way to overcome these difficulties is to extract 
the most suitable information from the sensor array [16]. 
Generally, the measurement process of sensor array system 
consists of sensing, feature extraction, feature selection and 
pattern classification [17].

Headspace sampling is the critical point during the 
sensing phase. Sufficient volatiles generation can provide 
comprehensive information of samples. Experimental 
parameters influencing this process, such as water vapor, 
temperature, concentration of sample gas and equilibration 
time, have been identified. In the feature extraction phase, 
extracting the most relevant features from the output of sen-
sor array maximizes available information for the follow-up 
analysis [18]. While applying EN to certain applications, not 
all the sensors are equally important. Each sensor responds 
to exposed substances in a different way. Broad spectrum 
response characteristic to compounds and cross-reactivity 
make sensors contain a number of irrelevant redundant fea-
tures. Therefore, sensor array optimization is necessary, in 
order to eliminate noisy, irrelevant redundant information 
and improve identification performance [19]. Some sensors 
can be sequentially selected by weighting their discriminant 
ability to samples. The sensor optimization simplifies the 
sensor array. The classification accuracy rate is the most 
important standard to evaluate the performance of sensor 
set. Available feature selection can improve the output of 

the classifier and thus enhance the success recognition and 
prediction rate in classification pattern.

The aim of this work was to quantify the influence of var-
ious experimental parameters on EN measurements, extract 
the most suitable information from response curve, optimize 
sensor array and build satisfactory classification patterns.

Materials and methods

Samples preparation

Apple fruits including eight different varieties (Fuji, Golden 
Delicious, Qinguan Delicious, Pink Lady, Jonan Golden, 
Ralls Genet, Starkrimson and Gala) were collected in the late 
September in Baishui, Shaanxi, China. Carefully washed 
with tap water, fruits (3 kg apples per varieties) were freshly 
squeezed with a centrifugal juicer (Midea, JP351, China). 
Apple juices were obtained. The samples were selected in 
random sequences for each measurement to avoid chained 
analysis. All juice samples were immediately measured by 
EN to minimize the quality change.

Electronic nose data acquisition

Analyses were conducted with a portable electronic nose 
device PEN 3 (Airsense Analytics GmbH, Schwerin, Ger-
many). The device consists of a sampling apparatus, a sen-
sor chamber and pattern recognition software for analysis 
and data recording. The PEN 3 has an array of 10 differ-
ent metal oxide semiconductor type chemical sensors posi-
tioned into small chambers (V = 1.8 mL). Table 1 lists all 
used sensors, their selectivity towards volatile compound 
and detection limitations.

Apple juices were placed into headspace vials with a 
volume of 40 mL. The headspace vials were then closed 
and the headspace inside it was equilibrated. During the 

Table 1  Sensors used and their main applications in PEN3
Number in Array Sensor-name General description Reference, mL/

m3(ppm)
1 W1C Aromatic compounds Toluene, 10
2 W5S Very sensitive, broad range sensitivity, react on nitrogen oxides, very sensitive 

with negative signal
NO2, 1

3 W3C Ammonia, used as sensor for aromatic compounds Benzene, 10
4 W6S Mainly hydrogen, selectively (breath gases) H2, 0.1
5 W5C Alkenes, aromatic compounds, less polar compounds Propane, 1
6 W1S Sensitive to methane broad range CH3, 100
7 W1W Reacts on sulfur compounds, sensitive to many terpenes and sulfur organic 

compounds, which are important for smell, limonene, pyridine
H2S, 1

8 W2S Detects alcohols, partially aromatic compounds, broad range CO, 100
9 W2W Aromatics compounds, sulfur organic compounds H2S, 1
10 W3S Reacts on high concentrations, sometime very selective (methane) CH3, 100
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measurement process, one luer-lock needle connected to a 
Teflon-tubing was used to penetrate the septum of the vial 
and to absorb headspace gas inside it. The sample gas was 
sucked into sensor chambers through the inlet at a rate of 
400 mL/min. Zero gas was pumped from its port at the 
backside of the instrument into the sample gas path. The 
measurement phase lasted 55s, time enough for sensors to 
reach stable values. The response values were recorded by 
a computer every second. When a measurement was com-
pleted, a cleaning phase lasting 300s was initiated to clean 
the circuit and return sensors to their baseline.

