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This beverage is an excellent source of a wide range of 
beneficial components, including carbohydrates, vitamins, 
minerals, polyphenols, flavonoids among others [3–5]. In 
the last years, Argentina and Brazil have emerged as impor-
tant producers of this beverage, being Brazil also a good 
consumer of this fruit juice. Nevertheless, in the case of 

Introduction

The grape juice obtained from the edible part of the grape 
(Vitis ssp.) through a technological process, is a beverage 
that has currently gained more attention due to the tendency 
of people towards a more natural and healthy lifestyle [1–3]. 
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Abstract
The knowledge of a product’s origin is an important aspect for consumers who demand quality and authenticity. Grape 
juice is a beverage that has currently gained more attention due to the tendency of people towards a more natural and 
healthy lifestyle. The aim of this study was to discriminate the origin of grape juice samples. For this purpose, chemo-
metric techniques were applied to commercial samples of grape juice from Argentina and Brazil, and the feasibility of 
classification models of predicting the origin of samples based on elemental composition, was investigated. Inductively 
coupled plasma mass spectrometry (ICP-MS) was used to determine 10 elements (V, Cr, Mn, Fe, Ni, Cu, As, Rb, Y and 
Mo). Unsupervised methods, such as principal component analysis (PCA) and cluster analysis (CA) and the supervised 
technique, linear discriminant analysis (LDA) with bootstrapping and k-fold cross-validation were assessed. The best 
result was achieved for LDA with 4 fold cross validation with a prediction accuracy of 81%.
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Argentina; the grape juice production is principally destined 
to the exportation as concentrated grape juice [6].

Regarding consumer behavior, the demand for qual-
ity and authenticity in food and beverages has risen sig-
nificantly. Currently, the principal concerns are focused not 
only on safety products, furthermore on protection against 
adulteration with low-quality foodstuff and correct label-
ling with detailed composition, properties and origin of the 
product. As a result, a precise monitoring system has been 
developed to ensure the quality and authenticity of products, 
providing genuine protection for consumers and trustworthy 
producers [7–11].

Determining analytical parameters in samples is an 
excellent way to assess their provenance, presence of frauds 
and adulteration. Many studies have shown that the chemi-
cal compounds of grapes and derived-products, principally 
wines and juices, are influenced by climatic and agricul-
tural conditions related to cultivations of the fruit plants 
and growth, and by environmental factors such as soil com-
position, irrigation water composition, sunlight exposure, 
among others [3, 7, 12–14]. Then, the mineral composition 
reflects the geochemistry in which grapevines are grown and 
therefore the grape derived products are influenced by the 
composition of the soil [15]. Analyzing the concentrations 
of elements in grape juice samples and combining them 
with chemometric tools is an excellent way to identify the 
geographical origin of this beverage. Numerous techniques 
exist for elemental analysis, among these, inductively cou-
pled plasma optical emission spectrometry (ICP-OES) or 
mass spectrometry (ICP-MS) are the most used [16, 17].

In this context, statistical treatment is indispensable for 
extracting information from the data generated, and for 
identifying similarities and differences between samples. 
Moreover, the application of chemometric methods has 
proven to be a versatile and valuable tool for determining 
the authenticity of food and beverage [3, 8]. In chemometric, 
the pattern recognition methods are powerful for assessing 
the geographic origin of food products. These techniques 
involve an exploratory approach in the initial stage of an 
investigation using principal component analysis (PCA) or 
hierarchical cluster analysis (HCA), followed by a discrimi-
nation step. These tools are appreciated for ensuring truth-
in-labeling, as they help verify the origin of the production 
region and identify any potential adulteration [4, 18].

Understanding the origin of grape juice is crucial to 
ensure quality, achieve differentiation in the market, and 
instill consumer confidence in their product choices. Addi-
tionally, it can lead to enhanced market access and increased 
competitiveness on the global stage. Therefore, the aim of 
this study was to develop an approach to perform the ori-
gin classification of grape juice samples from two important 
producing countries of South America, based on elements 

chemical analysis combined principally with the implemen-
tation of simple pattern recognition techniques.

Materials and methods

Reagents

Ultrapure water (resistivity of 18 mΩ·cm) obtained from 
a water purifier equipment OSMOION-APEMA (Buenos 
Aires, Argentina) was used in all the experiments. Ultrapure 
concentrated nitric acid 65% (v/v) (Merck, Darmstadt, Ger-
many) was used to perform the mineralization of grape juice 
samples. For calibration and quality control steps, certified 
multi-element ICP standard solutions, rhodium (103Rh) and 
holmium (165Ho) mono-elemental internal standard solu-
tions from Chem-Lab, Ionex Reference Standard (Zedel-
gem, Belgium) were used. All the glassware was cleaned 
with 0.5 mol L− 1 HNO3 solution for 24 h and then rinsed 
with ultrapure.

Grape juice samples collection and treatment

In this study, a total of 26 commercial grape juices of differ-
ent red grape varieties were purchased from several markets 
of Argentina (16) and Brazil (10). The samples were stored 
at ambient temperature in the original packings and prior to 
analysis were thoroughly shaken.

For ICP-MS analysis, grape juices were mineralized by 
wet digestion in open-vessel systems as follows: an aliquot 
of 5 mL of each sample was put in contact with 2 mL of 
HNO3 (65% w/w) and left at room temperature for 30 min. 
After this step, a heat treatment was applied using a heat 
plate for 45 min at 100 °C. Subsequently, the resulting solu-
tions were left to cool and transferred to volumetric flasks 
and the volume was completed to 100 mL with ultrapure 
water [12].

ICP-MS analysis

The elemental analysis of grape juice samples digested was 
carried out on a Perkin-Elmer model NexIon 300X ICP-
MS, provided with a CETAC AXS-520 autosampler, nickel 
sampler and skimmer cones and a concentric nebulizer. The 
isotopes, in order of mass number, 51V, 52Cr, 55Mn, 57Fe, 
60Ni, 63Cu, 75As, 85Rb, 89Y and 98Mo were determined using 
operating conditions of RF power of 1250  W; nebulizer 
and plasma gas flow rate of 0.95 L min− 1 and 16 L min− 1 
respectively; dwell time of 50 ms; scanning conditions: 20 
sweeps per reading, 1 reading per replicate and 3 number 
of replicates; the data acquisition mode was time resolved 
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analysis. The detailed instrumental conditions are summa-
rized in Table 1.

The spectrometer was calibrated against external certi-
fied standard solutions with concentrations from 0.5 to 
100 µg L− 1. To correct non-spectral interferences, Rh and 
Ho (10 µg L− 1) were used as internal standards for all deter-
minations. The limit of detection (LOD) for the procedure 
was calculated with 3 s/m, where m corresponds to the cali-
bration curve slope and s corresponds to the 10 blank solu-
tions standard deviation in the regression of the calibration 
curve.

Chemometric analysis

The data matrix for the chemometric treatment contained 
26 rows and 11 columns. The matrix rows correspond to 
the number of juice samples and the columns to the con-
centrations of the ten elements analyzed and one column 
represents the grape juice geographical provenance as the 
dependent categorical variable. All samples belonging to 
the same country were assigned by the same code (AR for 
Argentina and BR for Brazil). In the data matrix, the values 
of the element concentrations that could not be detected by 
ICP-MS in the samples studied were replaced by the cor-
responding numerical value of the limit of detection (LOD). 
The dataset was autoscaled as a preprocessing method to 
avoid wide differences in data dimensionality and mislead-
ing results in the interpretation of the generated plots of the 
chemometrics techniques, providing equal importance to all 
variables measured.