Preliminary experiments showed that too much water 
vapor damaged the sensors. We enriched juice samples 
under the condition of normal temperature to reduce the 
bad effects of water vapor. Meanwhile, active carbon was 
placed in the gas inlet of the Teflon-tubing to extract water 
contents from sample gas. In addition, the mixture of sub-
stances in the headspace is dependent on temperature. Huge 
differences in temperature will change the composition of 
compounds within the gas sample and thus lead to a dif-
ferent pattern. By keeping the temperature constant, the 
variations in sample preparation are minimized. EN were 
held at temperature of 20 ± 1 oC and 50–60% RH during all 
experiments.

To explore the influence of experimental parameters 
on the responses of sensor array, different concentrations 
of volatile compounds and equilibration times were ana-
lyzed. All juice samples were separately sealed in vials of 
40 ml. The volumes of apple juices was 1mL, 2.5 mL, 5 mL, 
7.5 mL, 10 mL, 12.5 mL and 15 mL, aims to enhance gas 
concentration. The equilibration times was 5 min, 30 min, 
60 min, 90 min, 120 min, 180 min, 240 min, 300 min. The 
one parameter varies simultaneously, while the other one is 
kept constant. The relevant variation interval must be deter-
mined for each factor, provided that the analyzed outputs 
vary monotonously within this range.

Data analysis

A one-way analysis of variance(ANOVA)compared with 
multiple comparisons (Tukey) was conducted to evalu-
ate whether significant influences existed on EN response 
signals of different variances. The impact of controllable 
factors on the results was assessed by analyzing the contri-
bution of individual factors’ variation to the total variation 
using ANOVA. By applying the arcsine square root transfor-
mation, categorical outcomes can be effectively analyzed.

The Principal Component Analysis (PCA) is a crucial 
method for extracting features in pattern recognition. It 
enables the extraction of essential information from datas-
ets by reducing the original data dimensionality. This trans-
formation aims to maximize variance differences while 

minimizing dataset correlations, facilitating the visualiza-
tion of similar samples and outliers, and displaying the 
exploratory overview of primary data distribution.

The supervised method of linear discriminant analysis 
(LDA) was employed to establish classification models, 
which has been widely and successfully utilized in the field 
of food quality control. LDA calculation utilizes class infor-
mation to maximize the between-class variance ratio and 
minimize the within-class variance ratio. The leave-one-
out method was applied as a cross-validation procedure to 
assess the performance of the LDA discriminant model. In 
this approach, the sample set was randomly divided into two 
datasets, with 2/3 of the samples allocated to the training 
set and the remaining 1/3 assigned to the testing set. The 
analysis focused on evaluating the accuracy rate of sample 
classification.

The Support Vector Machine (SVM), recognized as a 
highly effective classification method, is applicable to both 
linear and nonlinear data sets. SVM employs the theory 
of structural risk minimization, which results in the opti-
mization of the error function and exceptional generaliza-
tion performance. Not only does SVM accurately separate 
distinct sample groups, but it also exhibits the widest class 
intervals. In the approach of SVM, 30 juice samples of each 
variety were randomly selected for the training set and 9 
samples for the testing set. There are 30 × 8=240 samples 
in the training set and 9 × 8=72 samples in the testing set. 
SVM pattern classifier achieves high classification accuracy 
by providing an interpretation of the learned model.

The EN dataset was recorded by its own pattern recog-
nition software (WinMusterv.1.6.2) for multivariate data 
analysis. Supervised method Linear Discriminant Analysis 
(LDA) and Support Vector Machine (SVM) were performed 
to construct classification models. ANOVA, PCA and LDA 
were carried out by SPSS 20.0 software (SPSS Inc., Chi-
cago, IL, USA). SVM was conducted by MATLAB R2013a 
software (Mathworks, USA).