In order to identify similarities and differences among 
grape juices produced in Argentina and Brazil, basic 
exploratory analysis of the samples was made by princi-
pal component analysis (PCA) and cluster analysis (CA) 
as unsupervised pattern recognition methods. Pattern rec-
ognition techniques are powerful tools for determining the 
geographical origin of food and beverages products based 
on the data provided by analytical instruments [18]. These 
techniques can be subdivided into supervised and unsuper-
vised methods. In unsupervised tools there is no previous 

knowledge of the grouping of the samples is required, and 
hence produces the grouping itself. These methods are often 
very advantageous at an initial stage of a study because it 
presents simple visual plots of the data structure [18, 19]. In 
contrast, in supervised methods there is prior knowledge of 
the grouping structure and representative samples of each 
group are available to establish relationships between given 
inputs and outputs to enable prediction of the output from 
new inputs.

PCA was performed to investigate the effect of country of 
origin on the parameters analyzed in grape juices by show-
ing the data structure and trends in the experimental data 
obtained. This technique reduces the dimensions of the orig-
inal data matrix by explaining a large part of the variance 
using synthetic factors, called principal components (PCs). 
Moreover, permits the visualization of the original arrange-
ment of grape juices in an n-dimensional space, principally 
2 or 3 dimensions, by identifying the directions in which 
maximum variability is retained and displaying the relation-
ship between variables and observations [17, 18, 20, 21].

The other typical unsupervised method also used to iden-
tify groups or clusters of juice samples was CA. Within 
this method, two clustering algorithms were assessed, hier-
archical cluster analysis (HCA) and k-means clustering. 
When employing HCA, the original data was separated 
into a few general groups, each of which is further divided 
into still smaller groups until finally the individual objects 
themselves remain. The results are presented in the form 
of dendrograms to facilitate the visualization of sample 
relationships. For HCA, the Euclidean distance was used 
as a dissimilarity measure and Ward’s method was used to 
suggest the clustering of grape juices. Ward’s method min-
imizes the square-error increase and minimizes the intra-
cluster variance while maximizing the intercluster variance 
[9, 22]. K-means is a well-known and simple used method 
for partitioning a dataset of n observations into k clusters in 
which each observation belongs to the cluster with the near-
est mean. Each cluster is represented by its center (i.e., cen-
troid) which corresponds to the mean of points assigned to 
the cluster and iteratively the center is updated by the mean 
of its constituent. The algorithm converges when there is no 
further change in assignment of instance to clusters [23].

A supervised statistical technique was also evaluated 
since PCA and CA cannot be properly considered as clas-
sification methods. Linear discriminant analysis (LDA) was 
used to further investigate the possible classification of the 
grape juices based on its country of origin and propose a 
predictive model. In LDA the knowledge of the grouping 
structure allows to develop rules which predict the group 
that a new object belongs to, by determining the so-called 
discriminant functions [18].

Table 1  Instrument setting for ICP-MS analysis
Instrument PerkinElmer NexIon 300X ICP-MS 

con CETAC ASX-520 Autosampler
Solution delivery 0.85 mL min− 1

Nebulizer MEINHARD® Concentric Nebulizer
RF power 1250 W
Argon flows Nebulizer, 0.95; Plasma, 16; auxil-

iary, 1.2 (all in L min− 1)
Dwell time 50 ms
Data acquisition mode Time resolved analysis
Number of replicates 3
Isotopes monitored 51V, 52Cr, 55Mn, 57Fe, 60Ni, 63Cu, 

75As, 85Rb, 89Y y 98Mo
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levels of these elements [1, 26–31]. These mineral elements 
in natural levels concentration, participate in important bio-
logical functions for the human organism. In the case of 
Rb, concentrations were in accordance with previous works 
reported in the literature [4, 25, 27].

The next elements quantified in this study at minor lev-
els of concentration were Cr, Ni, As, V and Mo with mean 
concentrations that were in accordance with previous works 
carried out in the literature [16, 25, 31]. Among them, Cr 
is important because in its trivalent state it is required for 
humans and plays an important role in glucose, protein and 
fat metabolism. On the other hand, hexavalent chromium 
is a human health hazard associated with chronic toxicity. 
Our methodology is not able to differentiate the oxidation 
state in which this element is found in grape juice, the lev-
els determined in all samples were under the Recommended 
Dietary Allowances (RDAs) of chromium set by the U.S. 
Department of Health and Human Services [32]. Regarding 
to As, it is an element that is known to be toxic, however 
the values obtained in our work were lower than the maxi-
mum residual level established in juices and fruit nectars by 
the Argentine food code and the Brazilian legislation [31, 
33]. Finally, Y was found in low concentration or were not 
detected in the grape juices samples.

In order to make visible the differences in the concen-
trations of the elements measured in juice samples from 
the two countries under study, Fig. 1 is presented. In this 
figure, box-plots of the range and distribution of the ele-
ments concentrations in grape juice samples from Argen-
tina and Brazil can be compared. It can be observed clear 
differences in the concentration of Cr, Fe and Rb between 
the two countries, indicating that they could be variables of 
interest for the geographic classification problem. This was 
confirmed with the results obtained by Kruskal-Wallis tests 
that revealed that As, Cr, Fe, Rb and Y elements were sta-
tistically significant (p < 0,05) between samples according 
their geographical origin.

All statistical chemometrics procedures were computed 
using the statistical R software version 3.6.0 [24].

Results and discussion

Mineral content of grape juices

The elemental concentrations of the grape juice samples 
analyzed in this study are summarized in Table 2. It shows 
the mean and standard deviation values expressed in µg L− 1 
of each element determined in juice samples as a function 
of their country of origin, Argentina and Brazil. In addi-
tion, the non-parametric Kruskal-Wallis tests were carried 
out to highlight significant differences in the trace element 
contents between the juices from the two countries and the 
p-values generated is presented (Table 2).

From the analysis of the results presented in Table 2, it 
is clear that Fe was the most abundant element found in 
grape juice samples. The highest mean level of this element 
was found in Argentina (2409 µg L− 1) with more than the 
double concentration found in Brazil (1037 µg L− 1). Rb was 
the highest element found in grape juices from Brazil; this 
element presented a mean concentration of 1794  µg L− 1 
while in juices from Argentina this element was quantified 
with a mean concentration of 417  µg L− 1. The next ele-
ments that follow in order of concentrations were Mn and 
Cu. The highest mean level of Mn was found in grape juice 
samples from Brazil (1041 µg L− 1), whereas the mean con-
centration of this element in samples from Argentina was 
of 680 µg L− 1. With respect to Cu element, it was observed 
that in samples from Argentina the mean concentration 
was of 515  µg L− 1 and in Brazil juices, this element has 
a mean content of 297 µg L− 1. The concentration levels of 
Fe, Mn and Cu elements in grape juices were in agreement 
to those reported by other authors [16, 25]. With respect to 
other works on grape juices, differences were found in the 

Table 2  Mean and standard deviation of concentration of the analyzed elements in grape juice samples according to their country of origin (con-
centrations are expressed as µg L− 1). P-values generated by the non-parametric Kruskal-Wallis test are included
Element LODa Argentina Brazil p-valueb