Results and discussion

Electronic nose response to apple juice

Typical response of 10 sensors for apple juice was shown 
in Fig. 1. G/G0 represents the sensors’ ratio of conductance, 
where G and G0 express conductivities of sample gas and 
zero gas, respectively. Each curve represents a different sen-
sor transient. The conductivity changes with the presence of 
volatile compounds, so sensor are able to detect changes of 
different concentrations of samples. As shown in Fig. 1, G/
G0 increased sharply in the initial period, reached peak at 
7–11 s, fell slowly and then stabilized after 40s.
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significant influences existed on the response signals of EN 
analysis of different variances. The effects of the juice vol-
umes (V), equilibration time (T), sensor array (R) and col-
lection time (CT) were evaluated. The results were shown 
in Table 2.

The equilibration time, sensor array and the collection 
time had significant effect on responses. The F-values indi-
cated the relative importance of the variances [20]. How-
ever, the juice volume had no significant influence on sensor 
signals. This result showed that the range of juice volumes 
was enough to reach sample saturation condition. Following 
experiments were performed at volume of 10 mL.

Optimization of equilibration time

The influence of equilibration times on the response of EN 
was analyzed by considering the repeatability of the sen-
sors. The response values at 48s (steady state) were selected 
as the datasets.

Figure 2 (a) showed the mean response values of EN at 
steady state. As shown, sensor responses at 30 min, 90 min, 

Optimization of electronic nose measurements and 
signal processing

In order to find the optimal operative conditions, a set of 
experiments were performed modifying the following 
parameters: concentration of volatile compounds and equili-
bration time. ANOVA was performed to evaluate whether 

Table 2  ANOVA of four variances
Source of variance Type III Sum of Squares df Mean Square F Sig.

p ≦ 0.05
Corrected Model 8079.846a 188 42.978 229.103 .000
Intercept 1449.585 1 1449.585 7727.338 .000
V 0.402 6 0.067 0.357 0.905
T 38.619 7 5.517 29.409 .000
R 1182.873 9 131.430 700.619 .000
CT 2037.649 49 41.585 221.677 .000
Error 35.830 191 0.188
Total 16075.944 380
Corrected Total 8115.676 379

Fig. 2  (a): Response values of EN at steady state; (b): The relative standard deviation of different sensors

 

Fig. 1  Typical response curve of ten sensors for apple juice
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Multiple comparisons (Tukey) were carried out to explore 
whether significant differences existed among ten sensors. 
The results were shown in Table 3.

The ten sensors are with different selectivity, which are 
not equally important for certain applications. Due to the 
natural complexity of volatile compounds of apple juices as 
well as the broad spectrum response characteristic of sen-
sors, the redundant or irrelevant information was generated 
inevitably which will greatly affect the discriminant perfor-
mance. In order to improve the discriminant ability of the 
sensor array, sensors which are no remarkable in the array 
may be switched-off or ignored in the analysis. An optimized 
sensor array with the maximum diversity can be obtained by 
comparing the correlation and similarity between sensors. 
Integrated the sensitivities of sensors shown in Table 1 with 
the result of multiple comparisons, sensors W1C, W5C, 
W3S, W2S, W5S and W1W were chosen to carry out pat-
tern recognition.

To further validate the optimization results, PCA was 
employed before and after sensor optimization. These 
results were compared according to original sensor array 
and optimized sensor array, separately. PCA plot based on 
the data of original sensor array was shown in Fig. 3 (a). 
The first two principal components PC1 and PC2 explain 
64.43% and 21.74% of the total variance with value of 
86.17%. Two clusters were defined according to the origi-
nal data matrix. The Qinguan Delicious was distinguished 
completely, but other varieties overlap with each other. Fig-
ure 3 (b) showed the result of PCA which was performed 
on the data of the optimized sensor array. The PC1 explains 
64.29% of the total variance with value of 91.18%. The PC2 
explains 26.89% of the total variance. The varieties of Qin-
guan Delicious, Jonan Golden, Golden Delicious and Fuji 