Mean SD Mean SD
As 0.01 28.2 47.8 6.7 9.6 0.002*
Cr 0.2 41.3 7.6 21.5 16.5 0.002*
Cu 0.1 515 408 297 222 0.187
Fe 2.9 2409 1315 1037 684 0.004*
Mn 0.03 680 543 1041 678 0.140
Mo 0.01 12.3 16.9 4.8 4.9 0.241
Ni 0.05 20.6 9.7 31.3 17.9 0.155
Rb 0.06 417 338 1794 1372 < 0.001*
V 0.05 24.6 33.3 15.8 22.5 0.460
Y 0.003 0.11 0.10 0.01 0.03 0.003*
aLOD: limit of detection
bp-value < 0.05 denoted with an asterisk*, indicates that the differences between the means are statistically significant
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the subsequent concentrations of macroelements like Ca, K, 
and Mg, as well as microelements including Cu, Fe, Mn, 
and Zn [17, 31]. During the manufacture of juices, potential 
sources of element contamination, including Al, Ca, Cu, Fe, 
Mg, Na, Si, Sr, and Ni, may arise from tap water, techno-
logical processes, as well as the packaging and containers 
employed and storage [31, 34, 36].

In this work, the relationships between concentrations 
of the elements analyzed in grape juices were studied and 
Pearson’s correlation coefficient (r) was used for this pur-
pose. Figure 2 presents the graphic with the different grade 
of correlation within the variables, it can be observed a high 
positive correlation between Mo and As (r = 0.94), mean-
ing that increasing the concentration of one increases the 
another. High positive correlations was also exhibited by 
the pairs of elements Rb-Mn (r = 0.7), and the rest of the 
variables presented moderate and almost negligible corre-
lations. Relations between elements may be attributed to 
their similarity in properties of some elements, as well as 
their coexistence in nature [4, 16]. Moreover, high corre-
lation is also explained by common exposure sources, e.g. 
water supply, geographical origin, or soil and agricultural 
practices [37]. In this work the strong positive correlation 
observed between Mo-As as well as Rb-Mn lends support 
an assumption that these metals mat share a common origin 
[38].

The nutritional value of fruit juices, in relation to the 
presence of macro-, micro-, and trace elements, is indispens-
able for sustaining life. Nonetheless, an excessive presence 
of these elements can potentially serve as a source of toxic 
elements, with some of them exhibiting cumulative effects. 
Essential elements such as Na, K, Ca, and P are vital for 
human health, whereas metals like Pb, Cd, Hg, and As have 
been found to induce harmful effects, even at low levels. 
Other minerals like Fe, Cu, and Zn are essential in specific 
quantities; however, their excessive ingestion can result in 
adverse effects [25, 34, 35]. The predominant origin of ele-
ments within fruit juices is inherent to the fruits themselves, 
subject to a multitude of agricultural variables linked to the 
cultivation and maturation of fruit-bearing plants. These 
factors encompass the plant variety, maturity of harvested 
fruits, mineral composition of the soil, types of pesticides 
and fertilizers employed, as well as prevailing climatic con-
ditions [12, 16]. Another source of elements in fruit juices 
is associated with post-harvest procedures, encompassing 
fruit storage, handling, and various juice processing steps. 
Additionally, the choice of storage conditions and packag-
ing materials can influence the element concentrations in 
the final fruit juice product [12].

Soil mineralization can significantly influence macroele-
ments like K, Mg, and S, along with certain minor and trace 
elements such as B, Fe, Mn, Zn, and Rb. Furthermore, the 
use of fertilizers or synthetic pesticides can notably impact 

Fig. 1  Box plot of the ten elements analyzed according to grape juice provenance
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relative importance of each element or variable in the prin-
cipal components, Fig. 3c is presented. The results obtained 
by PCA showed that from the analysis of 10 elements, the 
grape juice samples could be differentiated in terms of their 
country of origin due to a visible differences in the concen-
trations of some elements in the samples of the two coun-
tries. As previously mentioned, elements such as Cr, Mo, 
Y, and Fe exhibit a high concentration in juices from AR, 
whereas BR juices demonstrate a significant presence of Rb, 
Mn, and Ni. These differences allow for a clear differentia-
tion between the two groups in the score plot.