60 min and 120 min present relatively higher values than 
other equilibration times. The response changes as the tar-
geted analytic concentration changes. Meanwhile, the sen-
sitivity of a sensor indicates how much the sensor response 
[17]. It can be imply that the higher response values the 
more information of volatile compounds the sensors sens-
ing. Figure  2 (b) showed the relative standard deviation 
(RSD) values of responses from 10 sensors. The smaller 
the RSD value, the higher the repeatability of the sensor. As 
shown, the RSD of response values at 90 min was the small-
est, 240 min, 180 min and 120 min followed. Based on the 
above results, 90 min was selected as the optimal equilibra-
tion time. Following experiments were performed at volume 
of 10 ml and equilibrated 90 min.

Optimization of sensor array

As shown in Table 2, the sensor array had significantly influ-
ence on response values of ten sensors according to variety. 

Table 3  Multiple comparisons of ten sensors
Sensors Mean 5% level of significance 1% level of significance
W1C 0.559 a A
W3C 0.644 a A
W5C 0.839 ab AB
W6S 1.090 ab AB
W3S 1.331 b B
W2S 2.836 c C
W2W 3.801 d D
W1S 3.919 d D
W5S 4.217 d D
W1W 8.499 e E
Sensors in same letters are not remarkable; sensors in different letters 
are remarkable

Fig. 3  (a): PCA for response of original sensor array; (b): PCA for response of optimized sensor array set (W1C, W5C, W3S, W2S, W5S and 
W1W)
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increased over time and reached highest at 50 s. To explore 
whether signals at 50 s perform best on the sample discrim-
ination, PCA was carried out based on data matrix of 1  s, 
2 s, 3 s, 19 s, 20 s… and 50s (results not shown). The PCA 
results demonstrated that the signals at 50 s present relatively 
strong discriminant capacity. But there was no improvement 
in comparison with the result shown in Fig. 3 (b), which was 
obtained by utilizing the EN signals at 48 s. Both F-values 
and PCA results indicated that the discrimination perfor-
mance was better utilizing the stationary response signals.

To take all advantages of the response curve and extract 
more feature information, the response curve was divided 
into several stages according to the trend showed in Fig. 1. 
The rising phase, the peak phase, the descent phase and the 
stationary phase were at 0–7 s, 7–11 s, 12–35 s and 36–50 s, 
respectively. The PCA results obtained based on datasets of 
different phases were displayed in Fig. 4.

It can be obviously observed that the discriminant per-
formances of different phases were significantly differ-
ent. No cluster of samples was observed on the basis of 
the rising phase dataset. For the peak phase, three clusters 
were obtained. Both former two systems had not enough 
resolution to separate sample clearly. Five varieties were 
clearly discriminated according to the descent phase data-
set. But there were still three varieties overlap with each 

were distinguished well. Although there were still four vari-
eties overlap with each other, the discriminant performance 
was much better than the result obtained by the original data 
matrix. This indicated that the sensor optimization indeed 
improved the extraction of feature information. Therefore, 
sensor array optimization is necessary to improve pattern 
recognition performance and eliminate irrelevant informa-
tion. Meanwhile, the simpler the sensor array, the less time 
consuming in the application of large number of samples. 
However, the recognition pattern is not competent for the 
discrimination of all eight varieties in this study. More accu-
rate feature information needed to be extracted.

Feature extraction from the response curve

The dynamic responses of the whole curve were selected 
as test signals. The response signals varied with the expo-
sure of analyzed gas compositions. The sensor transient of 
every 1 s was utilized to explore whether significant influ-
ence existed among collection times on discrimination. The 
corresponding result was displayed in Table 4.

As shown, except 4  s, 5  s… and 18  s, other collection 
times all have significant influence on EN response signals 
for the eight varieties. The sizes of the F values indicate the 
relative importance of the factors [20]. The F values were 

Table 4  Result of multivariate analysis for the influence of collection times
CT (s) Wilks’ lambda F Sig. CT (s) Wilks’ lambda F Sig.
1 0.933 2.386 * 0.022 26 0.925 2.705 * * 0.010
2 0.933 2.367 * 0.024 27 0.922 2.788 * * 0.008
3 0.925 2.694 * 0.011 28 0.920 2.884 * * 0.007
4 0.944 1.950 0.063 29 0.917 2.983 * * 0.005
5 0.958 1.457 0.184 30 0.915 3.094 * * 0.004
6 0.964 1.25 0.276 31 0.911 3.223 * * 0.003
7 0.966 1.181 0.314 32 0.908 3.362 * * 0.002
8 0.966 1.18 0.315 33 0.904 3.521 * * 0.001
9 0.965 1.21 0.298 34 0.900 3.666 * * 0.001
10 0.963 1.264 0.269 35 0.897 3.787 * * 0.001
11 0.961 1.338 0.233 36 0.895 3.908 * * 0.000
12 0.959 1.412 0.201 37 0.892 4.029 * * 0.000
13 0.957 1.491 0.171 38 0.889 4.148 * * 0.000
14 0.955 1.576 0.143 39 0.886 4.265 * * 0.000
15 0.952 1.668 0.118 40 0.883 4.382 * * 0.000
16 0.950 1.762 0.096 41 0.881 4.492 * * 0.000
17 0.947 1.86 0.077 42 0.878 4.593 * * 0.000
18 0.944 1.967 0.060 43 0.876 4.686 * * 0.000
19 0.941 2.073 * 0.047 44 0.874 4.771 * * 0.000
20 0.938 2.173 * 0.037 45 0.872 4.850 * * 0.000
21 0.936 2.279 * 0.029 46 0.871 4.913 * * 0.000
22 0.933 2.379 * 0.023 47 0.869 4.980 * * 0.000
23 0.931 2.466 * 0.019 48 0.868 5.022 * * 0.000
24 0.929 2.551 * 0.015 49 0.867 5.065 * * 0.000
25 0.926 2.630 * 0.012 50 0.865 5.192 * * 0.000
*Significant at level of P ≤ 0.05; **Significant at level of P ≤ 0.01
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improved the performance of PCA recognize pattern, and all 
samples were discriminated. The discriminant performance 
was widely used for validation of whether the most relevant 
features have been extracted. However, the discriminant 
ability was not only affected by feature information but also 
the recognition pattern [17]. Not all recognition patterns 
have equally discriminant ability in certain applications. 
Thus, in order to improve the discriminant ability of the EN 
system, we built and compared different patterns.

Classification of LDA

LDA was carried out based on the original dataset. The cor-
responding results were shown in Table 5. 100% recognition 
ability and 100% prediction ability were obtained. The pat-
tern showed a very satisfactory discriminant performance.

other. Clear separation of the samples into eight clusters was 
found according to the stationary phase dataset. All sam-
ples belonging to eight varieties were distinguished com-
pletely. Each cluster had strong convergence. These results 
indicated that features extracted from the stationary phase 
present strongest discriminant ability. Compared with the 
result shown in Fig. 3 (b), the discriminant performance was 
better. It can imply that better recognition can be obtained 
using phase feature information than just only one point.

Pattern recognition

The exploratory overview by PCA has already presented in 
the previous section. PCA pattern had not enough resolution 
to distinguish all samples based on original dataset. Appro-
priate selection of sensors and suitable feature extraction 

Fig. 4  PCA plots of different phases on the response curve (a): The rising phase; (b): The peak phase; (c): The descent phase; (d): The stationary 
phase

 

1 3



H. Wu et al.

The accuracy classification rates of training set and testing 
set were both 100%. The performance of SVM on testing set 
was shown in Fig. 6. All these results indicated that the SVM 
model presented satisfactory classification performance on 
samples according to variety. The SVM based on selected sen-
sor array was also carried out. There was no difference in com-
parison with the original dataset. But the simpler the model, the 
less time consume. Applying to large size samples, the sensor 

LDA extracted information from all sensors, and could 
maximize the variance between groups and minimize the 
variance within groups [21]. Therefore, LDA could improve 
the resolution of recognition pattern and present stronger 
discriminant ability than utilizing PCA. Meanwhile, the 
LDA progress also demonstrated the conclusion that better 
discriminant ability can be obtained based on more informa-
tion from response curve rather than single point.