Another unsupervised exploratory technique such as 
cluster analysis was also performed to characterize the role 
of the elements analyzed in classifying grape juices based 
on their country of origin. In this work hierarchical cluster 
analysis was used for grouping experimental samples into 
clusters, based on similarity within class and dissimilarity 
between different groups, according to the country of ori-
gin. Ward’s method with the classical approach for distance 
measure, Euclidean distance, was used. In Fig.  4a is pre-
sented the dendrogram of HCA applied to data to observe 
the grouping feature. By analyzing the dendrogram, it is 
possible to identify two large clusters. The first was com-
posed of nine samples, in which all samples corresponded 
to juices from Argentina. The second and largest cluster 
contained the remaining seven juices from Argentina and 
the total samples from Brazil. The results achieved were in 
agreement with those obtained with PCA, in which it can be 

Multivariate exploratory analysis

Basic chemometric characterization of the studied grape 
juice samples was performed by PCA. In this work, the con-
centration data of 10 elements was used to perform the PCA 
analysis. The total information content of the given num-
ber of principal components was expressed by cumulative 
percent value of the total variance. The results showed that 
the first two principal components explained 53.6% of total 
variance. The first principal component (PC1) represented 
30.7%, and the next principal component (PC2) 22.9%, 
the three first principal components represent 70.3% of 
the total variability of the data. Figure 3 presents the most 
important PCA plots, the score plot (Fig. 3a) and the load-
ing plot (Fig. 3b) obtained by using the first two principal 
components. In the scores plot it can be observed an accept-
able separation between the juice samples from Argentina 
and Brazil. Samples from AR showed principally negative 
scores on the considered PC1 and were differentiated from 
the BR samples, which have positive scores on PC1. Fig-
ure  3b plots the importance of each variable in the most 
informative principal components PC1 and PC2. The PC1 
was strongly associated with the values of Cr, Y, Mo, Fe 
and As, indicating higher concentrations in samples that 
showed negative scores (AR samples). On the other hand, 
Mn, Rb, Ni, and V were the dominant variables in the sec-
ond principal component, and samples with positive scores 
on PC2 (BR juices) correspond to high concentrations of 
these elements. In order to facilitate the visualization of the 

Fig. 2  Pearson’s correlation coefficients (r)
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After analysing this plot, it can be observed that in cluster 
2 most of the observations were grape juice samples from 
Argentina, except one sample (point 17) that was a juice 
from Brazil. The cluster 1 contained nine samples from 
Brazil and five from Argentina. These results show a better 
performance of the algorithm with respect to HCA analysis.

Figure 5 shows the box-plots of the distribution of the 
elements analyzed for each of the two clusters obtained by 
k-means. In this figure it can be observed differences in the 
concentrations of Cr, Fe, Mo, Rb and Y within the two clus-
ters, indicating higher concentrations of the elements Cr, Fe, 
Mo and Y in cluster 2 in which most of the observations 
were grape juice samples from Argentina and higher level 
of Rb in cluster 1, with the majority of samples from Brazil. 
This confirms the fact presented above, indicating that these 
variables are good features for the geographic classification 
problem.

differentiated two large groups, with same samples of AR 
and BR grouping together.

K-means cluster method was also performed for parti-
tioning the given dataset into a set of k groups (i.e.k clus-
ters) where k represents the number of groups setting by 
the analyst as a prerequisite for applying the algorithm. In 
this work k-means clustering was applied considering k = 2, 
since there is only two categories AR and BR. To plot the 
observations grouped in the two clusters, a 2-dimensional 
clustering plot, “clusplot” was presented in Fig.  4b. This 
graphic showed component 1 on the x-axis and component 
2 on the y-axis, and the clusters were represented as ellipses 
that contains the objects (samples). The ellipses are based 
on the average and the covariance matrix of each cluster, 
and their size is such that they contain all the points of 
their group. For higher-dimensional datasets it is applied a 
dimension reduction technique before constructing the plot. 

Fig. 3  PCA scores (a) and loading (b) plots of PC1 versus PC2. Relative importance of the elements for the three first principal components (c)
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Classification models

PCA and CA exploratory analysis show good results in the 
geographical differentiation of grape juices analyzed in this 
work, nevertheless, these techniques cannot be considered 
as classification methods, since these are unsupervised 

In conclusion, the exploratory analysis based on the ele-
ments determined, allowed a separation of the grape juices 
samples according to their country of origin.

Fig. 4  Hierarchical cluster dendrogram (a). Cluster plot for k-means analysis (b)
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BTS, is necessary to choose the number of repeats, is this 
work it was applying BTS with 100 repetitions.

The CV involves partitioning a dataset into subsets, per-
forming the analysis on one subset (called the training set), 
and validating the analysis on the other subset (called the 
validation set). In k-fold CV, the dataset is randomly split 
into k mutually exclusive subsets (the folds) of approxi-
mately equal size. The classifier is trained and tested k times, 
and to estimate the accuracy of the models, the overall num-
ber of correct classifications is divided by the number of 
instances in the dataset. In this work k-fold cross validation 
was used with k = 4 for the model.

LDA method was applied considering all grape juice 
samples and their accuracy was analyzed. LDA with boot-
strapping gave an overall classification accuracy of 74% 
and a kappa value of 0.45. In the case of LDA with 4-fold 
CV the result of accuracy was of 81% and the kappa value 
was 0.62. It can be observed that by comparing the results, 
the predictive capability has been increased using CV vali-
dation approach for LDA method.

multivariate statistical tools, meaning that they just show 
the data as they are, and do not use the information to pre-
dict classes of objects [39, 40]. For this reason, LDA was 
used to further assess the possible geographical classifica-
tions of grape juices from Argentina and Brazil, based on 
the different element concentrations analyzed and obtain a 
predictive model.

Due to the low number of samples available per country 
of origin, it was no possible to perform model training with 
data split approach. Therefore, it was necessary to use other 
approaches, such as bootstrapping (BTS) and cross-vali-
dation (CV) especially suitable for use in situations when 
small data samples are available as validation techniques to 
reduce variance and overfitting of the models. BTS and CV 
are methods designed to estimate the classifier performance 
using the samples available via partitioning (CV) or resam-
pling with replacement (BTS) [41].

The BTS creates bootstrap samples (random subsets of 
model training and validation data) by iteratively collect-
ing observations from the initial dataset with replacement, 
i.e. hundreds or thousands of repeats that implies that the 
same observation can occur more than once. This results in 
a sample with same size as the original dataset. When using 

Fig. 5  Box plot of the distributions of the elements in the clusters obtained by k-means
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Conclusions

This paper describes the application of ICP-MS analysis 
combined with chemometric techniques for the geographi-
cal discrimination of commercial gape juices obtained from 
Argentina and Brazil. The concentration levels of ten chem-
ical elements were interpreted using unsupervised methods 
such as PCA and CA, which provided an exploratory and 
simple approach for evaluation the origin and hence the 
authenticity of the grape juice samples. The results of these 
techniques allowed a separation of the grape juices samples 
according to their country of origin. In addition LDA model 
was performed with two validation methods, partitioning 
(CV) or resampling with replacement (BTS). This method 
provide good origin prediction ability for samples, the best 
result was achieved with LDA k-fold CV, which provided 
an 81% of accuracy.

Finally, achieving a geographical classification of grape 
juices from Brazil and Argentina through mineral profiling 
and chemometric analysis is significant. Trace element lev-
els of grape juices are relevant markers of the provenance 
and have good potential to discriminate the origin of com-
mercial grape juices. Utilizing advanced chemometric tech-
niques enables precise classification, contributing not only 
to understanding elemental characteristics but also enhanc-
ing viticulture and oenology. This classification empowers 
producers to communicate authentic regional identity, fos-
tering market differentiation and consumer trust. In essence, 
this pursuit stands at the intersection of science, industry, 
and consumer preference.
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