The eigenvalues, explained variances, canonical correla-
tions and coefficients of the sensor variables for the first four 
fisher linear discriminant functions were shown in Table 6.

The coefficients revealed which sensors had greater influ-
ence on discrimination. In particular, remarkable importance 
of the sensors W1C, W5C and W3C was highlighted. As 
shown in Table 1, all the three sensors are sensitive to aro-
matic compounds. This implied that aromatic compounds as 
the most important volatile compounds in apple juice may 
play a key role for juices variety-based discrimination. Fur-
ther studies are needed to verify this inference.

SVM for classification

The radial basis function (RBF) was used as the kernel func-
tion, and ten-fold cross-validation was applied to get the opti-
mal classification performance. The classification accuracy 
of SVM is dependent on the magnitude of the parameters C 
and g [22]. C determines the trade-off between the training 
error minimization and the model complexity minimization. 
g was the bandwidth parameter [23]. To improve the classifi-
cation ability, the key parameters C and g were optimized by 
a grid search method. The optimizing process was shown in 
Fig. 5. The optimal combination of C and g was found at the 
value of C = 5.6569 and g = 2.8284, respectively.

Table 5  LDA recognition and prediction abilities for juice samples
Variety Fuji Golden Delicious Qin Guan Delicious Jonah Golden Pink Lady Starkrimson Gala Ralls Genet
Recognition 100% 100% 100% 100% 100% 100% 100% 100%
Leave-one-out CV prediction 100% 100% 100% 100% 100% 100% 100% 100%

Table 6  Coefficients of sensor variables in fisher linear discriminant 
functions for sample discrimination according to variety
LD Function 1 2 3 4
Eigenvalues 455.426 53.533 23.838 20.674
Explained variances (%) 81.1 9.5 4.2 3.7
Canonical correlations 0.999 0.991 0.980 0.977
W1C -2.104 -2.587 -4.165 9.782
W5S 1.126 -1.254 1.283 -1.270
W3C 1.359 5.351 6.575 -11.046
W5C 2.000 -2.158 -1.680 2.286
W1S -1.953 0.346 4.292 3.928
W1W 0.851 1.344 2.512 -0.030
W2S 1.657 -0.703 -3.052 -3.495
W2W -0.495 0.207 -4.079 1.254
W3S 0.272 0.258 -0.114 0.008

Fig. 6  Actual classification and predicted classification results of the 
testing set

 

Fig. 5  Grid search on optimal C and g for the SVM model
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selection will show the great advantage. It can be imply that 
feature selection can not only extract available information 
from the multi-sensor array, but also simplify models.

Conclusions

ANOVA was performed and the conclusion that equilibra-
tion times, sensor array and collection times had significant 
effect on signal responses was obtained. The equilibration time 
was optimized and the optimal experiment parameters were 
obtained as the volume of 10 ml and 90 min equilibration time. 
Sensors W1C, W5C, W3S, W2S, W5S and W1W were chosen 
as optimized sensor array to carry out PCA-based pattern rec-
ognition. Compared with original sensor array, sensor optimi-
zation indeed improved the recognition performance of PCA. 
The sensor transient of every 1 s and trend stages signals were 
utilized to explore the influence of collection times on discrimi-
nation. The strongest discriminant ability was presented by uti-
lizing the stationary phase signals. PCA-based pattern had not 
enough resolution to distinguish all samples. LDA was carried 
out and 100% recognition ability and 100% prediction abil-
ity were obtained. Remarkable important sensors W1C, W5C 
and W3C were highlighted in the LDA model. SVM model 
obtained both 100% accuracy classification rates of training set 
and testing set. Both LDA and SVM pattern recognitions pre-
sented satisfactory classification performance.
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